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Campaigns to eliminate infectious diseases could be greatly aided by
methods for providing early warning signals of resurgence. Theory predicts
that as a disease transmission system undergoes a transition from stability at
the disease-free equilibrium to sustained transmission, it will exhibit charac-
teristic behaviours known as critical slowing down, referring to the speed at
which fluctuations in the number of cases are dampened, for instance the
extinction of a local transmission chain after infection from an imported
case. These phenomena include increases in several summary statistics,
including lag-1 autocorrelation, variance and the first difference of variance.
Here, we report the first empirical test of this prediction during the resur-
gence of malaria in Kericho, Kenya. For 10 summary statistics, we
measured the approach to criticality in a rolling window to quantify the
size of effect and directions. Nine of the statistics increased as predicted
and variance, the first difference of variance, autocovariance, lag-1 autocor-
relation and decay time returned early warning signals of critical slowing
down based on permutation tests. These results show that time series of dis-
ease incidence collected through ordinary surveillance activities may exhibit
characteristic signatures prior to an outbreak, a phenomenon that may be
quite general among infectious disease systems.

Despite modern advances in disease control, the World Health Organization
reports that nearly one-third of deaths in developing countries are due to infec-
tious diseases [1]. So far, only one human global disease eradication campaign
has been successful (smallpox). Especially in low-resource settings, premature
abandonment of disease elimination programmes as other health priorities
compete for limited resources may result in reestablishment, even when the dis-
ease is on the brink of elimination. For instance, in Sri Lanka, malaria incidence
climbed from 17 to 440644 cases between 1963 and 1968 [2,3]. Indeed, malaria
resurgence occurred repeatedly throughout the last century. A systematic
review identified 75 resurgence events worldwide between 1930 and 2000,
attributed largely to the weakening of malaria control programmes, increasing
the potential for transmission and evolution of drug and insecticide resistance
[2]. Exactly those conditions are found for other diseases now on the cusp of
global eradication (e.g. polio [4], Dracunculiasis [5] and human Africa trypano-
somiasis [6]). It follows that effective disease elimination might be guided by
techniques for differentiating between efforts that will lead to stable disease
elimination and scenarios where cases are diminished without a corresponding
shift in the system’s stability. Few methods are available that are appropriate to
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Table 1. Names and equations for 10 summary statistics used in these analyses. The correlation coefficient and p-value corresponding to testing between [JEJ]

December 1981 and April 1993 is also given for each indicator.
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the relevant problems of limited data and non-stationary
disease dynamics at these transition points.

Forecasting methods that depend directly on raw case
incidence have been proposed for infectious diseases, but
techniques such as the moving epidemic method, which
establishes thresholds for identifying the start of an epidemic,
rely on regular, seasonal trends and are therefore not appli-
cable for predicting the resurgence of vector-borne diseases
[7]1. Recent theory suggests that critical transitions in
infectious disease systems may be detected using non-
parametric statistical methods [8,9]. Resurgence is a type of
critical transition, wherein the stable state of the disease
system shifts from the disease-free equilibrium (where cases
are due to imported infections and subcritical stuttering
chains of local transmission) to self-sustained transmission.
In systems where the critical transition is driven by a gradual
shift in underlying disease parameters toward conditions
favouring disease transmission, any outbreak is preceded
both by an approach to criticality, which ends when trans-
mission is exactly maintained by an effective reproduction
number of one, and a delay as susceptible individuals
accumulate in the population [10]. During the approach to
criticality, the transmission system is expected to exhibit
slower returns to mean (i.e. longer and longer chains of sub-
critical transmission) following the introduction of cases,
which is a manifestation of critical slowing down [11]. The
mathematical theory of critical slowing down has recently
been worked out in detail for a number of specific disease
systems [8-10,12]. General predictions of the theory are that
cases will exhibit an increase in several summary statistics
(table 1) as the critical point is approached [8,13,14]. These
early warning signals would precede the increase in cases
at the beginning of the supercritical period that triggers an
alert in the moving epidemic method [7].

This paper reports the first test of this theory on real
rather than simulated data for a vector-borne disease. Here,

correlation coefficient (7) p-value
1.000 0.157
0.791 0.039
0.461 0.153
0.890 0.008
0.739 0.064
0.739 0.033
0.709 0.063
0.537 0.168
0.145 0.415

—0.017 0.505

we show the evidence of critical slowing down in a time
series of monthly Plasmodium falciparum malaria case incidence
leading up to a resurgence in Kericho, Kenya. The April 1993
resurgence event has been attributed to the parasite’s develop-
ment of resistance to chloroquine, the anti-malarial drug
administered to workers as a control strategy on these planta-
tions [15]. Thus, the proposed mechanism of the disease’s
return is a gradual underlying process—the increasing fre-
quency of resistance in the population—rather than a sudden
event like importation. In five of the 10 indicators, we detect
increases that serve as early warning signals of malaria resur-
gence during the approach to criticality. Theory suggests this
phenomenon may be a broadly applicable one.

2. Methods

Data were obtained from two relatively isolated tea plantations
for 1965 through 2002. The company-operated hospital provided
case numbers based on stained blood smears from patients with
suspected malaria [16,17]. Malaria reached epidemic levels in
these areas during World War II, carried by soldiers returning
from Ethiopia. In March 1948, a combination of proguanil pro-
phylaxis and DDT house spraying brought malaria incidence
down, and transmission was mostly controlled via the anti-
malarial medication chloroquine until the April 1993 outbreak,
when a spike in the number of cases exceeded all prior months
by two and a half fold (figure 1) [15]. Operationally, we there-
fore define April 1993 as the boundary between subcritical
and supercritical transmission. It is known that chloroquine
remained fully effective against P. Falciparum through Decem-
ber 1981 [16]. Thus, we considered December 1981 to April
1993 to be the period during which the system approached
criticality. We performed a sensitivity analysis to determine
the effect of alternative endpoints for this window (electronic
supplementary material, files S1 and S2). The theory of critical
slowing down developed by O’Regan et al. [8] predicts that
the indicators of critical slowing down should have increased
during this time (table 1).
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Figure 1. Monthly cases reported over the course of the time series. The approach to criticality preceding the 1993 outbreak is indicated by grey shading.

To test this prediction, from December 1981 to April 1993, we
calculated each of these 10 leading indicators over a rolling
window (i.e. the statistics were repeatedly calculated within a
fixed size temporal subsample of the data, shifting the window
by one month for each computation) (table 1). To better dis-
tinguish the signal of critical slowing down from background
noise and periodic trends, we preprocessed the raw case data
by detrending with a Gaussian kernel. The early warning
signal itself was calculated so that for a moving window centred
at time index 7, a corresponding kernel weight w;; was assigned to
the value of the statistic (mean, variance, etc.) at index j and then
normalized so that N; = Ej wjj. Thus, for the time 7 and statistic f,
the rolling window estimator m; was defined as

)= 3y 0,

j=i—b+1

where the only tuning parameter is the bandwidth b=40 (here
set to 40 months, exceeding the period of malaria’s seasonality
to reduce any influence of seasonality on the overall trend). A
sensitivity analysis shows that statistical results are relatively
insensitive to the choice of bandwidth (electronic supplementary
material, file S2). All analyses were conducted in R using the
spaero package [18], a freely available package that provides a
wide range of methods for investigating critical slowing down
in time series. Data and code for reproducing analyses reported in
this paper are available online at https://github.com/mjharris95/
Kericho-EWS.git.

The performance of each indicator as an early warning signal
was then assessed by performing significance tests on the rolling
window statistics as follows. First, we determined the trend in
each indicator over time by calculating Kendall’s correlation coef-
ficient, 7, between the calculated rolling window statistic at each
time and the time index i. There are other statistics one could use
(e.g. Spearman’s correlation coefficient), but the use of Kendall's
7 has become standard in the literature on anticipating critical
transitions and our results are robust to choice of correlation coef-
ficient (electronic supplementary material, file S3) [19-22]. The
sign of 7 indicates the direction of change, while the magnitude
corresponds to the strength of the temporal trend. Unlike simu-
lation studies, where an unlimited number of examples are
available to investigate detectability, analysis based on data
requires a means to assign statistical significance without access
to replication. We used the following permutation approach to
assess the significance of the estimated correlations. We first gen-
erated 10 000 permutations of case incidence during the approach
to criticality (December 1981 to April 1993), thus preserving
the general features of the original data (e.g. amplitudes of
fluctuations) while eliminating underlying patterns of serial

dependence. We then performed rolling window analyses on
the permuted data to generate a null distribution of correlation
coefficients for each indicator. The false positive rates of the
10 tests were estimated by finding the proportion of these permu-
tations with a value for 7 more extreme than that calculated for
the Kericho data. The resulting p-values quantify the reliability
of their corresponding statistics as early warning signals. In an
applied surveillance setting, time series data would be updated
regularly. To reflect this, we first included only data collected
at least 96 months prior to the critical transition (April 1985)
and repeatedly added an additional month of data, recalculating
p-values for each month.

3. Results

The test values for all indicators except for kurtosis and skew-
ness lie in the right tails of their null distributions, consistent
with the prediction that critical slowing down results in an
increase in these statistics (electronic supplementary material,
file 54). Visually, it appears that most of the indicators exhibit
intermittent periods of both upward and downward trend.
The first difference of variance was the first indicator to
return a low p-value (about 65 months prior to the critical tran-
sition), although the p-values for this indicator increased after a
few months, remaining high for the remainder of the study
(figure 2). The p-values for increases in decay time and lag-1
autocorrelation both dropped rapidly 24 months prior to the
critical transition. The p-values for increases in autocovariance
and variance also rapidly decreased 24 months prior to the criti-
cal transition and dropped below 0.05 fifteen and four months
prior to the critical transition, respectively.

4. Discussion

These results show that simple summary statistics may serve
as early warning signals of disease resurgence. Nine of the 10
statistical indicators increased during the approach to critical-
ity, as predicted by the theory of critical slowing down,
although only the increases in half of these indicators corre-
sponded to low p-values (below 0.05) at any point in the 96
months preceding the critical transition. The first difference
of variance was the first statistic to return early warning sig-
nals, followed by autocorrelation and decay time, then
autocovariance, then variance. In the months immediately
preceding the critical transition, the p-values for increases in
the latter four declined sharply. This suggests that certain
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Figure 2. Time series. These plots give the p-value of the signal from each indicator, computed monthly starting in April 1985, 96 months prior to the notional
month of critical transition, to April 1993. Red horizontal lines indicate p-values of 0.05 and 0.01 for reference.

indicators may be more reliable early warning signals of
critical slowing down at different times during the approach
to criticality. The finding that variance and lag-1 autocorre-
lation are relatively robust early warning indicators is
consistent with findings in simulation studies [8,12,19] and
in other (non-disease) natural systems [11,20]. Our con-
clusion is that the statistical signatures of critical slowing
down may be detected in ordinary surveillance data prior
to disease resurgence and therefore should be incorporated
into monitoring programmes and decision support for
proactive response. The statistical features of the lag
between the critical transition and disease resurgence, par-
ticularly in vector-borne disease systems, are not yet well
understood [10].

There are qualifications to this conclusion. Our methods
assume that the system is forced through a critical transition
due to some slow-moving underlying mechanism, causing
one or more disease transmission parameters to vary over
time. The Kericho example meets these conditions, drawing
from a nearly closed system without major human immigra-
tion, and undergoing a critical transition due to the gradual
development of parasite resistance to chloroquine, with
drug-resistant parasites becoming prevalent in the areas of
Kenya starting in the early 1980s [23]. Vector-borne disease
resurgence provoked by imported cases or a sudden change
in the efficacy or administration of control measures is not
expected to be detected in this manner. However, the
accumulation of insecticide and pesticide resistance remains
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leading causes of malaria resurgence [24]. Moreover, in many
areas, slow environmental forcing may drive additional
changes in transmission, for instance as climate change
shifts the geographic region suitable for malaria transmission
[25]. Furthermore, this framework could be used to predict a
critical transition toward elimination, provided that the
system undergoes a gradual approach to criticality, for
instance through increasing insecticide and bed net usage
[8,9]. Thus, we think monitoring programmes based on criti-
cal slowing down might be used to inform intervention
strategies by helping to distinguish between true changes in
system stability and a temporary decrease in cases.
Although this study provides evidence that rolling
window statistics may be used to anticipate disease resur-
gence, applications may be hampered by data limitations
[12]. For instance, under-reporting, especially failure to
detect asymptomatic carriers, may corrupt disease surveil-
lance data. In our study, since the population eligible for
healthcare remained constant over the course of the time
series, inaccurate case reports are unlikely to vary in any sys-
tematic way, justifying our decision to use case reporting as a
measure of incidence [16]. Moreover, theoretical studies
suggest that early warning indicators based on critical slow-
ing down are surprisingly robust to imperfect reporting
[9,12,26]. Under intervention strategies that change case
recovery rate, variance is expected to be robust to under-
reporting, whereas autocorrelation is expected to be
sensitive to under-reporting [8]. Further theoretical studies
are needed on the indicators of critical slowing down, par-
ticularly decay time, in the context of vector-borne disease
systems. Investment in improved surveillance could alleviate
the risk of costly resurgence responses. A related problem is
that the models of the disease system approaching a critical
transition used to identify potential early warning signals
consider the total number of infectious individuals, whereas
reported data (such as studied here) reflect the number of
cases reported in a sampling interval (here, monthly hospital
reports) [16,26]. In our case, since the resolution of the time
series is a month, exceeding the initial infectious period of
malaria, and the system slowly approaches resurgence, new
cases are approximately equivalent to the total infectious
individuals at a time point. But, such convenient alignment
of case reporting and disease transmission may not be
obtained in other situations. We recommend more extensive
investigation of critical slowing down across infectious dis-
ease systems, particularly to identify which indicators most
reliably predict critical slowing down and to analyse the
effects of bandwidth and notional month of transition on
early warning signal detection. Additional studies could
also inform the selection of detection thresholds based on
p-value and correction for testing based on multiple statistics

that are not independent. Data requirements for such testing [ 5 |

include regularly reported measures of incidence for tens to
hundreds of infection generations, occurrence of outbreaks
and a method for determining when the system reached the
critical point. This last criterion could be satisfied either
through parametric modelling of the data themselves or
from independent information.

In conclusion, the results of this study support the use of
rolling window calculations of indicators of critical slowing
down in disease surveillance [8,9,12,14,26]. This study also
demonstrates that early warning signals can be detected in
monthly incidence data several years prior to a critical tran-
sition. The algorithmic nature of these methods points to the
possibility that automated, model-independent disease fore-
casting systems could be developed for application directly
to clinical data to assist in the detection of trends and predict
disease resurgence, improving the efficiency of disease control
campaigns and contributing to a welcome shift from reactive
to preemptive response. For instance, we envision early warn-
ing systems that routinely monitor not only changes in the
number of reported cases but also changes in these summary
statistics and trigger an alert when a threshold is reached
[8,9,12,14,26]. The detection of early warning signals could
be followed by efforts to more specifically identify whether
underlying features of the system are shifting (e.g. the develop-
ment of drug resistance). In sum, being able to predict critical
transitions might make malaria control (and other vertical era-
dication programmes) more efficient by prompting preemptive
action prior to resurgence.

Code used in the analyses and to generate figures and the
corresponding data are available at https://github.com/mjharris95/
Kericho-EWS.git
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