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Many taxa show substantial differences in lifespan between the sexes.
However, these differences are not always in the same direction. In mam-
mals, females tend to live longer than males, while in birds, males tend to
live longer than females. One possible explanation for these differences in
lifespan is the unguarded X hypothesis, which suggests that the reduced
or absent chromosome in the heterogametic sex (e.g. the Y chromosome in
mammals and the W chromosome in birds) exposes recessive deleterious
mutations on the other sex chromosome. While the unguarded X hypothesis
is intuitively appealing, it had never been subject to a broad test. We com-
piled male and female longevity data for 229 species spanning 99 families,
38 orders and eight classes across the tree of life. Consistent with the
unguarded X hypothesis, a meta-analysis showed that the homogametic
sex, on average, lives 17.6% longer than the heterogametic sex. Surprisingly,
we found substantial differences in lifespan dimorphism between female
heterogametic species (in which the homogametic sex lives 7.1% longer)
and male heterogametic species (in which the homogametic sex lives
20.9% longer). Our findings demonstrate the importance of considering
chromosome morphology in addition to sexual selection and environment
as potential drivers of sexual dimorphism, and advance our fundamental
understanding of the mechanisms that shape an organism’s lifespan.
1. Introduction
Sexual dimorphismoccurs inmany traits and behaviours across the tree of life [1].
For example, in Krøyer’s deep sea angler fish (Ceratias holboelli), the extremely
large female dwarves its male counterpart, which is so reduced that it appears
as a scrotum anchored to the female’s skin [2]. In many birds (e.g. mandarin
ducks, Aix galericulata), male feather patterns and colouration outshine the dull
feathers of females [3]. Finally,most stick insects show strong sexual dimorphism,
withmales tending to bemore slender, more likely to have the capacity to fly, and
often possessing a remarkable drive to disperse [4]. Differences in morphology,
colouration and behaviour can have substantial effects on an organism’s ecology.
In this paper, we aim to advance understanding of the mechanisms underlying
sexual dimorphism in one of the most fundamental life-history traits of all—
lifespan. Specifically, we investigate the possibility that differences in lifespan
between sexes are related to the difference in their sex chromosomes.

Sex determination in many organisms is controlled by sex chromosomes.
Organisms possessing two identical sex chromosomes (e.g. XX in female
humans or ZZ in male birds) are referred to as the homogametic sex. Organisms
with differing sex chromosomes (e.g. XY in male humans or ZW in female
birds) are known as the heterogametic sex [5,6].
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The unguarded X hypothesis [7] suggests that the
reduced or absent second sex chromosome in the heteroga-
metic sex (e.g. the Y chromosome in mammals or the W
chromosome in birds) might lead to heterogametic organisms
being more likely to express undesirable morphological and
physiological characteristics. This prediction is based on the
fact that any recessive deleterious mutation on the X or Z
chromosome is likely to be expressed in the heterogametic
sex, while these mutations will generally be masked by the
second copy of the X or Z chromosome in the homogametic
sex [7–11]. The expression of these deleterious mutations is
predicted to decrease longevity in the heterogametic sex.

There is some anecdotal support for the unguarded X
hypothesis. For example, in mammals, males are the heteroga-
metic sex and tend to have shorter lifespans than females
[12,13]. Conversely, in birds, males are the homogametic sex
and are usually longer lived than females [12]. Consistent
with the trend of heterogametic mortality, Pipoly et al. [14],
found that biases in the adult sex ratio of tetrapod populations
were skewed towards the homogametic sex, as would be
expected if the heterogametic sex had higher rates of early
mortality and thus shorter lifespans. However, some research-
ers have questioned the influence of the unguarded X
hypothesis, pointing out that lifespan differences between
sexes are not solely genetically fuelled [13,15], but are also
influenced by a combination of parental investment, exposure
to predators, sexual selection and other biotic factors [13,15].

Alongside the unguarded X, other mechanisms such as the
‘toxic Y’ may shorten male lifespan as seen in Drosophila, in
which the Y chromosome can impact the gene expression of
other chromosomes and cause deleterious mutations to arise
[16]. Cellular mosaicism, where somatic mutations cause
cells to have differing genotypes, could also explain the role
of sex chromosomes in heterogametic mortality [15]. This
mosaicism could see entire chromosomes lost, gained and
internally rearranged, and as an organism ages, its mosaicism
increases, and at higher rates in sex chromosomes than in
autosomes [17–21]. Complete chromosome loss may occur in
both the X and Y chromosomes, but in females this usually
occurs in the inactive X, lessening the genetic consequences
as gene expression can still occur in the remaining active X
chromosome [21]. Yet in males, both X and Y chromosome
loss could garner more issues as males lack a second copy
of either sex chromosome, thus increasing the risk of
unfavourable gene expression and decreasing longevity [22].

In this study,we aim to extend previouswork by determin-
ingwhether the predictions of the unguardedX hypothesis are
upheld not only amongst birds and mammals [12,13], which
differ in many respects other than their sex chromosomes,
but across the tree of life. Specifically, we ask whether the het-
erogametic sex tends to have reduced longevity relative to the
homogametic sex. The increased phylogenetic span of this
study relative to previous work is important, as it gives us
greater power to disentangle the importance of sex chromo-
somes from the idiosyncrasies of particular clades. However,
this is a correlative study, and as such cannot prove causation.
2. Material and methods
We began by downloading sex chromosome data from the Tree
of Sex database (http://treeofsex.org/ accessed 1 February
2018) [23]. We excluded species that do not possess male or
female heterogametic sex determination, including hermaphrodi-
tic species (as these organisms do not have two separate sexes for
which we could compare longevity). Sex reversing organisms,
and species that undergo environmental sex determination
were also excluded because their chromosomes do not wholly
determine their final sex [24].

We compiled lifespan data from peer-reviewed articles,
books, encyclopaedias and databases (including the Animal
Diversity Web; https://animaldiversity.org/ accessed 9 to 25
July 2019). An extensive search of online databases including
the Web of Science and the Zoological record was conducted
using keywords such as ‘lifespan’, ‘longevity’ and ‘age’
accompanied by species name and/or higher taxonomic ranking
(using the included taxa from the Tree of Sex, e.g. ‘Cetonia aurata’
or ‘Coleoptera’). Lifespan data (measured in days, weeks,
months or years) were recorded for each species. We included
several different metrics for lifespan, including mean lifespan,
maximum lifespan and median lifespan. We also included data
recorded from both wild and captive individuals. Species were
only included in our dataset if longevity data were available
for both males and females, and the data type (mean/median/
maximum; captive/wild; days/weeks/months/years) was
consistent across the males and females within a comparison.

In some cases, suitable longevity datawere found for taxa that
were not included in the Tree of Sex database [23]. In these cases,
we searched theWeb of Science using the keywords ‘karyotype’ or
‘sex determination’ or ‘sex chromosomes’ accompanied by the
species’ name. If the species was known to have either male or
female heterogametic sex determination, it was included in our
dataset, otherwise, it was excluded from the analysis.

The final dataset included longevity data for 229 animal
species spanning 99 families, 38 orders and eight classes. The
full dataset is available in the electronic supplementary material,
appendix S1.
(a) Statistical analyses
To determine whether the homogametic sex lived longer, we
calculated the log response ratio of the longevity of the homoga-
metic sex versus the heterogametic sex for each species:

loge
longevityhomogametic sex

longevityheterogametic sex

 !
: ð2:1Þ

Before running our main analyses, we checked whether
the type of data collected (mean, maximum or median age), or
the circumstances under which individuals live (captive versus
wild) affected the difference between the homogametic lifespan
and heterogametic lifespan. We performed separate linear
models with the log ratio of the difference between the homoga-
metic lifespan and heterogametic lifespan (equation (2.1)) as the
response variable and either the data type or lifestyle as the cat-
egorical predictor variable. Neither data type ( p= 0.287) nor
species’ growing conditions ( p= 0.128) significantly affected the
difference in lifespans between homogametic and heterogametic
sexes. We, therefore, excluded these terms from further analyses.
Where there were multiple data types (mean, maximum and/or
median) available for a species, we used the mean data.

Next, we asked whether phylogenetic relationships between
species might affect our results. A phylogenetic tree was sourced
from PhyloT (https://phylot.biobyte.de/) [25], an online tree
generator that uses the National Center for Biotechnology Infor-
mation taxonomy database [26,27]. Using this tree with branch
lengths calculated using the compute.brlen function in the ape
package in R (see electronic supplementary material, appendix
S2 for phylogenetic tree), we analysed the phylogenetic signal
(i.e. the tendency of closely related species to have similar
traits; [28]) of ln(homogametic lifespan/heterogametic lifespan)
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Figure 1. Lifespan dimorphism (ln(homogametic lifespan/heterogametic lifespan)) across all species analysed in our data. Phylogeny of species included to organize
the species into categories including ( from top to bottom): primates and Homo sapiens, Rodentia (rodents), pinnipeds (seals), carnivorous mammals, e.g. Panthera
leo, ungulates (hoofed mammals), cetaceans (whales and dolphins), marsupial mammals, Aves (birds), reptiles and amphibians, Fish (both Chondrichthyes and
Actinopterygii), beetles, Diptera (flies and mosquitoes), Lepidoptera (butterflies and moths) and other invertebrates. (Online version in colour.)
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using the phylosig function in the phytools package in R [29]. We
found mixed evidence for phylogenetic signal (Pagel’s λ=0.413,
p>0.1; Blomberg’s K= 0.028, p<0.01). Adding a term for phylo-
genetic relatedness to the multivariate meta-analytic model
(calculated as the correlation matrix from our phylogenetic tree
and included as a random effect) did not explain a significant
proportion of the variance in ln(homogametic lifespan/heteroga-
metic lifespan) (σ2 < 0.001; electronic supplementary material,
appendix S2). As adding a term for phylogeny added no extra
explanatory power, but does use additional degrees of freedom
and complicates interpretation, we excluded phylogeny from
further analysis.

We conducted a meta-analysis of the log response ratio of long-
evity across the studyspecies using the rma.uni commandwithin the
metafor package (for univariate predictor data) [30]. The response
term yi was the log ratio of the homogametic to heterogametic life-
span (equation (2.1)), and variance (vi) was held as equal, as the
majority of the studies did not report standard deviation or sample
size. We also conducted a supplementary meta-analysis using only
the 46 species thathadassociated sample sizes (n) andstandarddevi-
ations (s.d.; electronic supplementarymaterial, appendix S3). Again,
we used themetafor package, with the rma.uni function with yi set as
the log ratioof homogametic toheterogametic lifespanandatermfor
variance (vi) calculated using the escalc function [30]. Analyses were
performed in R Studio v. 3.6.0 [31].

Finally, we aimed to determine whether female heteroga-
metic species had a smaller lifespan dimorphism than male
heterogametic species. Using a linear model (lm function in
base R) we tested the relationship between the response variable
of the ratio of homogametic lifespan to heterogametic lifespan
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(equation (2.1)) and the categorical predictor variable, female/
male heterogametic.
oyalsocietypublishing.org/journal/rsbl
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3. Results
Consistentwith the unguarded X hypothesis, the homogametic
sex, on average, lives 17.6% longer than the heterogametic
sex (p=0.014; figure 1). Mammals (class Mammalia), insects
(class Insecta), reptiles (class Reptilia) and ray-finned fishes
(class Acrinopterygii) showed higher lifespan dimorphism
than arachnids (class Arachnida; figure 1), birds (class Aves),
cartilaginous fish (class Chondrichthyes) and amphibians
(class Amphibia; figure 1; electronic supplementary material,
appendix S1). Interestingly, species with female heterogametic
sex determination had a significantly (p=0.019) smaller degree
of lifespan dimorphism (7.1%) than did species with male
heterogametic sex determination (20.9%). A post hoc Levene’s
test determined there is no difference in the equality of var-
iances between female heterogametic and male heterogametic
lifespan (p=0.156).
4. Discussion
Our study provides evidence that, acrossmultiple taxa, the het-
erogametic sex tends to have a considerably shorter lifespan
than the homogametic sex. That is, an organism’s chromosome
morphology seems to have a substantial role in shaping this
key life-history trait. The 17.6% difference between the life-
spans of homogametic and heterogametic sexes revealed here
is substantial enough to have major ecological and evolution-
ary implications. However, heterogametic sex chromosomes
include everything from a complete absence of the second
sex chromosome (X0 or Z0), to a highly reduced second sex
chromosome (e.g. XY in humans), to X and Y or Z and W
chromosomes of nearly equal length [5,32,33]. As not all
heterogametic species have a degraded sex chromosome, our
study likely represents a conservative test of the unguarded
X hypothesis. A future direction will be to formally test the
hypothesis that the difference in lifespan between sexes is pro-
portional to the proportional difference in chromosome length
between sexes. That is, to test the idea that species in which
the second chromosome is absent or extremely reduced have
a greater reduction in the lifespan of the heterogametic sex
than do taxa inwhich the difference between sex chromosomes
is relatively small. Ideally, this question should be addressed
using a diverse range of taxa, both for generality, and to include
specieswith asmany different chromosome configurations, life
histories and mating systems as possible. Another interesting
direction for future research would be to begin to quantify
the relative contributions of factors such as chromosome mor-
phology, sexual selection, parental investment and exposure
to predators.

Our second major finding was that when males are the
heterogametic sex, they die 20.9% earlier than their female
counterparts, but when females are the heterogametic sex,
they die only 7.1% earlier than their male counterparts. Three
possible explanations for this surprising trend include: (1) the
degree of degradation of the Y chromosome, (2) telomere
dynamics, and (3) side effects of sexual selection.

(1) It is possible that the Y chromosome in male heteroga-
metic species might tend to be more degraded than the
W chromosome in female heterogametic species, poten-
tially leading to a difference in heterogametic lifespan
between XY and ZW systems. We know that many
mammals (including humans) have highly reduced Y
chromosomes [33–35]. There is also evidence that the
relative length of the W and Z chromosomes can vary
substantially even within clades (e.g. birds, snakes;
[6,36–39]). However, a comparative analysis of the degra-
dation of chromosomes across the tree of life has not yet
been performed.

(2) Telomeres are sections of non-coding DNA at the ends of
chromosomes that protect coding DNA from deterio-
ration during cell replication and other cellular
processes [40,41]. Cell replication damages telomeres
and studies suggest that the loss of telomere length
over time causes the progression of ageing and shorten-
ing of lifespan [42]. However, oestrogen stimulates a
promoter of the telomerase enzyme [43], which heals
damaged telomeres by adding telomeric base pairs to
its ends and indirectly activates other DNA repairing
pathways [40]. Although we do not know whether
oestrogen is important in all of our study species, it is
possible that the effect of oestrogen on telomerase
activation could help to explain the smaller decrease in
lifespan when females are the heterogametic sex.

(3) In many cases, males experience more intense sexual
competition than females, as they are more reproduc-
tively efficient and so take more risks when pursuing a
mating opportunity (e.g. males fighting for access to
females or to establish their territory) [44,45]. Usually,
females are not as efficient at reproducing, contribute
more to their offspring than fathers, and so are predicted
to engage in lower-risk behaviours [44–46]. Higher
mortality in males owing to side effects of sexual selec-
tion, in combination with the effect of sex chromosomes
on longevity, could also explain why there is a smaller
lifespan difference between ZW females and ZZ males
in comparison with XY males and XX females [11,15,44].

Understanding the mechanisms underpinning the sub-
stantial difference in lifespan dimorphism in male versus
female heterogametic species is an important direction for
future research, as this may improve our understanding of
the factors that affect ageing. There is a multibillion-dollar
industry in extending human lifespan [47], however, there
is a crucial knowledge gap and we have much to learn
about the basic biology underpinning longevity and the dri-
vers of lifespan differences across sexes and species. Here, we
have provided the first evidence that the heterogametic sex
does, on average, die earlier than its homogametic counter-
part across a range of taxa. We also found that lifespan
dimorphism between the sexes is greater in male hetero-
gametic species in comparison with female heterogametic
species. These findings are a crucial step in uncovering the
underlying mechanisms affecting longevity, which could
point to pathways for extending life. We can only hope that
more answers are found in our lifetime.
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