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a b s t r a c t

Usually, whether to take vaccination or not is a voluntary decision, which is determined by many factors,
from societal factors (such as religious belief and human rights) to individual preferences (including
psychology and altruism). Facing the outbreaks of infectious diseases, different people often have different
estimations on the risk of infectious diseases. So, some persons are willing to vaccinate, but other persons
are willing to take risks. In this paper, we establish two different risk assessment systems using the
technique of dynamic programming, and then compare the effects of the two different systems on the
prevention of diseases on complex networks. One is that the perceived probability of being infected for
each individual is the same (uniform case). The other is that the perceived probability of being infected is
positively correlated to individual degrees (preferential case). We show that these two risk assessment
systems can yield completely different results, such as, the effectiveness of controlling diseases, the time
evolution of the number of infections, and so on.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Recently, the outbreaks of Severe Acute Respiratory Syndrome
(SARS) [1,2], Avian influenza [3,4], and Swine influenza (H1N1)
[5,6] have posed great threats to the human population. Modeling
the spread of epidemics is an important topic in understanding the
impact of diseases and designing effective control strategies, and
has therefore become a task of utmost importance and attracted a
revival of interest from the scientific community. Classical mathe-
matical approaches make simplifying assumptions about the pat-
terns of disease-causing interactions among hosts. In particular,
homogeneous-mixing models assume that all hosts have identi-
cal rates of disease-causing contacts [7]. However, many infectious
diseases are diffused from individual to individual following a het-
erogeneous contact pattern between them. So the transmission of
diseases in the human population can be conveniently abstracted
as diseases propagate on complex networks with different struc-
tures. Examples include the web of human sexual contacts [8], the
distribution of avian influenza [4], and so on. Therefore, the dy-
namics of epidemics on complex networks [9–18] and a wide va-
riety of immunization or vaccination strategies, including targeted
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immunization [19], acquaintance immunization [20], ring immu-
nization [21], etc., are investigated under the framework of com-
plex networks.

Though the above immunization strategies have proven to be
efficient in controlling the diseases under certain conditions, an
often neglected factor is that many vaccinations are voluntary
rather thanmandatory (for example influenza vaccination [22] and
smallpox in some countries [23]). Under a voluntary vaccination
mechanism, individuals typically aim at increasing their own
interests, so they will balance the cost of vaccination against
the risks of infection to decide whether to vaccinate or not in
the presence of infection. However, the decision on vaccination
is highly dependent on the individuals’ perceived risk of the
diseases, which is in turn determined by many factors, such as
the prevalence of diseases, the transmission rate of diseases, the
duration of diseases, and so on [22–29]. Thus, in this paper,
the dynamics of infectious diseases on complex networks under
the voluntary vaccination mechanism is investigated. Meanwhile,
the effects of these factors on the perceived risk of diseases are
established by a dynamic programming method in this paper.

Furthermore, to compare the effects of risk estimation systems
on controlling the spread of epidemics on complex networks, we
study two different cases: for the first case, we assume that the
perceived risk of being infected for each susceptible individual
on network is the same (uniform case), that is, each susceptible
individual estimates the perceived risk of infection only depending
on the prevalence of infection, not on its own degree/immediate
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neighbors at each time step. In the second case, we assume
individuals are more rational, so the more links/neighbors they
have, the higher the probability of being infected. As a result, the
perceived risk of infection is not only proportional to the prevalence
of the disease but also on the individual’s degree/immediate
neighbors (preferential case). Interestingly, even though there
is only a small discrepancy between the two cases, completely
different results are observed. For example, for the uniform case,
the effect of voluntary vaccination on a scale-free network is worse
than on random network. For the preferential case, however, the
opposite occurs.

2. Model

In this paper we adopt the SIS epidemiological model to
investigate the role of voluntary vaccination. In the SIS model,
at each time step, each susceptible (S) node is infected with
transmission rate β if it is connected to an infected (I) node.
Meanwhile, the infected node recovers and returns to the
susceptible state again with probability µ.

When facing an impending infectious disease, each susceptible
individual has to decide whether to vaccinate or not by weighing
the perceived risk of infection against the cost of vaccination. We
assume that the perceived risk function for susceptible individuals
comes from several aspects: the perceived prevalence of the
disease estimated by individuals themselves, the transmission rate
β , and the duration time of the disease τ = 1/µ. Furthermore,
we assume that individuals are forward-looking, and they discount
future wealth by a discount factor δ ∈ [0, 1). The discount factor
represents how much weight an individual places on the future
when deciding what action to take [30]. (The concept of such
a discount is common in economic and accounting fields when
computing the net present value of an asset. In general, the idea
is that value at some distant time in the future has less utility than
an equivalent value now, i.e., a present value u becomes uδt after t
time periods.)

Suppose that each individual has the same initial wealth u, and
if the individual is infected then his/her wealth is u− c , here c > 0
indicates the cost of infection. We assume that each individual i
estimates the prevalence of disease in a uniform way

θi = riI(t), (1)

where ri is uniform distribution in [0, 1], describing the imperfect
information about the disease and the diversity of individuals,
and I(t) is the proportion/density of infection among the total
population.

Denote f Ur (f Pr ) and f Uv (f Pv ) as the perceived risk function and cost
of vaccination for the uniformcase (preferential case), respectively.
To reflect the optimal behavior of susceptible individuals, in this
work we use the technique of dynamic programming [31] (see
a brief introduction in the Appendix) to deduce the perceived
risk functions f Uv for the uniform case and f Pv for the preferential
case.

Let Vi(S) and Vi(I) be the value functions of individual
i evaluated in the susceptible state and the infected state,
respectively. So for the uniform case, Vi(S) satisfies the following
Bellman equation [30,32]

Vi(S) = max{u − f Uv + δVi(S), u

+ δ[(1 − βθi)Vi(S) + βθiVi(I)]}. (2)

The first term and second term in the brackets of Eq. (2) are the
individual i’s benefit from vaccination and from non-vaccination,
respectively. Moreover, (1 − βθi)Vi(S) is the benefit of i escaping
from infection though it takes risky behavior, and βθiVi(I) is the
benefit of being infected because of the risky behavior. The value
function of i evaluated in infected state Vi(I) is given as
Vi(I) =

τ−1−
t=0

δt(u − c) + δτVi(S)

= (u − c)
1 − δτ

1 − δ
+ δτVi(S). (3)

To obtain the maximum value of Vi(S), we first establish the
following two equations from Eqs. (2) and (3)

Vi(S) = u − f Uv + δVi(S), (a)

Vi(S) = u + δ

[
(1 − βθi)Vi(S)

+βθi


(u − c)

1 − δτ

1 − δ
+ δτVi(S)

]
. (b)

(4)

Solving Eq. (4)(a) and (b), one has
Vi(S) =

u − f Uv
1 − δ

, (a)

Vi(S) =
u + δβθi(1 − δτ )(u − c)

(1 − δ)(1 − δ(1 − βθi) − βθiδτ+1)
. (b)

(5)

Without loss of generality, by setting u = 0 and taking the
maximum value of Vi(S) in Eq. (5)(a) and (b), we have

Vi(S) = max


−f Uv
1 − δ

,
−δβθi(1 − δτ )c

(1 − δ)(1 − δ(1 − βθi) − βθiδτ+1)


. (6)

From Eq. (6), we know that if

−f Uv
1 − δ

>
−δβθi(1 − δτ )c

(1 − δ)(1 − δ(1 − βθi) − βθiδτ+1)

⇒ f Uv < f Ur ,
δβθi(1 − δτ )c

1 − δ(1 − βθi) − βθiδτ+1
, (7)

then vaccination is the preferred choice; otherwise, if f Uv ≥ f Ur ,
non-vaccination is a better choice.

Remark 1. To facilitate the analysis, we assume that the efficiency
of vaccination is 100% during the period of the vaccine’s validity.

For the preferential case, we assume that individuals are more
rational than the uniform case, i.e., susceptible individuals know
that themore neighbors they have the greater their probabilities of
being infected. As a result, the degree of each susceptible individual
is considered in the preferential case. In this case, individual i’s
value function Vi(S) satisfies

Vi(S) = max{u − f Pv + δVi(S), u + δ[(1 − βkiθi)Vi(S)

+ βkiθiVi(I)]}, (8)

here ki is the degree of node i, other parameters are the same as the
uniform case.

Similar to the uniform case, for the preferential case, if

f Pv < f Pr ,
δβθiki(1 − δτ )c

1 − δ(1 − βθiki) − βθikiδτ+1
(9)

susceptible individuals are willing to be vaccinated; otherwise,
f Pv ≥ f Pr susceptible individuals prefer to take risks.

3. Main results

In this section, we use two different risk functions—Eq. (7) for
the uniformcase and Eq. (9) for the preferential case—to study their
different effects on the dynamics of epidemics. Our main results
are based on the scale-free BA network proposed by Barabási and
Albert (BA) in 1999 [33].We also use the randomnetwork [34] here
as a comparison, when the effects of structure on the dynamics
of epidemic are considered. Both of them have the same size
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Fig. 1. The effect of δ on the number of infections nI (t) for the preferential case
with β = 0.04, µ = 0.1, c = 1.0, and f Pv = 0.15. We also take other values for
these parameters and make simulations for the uniform case, and the results are
similar. Furthermore, in the following figures, nI (t) and nV (t) denote the number
of infections and vaccinations at time t , respectively.

N = 2000 and average degree ⟨k⟩ = 6 and our results obtained
here are averaged over 50 realizations.

Now, we investigate how different factors affect the dynamics
of an epidemic on complex networks. First we study the effects of
discount factor δ on the spread of epidemics in general. From the
definition of δ, we know that for both the uniform case and the
preferential case, the smaller δ is, the less loss from infection. So
a lower level of vaccination causes a higher level of infection. The
analysis is verified by Fig. 1.

It is well known that the structure of networks have a strong
influence on the spread of an epidemic. For example, because of
the existence of hub nodes, the spread of an epidemic on scale-
free networks is much easier than other types of networks, such as
random networks and small-world networks [9,10,19]. However,
in our previous work [35], we showed that diseases can be more
effectively controlled on scale-free networks than on random
networks when voluntary vaccinationmechanisms are considered
(see Fig. 2 in Ref. [35]). Though the result is encouraging, we have
assumed one ideal situation: each node knows the number of
infectious neighbors. In practice, individuals can hardly know how
many neighbors are infected. Take sexually transmitted diseases as
an example, even when infected, individuals may not want others
to know their illnesses for some reasons. As a result, their sexual
partners do not know whether he/she is infected.

In the present work, we relax the severe condition and study
the effects of two more realistic cases—the uniform case and the
preferential case on controlling the spread of diseases, neither of
these cases requires detailed information on howmany neighbors
are infected. It is then natural to ask: what will occur in these two
cases? We first compare the effects of the uniform case on the BA
network and on an ER network. From Fig. 2(a), one can find that
the number of infections on the BA network is larger than on the
ER network. Namely, under the voluntary vaccination mechanism,
the uniform case is invalid for the BA network. This is a frustrating
result as many social contact patterns can be viewed as scale-
free networks. A natural question is: whether such worsening
will happen in the preferential case too? Luckily, as shown in
Fig. 2(b), even the small improvement in the perceived risk function
in the preferential case, an exciting result emerges: the number of
infections on the BA network is less than that of the ER networks.
It is encouraging to see that there is even less restriction for the
preferential case, it also has a positive result.

To explain such a substantial change, we study the inclination
for these two different cases in more detail. We define vaccination
inclination ρk for nodes with different k as:
a

b

Fig. 2. The impacts of two different cases on the BA network and the ER networks.
(a): uniform case; (b): preferential case. Here f Uv = 0.01 and f Pv = 0.10 for the
uniform case and the preferential case, respectively. Other parameters are set as
β = 0.02, µ = 0.1, c = 1.0 and δ = 0.9.

Fig. 3. (Color online) The inclination of vaccination ρk as a function of degree k for
the uniform case and the preferential case. The parameters are same as Fig. 2.

ρk =
vk

nk
, (10)

where nk is the number of nodes with degree k, and vk is the
number of vaccinationwith degree k over thewhole time range t ∈

[0, 500]. Fig. 3 plots the vaccination inclination ρk for individuals
with different k for the uniform case and the preferential case,
respectively.

For the preferential case, at first, the nodes with small degree
(e.g., k < 18) have no inclination for vaccination (i.e., ρk<18 = 0).
Such a result can be explained as: from the red line in Fig. 2(b),
one can find that the number of infections is always lower than
100, namely, I(t) < 100/N = 0.05. Under this condition β =

0.02, µ = 0.1, δ = 0.9 and k < 18, the risk function f Pr in Eq. (9)
is always smaller than the cost function f Pv = 0.1, so their inclina-
tions for vaccination are always zero. Then, the inclination ρk in-
creases with degree k, and this leads to the high inclination of hub
nodes. This means that these hub nodes tend to take vaccination
voluntarily, and the diseases can be effectively controlled on the
BA networks.

However, for the uniform case, we find that ‘‘larger’’ nodes have
lower ρk than ‘‘smaller’’ nodes. The phenomenon is somewhat
against our intuition—ρk should be same regardless of different k.
We should state that such a counterintuitive phenomenon comes
from the case that ‘‘larger’’ nodes have few opportunities to stay
in a susceptible state because of the higher probability of being
infected. So the lower inclination ρk comes from the lower chance
of choice, but not from the lower willingness of vaccination. To
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Fig. 4. (Color online) For the uniform case, the total time in infected state N̄I (k)
versus different degrees k. Here β = 0.02, µ = 0.1, c = 1.0, δ = 0.9, and
f Uv = 0.01.

verify our analysis, in Fig. 4 we plot the total time in the infected
state N̄I(k) for individuals with different degrees over the whole
time range t ∈ [0, 500]. As one can see, the hub nodes have a
higher chance to be infected, so they have fewer opportunities to
decide whether to take vaccination or not.

As one can predict: diseases can much more easily spread on
networks with an increase of the average degree. However, under
the voluntary vaccination mechanism, a higher level of disease
leads to more vaccinated persons, so the discussed phenomenon
abovemay change. In Fig. 5we study the final number of infections
versus average degree of networks for the two cases. As one
can see from Fig. 5(a), for the uniform case, the final number of
infections increases with the average degree of network. However,
for the preferential case, the final number of infections increases
with average degree at first, and then the less favorable situation
is controlled when the average degree is large (see Fig. 5(b)).
What causes such a distinct result? To answer this question, we
reexamine Eqs. (7) and (9). From Eq. (7) we can find that the
perceived risk function of the uniform case is not related to the
degree. As a result, even though the high prevalence of disease
for large average degree can provoke more individuals to take
vaccination, such an endeavor is not large enough to offset the
serious result from the larger average degree, which offers greater
conveniences for the spread of the epidemic on networks. For the
preferential case, since each individual’s perceived risk function is
positively correlated to its degree, when the average degree is so
large that everyone’s perceived risk function is larger than the cost
of vaccination f Pv , then everyone is willing to take vaccination and
then the diseases can be eradicated completely.

Moreover, if no measures are taken, the final number of
infections increases with the transmission rate β . However, under
the voluntary vaccination mechanism, either for the uniform case
or for the preferential case, the final number of infections increases
with β and then decreases to some lower level. The phenomena
canbe explained as: at first, the final number of infections increases
withβ , then the proportion/density of infection is not large enough
to cause alarm. As a result, the final number of infections increases
with β initially. However, with the further increase transmission
rate β , the risk functions for both cases are sufficiently high so
that more and more susceptible individuals will take vaccination
voluntarily. Thus, the infectious diseases are inhibited successfully.
The analysis is verified by Fig. 6. Moreover, an obvious result is also
verified by Figs. 5 and6: the lower the cost of vaccination f Uv or f Pv is,
the more persons participate in the campaign of self-vaccination,
and the better the consequences for disease prevention.

Usually, whether the vaccines are permanent or not can change
individuals’ attitude towards vaccination. For example, due to
400
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Fig. 5. (Color online) The effects of average degree ⟨k⟩ of network on the final
number of infections n̄ for the uniform case (a) and for the preferential case (b)
are studied. The parameters are given as β = 0.04, µ = 0.1, c = 1.0, δ = 0.9.
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Fig. 6. (Color online) The final number of infections n̄ versus the transmission rate
β for the uniform case (a) and the preferential case (b). Here µ = 0.1, c = 1.0,
δ = 0.9.

the short validity of the influenza vaccine and not so serious
consequences of regular human influenza, many individuals are
reluctant to take vaccinations. However, for hepatitis B, even with
the short validity of its vaccine, many people are still willing to
take vaccination iteratively because of the high risk of hepatitis B.
So, in the following we will investigate the effects of the validity
of the vaccine on the spread of epidemics for the uniform case
and the preferential case, respectively. To describe the variation
of vaccine effectiveness among individuals, we assume that the
vaccine validity period Tv for each individual satisfies a normal
distribution Tv = N(50, 1.0). Namely, themean value is 50 and the
standard deviation is 1.0 (We also take Tv in other forms, generally,
the longer the period of validity is, the lower the level of infection
is.)

By comparing the uniform case with the preferential case,
one can find that the number of infections and the number of
vaccinations formmore significant oscillations in the uniform case
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a

b

Fig. 7. (Color online) The effects of the period of a vaccine’s validity on the spread
of epidemic for the uniform case (a) and the preferential case (b), respectively. Here
f Uv = 0.05 for the uniform case and f Pv = 0.15 for the preferential case respectively,
other parameters are set as β = 0.04, µ = 0.1, c = 1.0 and δ = 0.9.

(see Fig. 7). Such a phenomenon is obvious: once the disease is
prevalent, because of the imprecise information on the disease,
most individuals choose to take vaccination enmasse, the outbreak
of the disease is controlled to a very low level, and individuals
then relax their vigilance. However, the disease will break out
again once the vaccine loses its effect on protecting individuals.
Again, most individuals will take vaccination. In this way we
observe strong oscillations with time (see Fig. 7(a)). For the
preferential case, because ‘‘larger nodes’’ are more diligent in
taking vaccination, both the number of infections and the number
of vaccinations show damped periodic oscillations and then reach
a relative steady state, as shown in Fig. 7(b).

Remark 2. The above oscillations do not always appear. For
example, when the cost of vaccination is so cheap that everyone
is willing to take vaccination, then the disease is eradicated at
the initial time steps, whereas when the cost of vaccination is so
expensive that no one takes vaccination, then the disease is always
prevalent.

4. Conclusions and discussions

Due to self-interest, individuals balance the cost of vaccination
and the risk of diseases to decide whether to take risky behavior
or self-protection. This suggests perceived risk functions taken
by individuals which determine an individual’s decision, and
consequently the success or failure of the eradication of infectious
diseases. So, in this work, by using the technique of dynamic
programming, the perceived risk functions of the uniform case
and the preferential case are first established, and then, under
the assumption of a voluntary vaccination mechanism, the effects
of two different risk assessment systems on the spread of
epidemics on complex networks are investigated. We find that
there are some similarities and differences between the two
cases. For example, for both cases, a smaller discount factor
causes a higher proportion/density of infection, and a non-
monotonic phenomenon occurs for the number of infections
versus transmission rate β . However, there are significantly
different results between two cases. First, due to the high
vaccination inclination of ‘‘large nodes’’ in the preferential case, the
effect of controlling the spread of diseases on scale-free networks
is much better than the uniform case. Second, for the uniform
case, the number of infections increaseswith the average degree of
the networks, yet, for the preferential case, owing to the perceived
risk of infection being positively correlated to degree, the number
of infections increases first and then decreases to a low level.
Furthermore, when the finite period of a vaccine’s validity is
considered, perhaps due to the irrationality of individuals in the
uniform case, either the number of infections or the number
of vaccinations oscillates significantly with time. In this case,
individuals’ decisions on whether to take vaccination or not could
become collective, which can cause turmoil and nervousness
in society when the vaccines are limited. Nevertheless, for the
preferential case, because of increased rationality of individuals,
both the number of infections and the number of vaccinationsmay
showdamped periodic oscillations and then reach a relative steady
state.

In reality, when facing the outbreak of a new kind of infectious
disease, many external factors (such as the imperfection of
information, the delay of information, rumors, the mistrust of
authorities, the diversity of individuals, and so on) can cause
people to make an inaccurate estimation on the risk of infection.
According to our analysis, these incorrect decisionsmay determine
the success or failure of the campaign to control diseases. So,
government should take measures, such as releasing timely and
perfect information about diseases, stopping rumors, etc., to guide
the public in reaching the correct decisions. Furthermore, we can
find that it is difficult to completely eradicate diseases under
voluntary vaccination due to the self-interests of individuals.
Thus, in order to completely eradicate the prevalence of diseases,
government should take mandatory measures on vaccination or
increase subsidies to the public to reduce the cost of vaccination.
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Appendix. Dynamic programming

In terms of mathematical optimization, dynamic programming
usually refers a simplification of a decision by breaking it down into
a sequence of decision steps over time. This is done by defining
a sequence of value functions V1, V2, . . . , Vn, with an argument y
representing the state of the system at times i from 1 to n. The
definition of Vn(y) is the value obtained in state y at the last time n.
The values Vi at earlier times i = n−1, n−2, . . . , 2, 1 can be found
by working backwards, using a recursive relationship called the
Bellman equation. For i = 2, . . . , n, Vi−1 at any state y is calculated
from Vi by maximizing a simple function (usually the sum) of the
gain from decision i− 1 and the function Vi at the new state of the
system if this decision ismade. Since Vi has already been calculated
for the needed states, the above operation yields Vi−1 for those
states. Finally, V1 at the initial state of the system is the value of the
optimal solution. The optimal values of the decision variables can
be recovered, one by one, by tracking back the calculations already
performed [31].
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