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Abstract

Capturing an enclosing volume of moving subjects and organs using fast individual image slice 

acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions 

results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) 

methods to provide high quality 3D image data. Existing algorithms are, however, typically very 

slow, specialised to specific applications and rely on approximations, which impedes their 

potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-

to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with 

automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a 

novel and fully automatic procedure for selecting the image stack with least motion to serve as an 

initial registration target. We evaluate the proposed method using artificial motion corrupted 

phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal 

Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single 

CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU 

methods. We ensure high reconstruction accuracy by exact computation of the point-spread 

function for every input data point, which has not previously been possible due to computational 

limitations. Our framework and its implementation is scalable for available computational 

infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the 

way for the online application of image based reconstruction methods during clinical 

examinations. The source code for the proposed approach is publicly available

Index Terms

Motion correction; Magnetic Resonance Imaging; freehand compound ultrasound; fetal imaging; 
GPU acceleration

I Introduction

High resolution 3D volumetric images are routinely used for clinical examinations but are 

vulnerable to artefacts caused by subject movement during acquisition, which may take 

several minutes for modalities such as Magnetic Resonance Imaging (MRI). In real-time 

modalities such as ultrasound (US), compounding can be effective for increasing the signal 

to noise ratio and overcoming artefacts such as shadowing and other types of localised data 

loss. Approaches for real-time compounding are also starting to find application in MRI, 

allowing snapshot images of single slices which can be acquired fast enough to 'freeze' 

subject movement, (i.e. where the effects of motion are negligible in any individual slice). 

Such images may be realigned and combined to provide motion corrected volumetric data. 

The task of realigning and then reconstructing or compounding scattered slice data together 

has so far been performed with CPU-based algorithms [1], [2], [3], [4], [5], [6] that are 

effective but slow, often taking hours to complete, even when they incorporate algorithmic 

simplifications and precomputed components. Precomputation requirements also limit the 

scalability of these methods, especially in terms of memory. Additionally, current slice-to-

volume reconstruction (SVR) algorithms require manual input from an experienced user, 

such as the selection of a registration template [2], [5], [7] or the definition of a spatial 
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windowing function [4], along with the specification of numerous input dependent 

parameters.

There are a number of scenarios where individual 2D slices can be acquired fast enough to 

freeze motion within each image. Computed Tomography (CT), e.g., spiral CT sequences 

[8], can be made fast enough to sample whole stacks of such slices without severe motion 

artefacts. The associated radiation dose, however, limits the applicability of this modality. In 

other imaging modalities, image-based reconstruction methods have been developed 

separately for US [1], [3], [6] and MRI [2], [4], [5] to compensate for low temporal 

resolution, and hence for the motion between 2D slices. The general idea in such approaches 

is to oversample a target region by acquiring several intersecting 3D stacks of 2D slices. A 

volume with a higher resolution than can then be reconstructed. This can be achieved 

through super-resolution techniques to increase image resolution and to boost the signal-to-

noise ratio of the reconstructed image volume.

A challenge for such methods is that the target subject is likely to move between the 

acquisition [9] of single stacks and even between the acquisition of slices [9]. The spatial 

relationship between image pixels and corresponding object points will therefore change 

over time. Longer acquisitions will therefore display higher amounts of motion. This implies 

that fast imaging protocols need to be used when employing image-based reconstruction 

approaches and retrospective motion-correction techniques that rely upon image registration 

to recover the relationship between object and scanner coordinates in the reconstruction 

volume.

None of the currently available motion compensation approaches consider the potential 

computational gains that can be made using modern single instruction, multiple data (SIMD) 

programming techniques. In particular, the slow execution time of current state-of-the art 

implementations [5], [7] makes it difficult to properly explore their parameter space or to 

apply them directly during an examination and this hinders their clinical translation. 

Additionally, current approaches often trade off computational accuracy against reduced 

runtime in order to keep execution times to an acceptable level.

Almost all aspects of retrospective reconstruction are parallelizable. The introduction of 

modern SIMD hardware and commodity graphics processing units (GPUs) has made it 

possible to accelerate their execution significantly and to use parallel computational power 

for highly accurate results. Current approaches make computational simplifications to 

support faster convergence for realistically large datasets, for example by linearly 

interpolating between a few samples of a pre-computed point-spread function (PSF) [5]. A 

significant amount of manual intervention is also required and the lack of an ideal and 

uncorrupted registration target image means that the stack with least motion typically needs 

to be visually identified so that it may then be used as registration target. In summary, these 

issues can lead to lower image quality, missing details and a lower signal-to-noise ratio 

(SNR) in the resulting high resolution volumetric reconstruction. In this paper we propose a 

framework to address these problems.
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II Contributions

We present a SVR approach using GPU acceleration. Key features of the developed 

framework are:

1) The use of fully flexible and accurately evaluated PSFs without being limited by 

the amount of available memory. This means we are able to fully exploit the 

mathematical foundations of SVR methods.

2) Elimination of the need to manually prepare the data by developing an approach 

to estimate the amount of motion for stacks of corrupted images, and therefore 

to automatically select the stack with the least motion.

3) Scalability across multiple GPUs, leading to computation times significantly 

faster than those possible with available methods.

The parameter space of the approach is evaluated using a phantom with simulated motion to 

give known ground truth data. These experiments are used to estimate the set of optimal 

parameters for the reconstruction algorithm.

We apply the proposed methods to motion corrupted slice data acquired using two 

examinations of freehand ultrasound of the adult liver and two MRI datasets of fetuses in-
utero. In the latter case, the brain and lungs are reconstructed. Results are compared to 

reconstructions obtained from existing algorithms applied to the same data.

The source code of the approach is publicly available and free to use.

III Background

Motion artefacts are usually caused by periodic organ movements such as respiration or 

spontaneous movements, e.g., bowel movements. Scanning subjects who are unable to 

cooperate, neonates and fetuses for example, poses significant challenges in this regard. 

Under extreme conditions, respiration can be controlled during the scan under general 

anaesthesia. However, this is only possible for major interventions and the risks of 

anaesthesia usually outweigh the benefits of a scan.

Inter-operator variabilities can also present a challenge, for example, in freehand US where a 

high level of anatomical detail is desired in a consistent 3D volume. While modern US 

scanners are able to acquire 3D volumes, a number of trade-offs need to be made affecting 

the voxel size, field-of-view, temporal resolution as well as the frequencies used and the 

penetration needed for the target. The spatial resolution in 3D US can be as fine as 0.05mm, 

even at high frame rates but this would be associated with a very limited the field-of-view. 

To simultaneously allow a reasonable field-of-view and a small pixel size, stacks of high-

resolution 2D slices typically need to be externally tracked and compounded in 3D. The 

resulting volume is usually corrupted by inconsistent probe pressure and natural patient 

movements [10]. This necessitates motion modelling as well as image reconstruction 

techniques in order to obtain volumetrically consistent image data. US compounding 

methods [1], [6], [3] are able to fill in gaps that result from the fan-like acquisition of tracked 

sweeps of 2D slices. However, time consuming manual exclusion of registration errors [1] or 
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additional scan modalities [11] are required to fully account for motion. Image-based motion 

correction, especially without contextual information from other modalities remains a 

challenging problem [12] and is not performed during examination due to the high 

computational demands.

Another important application area for motion tolerant reconstruction techniques is 

represented by fetal, neonatal and infant MRI. Fetal MRI in particular is increasingly used as 

a complementary diagnostic tool to US sonography. It has been successfully used for 

accurate prenatal diagnostics and to study detailed fetal development due to its high 

resolution and SNR. Currently, mainly the brain [13], [5], thorax [14], [15], and the whole 

fetus [16], [17] are qualitatively examined using MRI in clinical practice. Fetal motion and 

its unpredictable nature, however, make the acquisition of 3D MR sequences very 

challenging. Therefore, fast MR sequences such as single shot fast spin echo (ssFSE) [18] 

are often used in order to freeze motion within a single 2D image. Multiple overlapping 

stacks of 2D images can provide an oversampled 3D volume of a target region of interest. 

However, the stacks are often corrupted by motion artefacts as shown in Figure 1. Typically, 

six to twelve stacks need to be acquired to sufficiently oversample the 3D volume.

Motion correction techniques for MR imaging can be classified into prospective and 

retrospective methods as well as approaches to minimize motion artefacts with fast imaging 

sequences [9].

Prospective methods are often navigator-based [19], [20] or self-navigated sequences [21]. 

While the techniques presented by [19], [20] have not been applied to fetal imaging, Bonel 

et al. [22] explored a similar navigator echo method for fetal brain MRI imaging to trigger 

fast snapshot slice acquisition while the fetus is stationary. However this make scan times 

increase from less than 30s to several minutes and the method is not always robust to 

extensive movements [22]. Additionally, positioning a navigator requires a pilot scan and at 

least one test scan, which further increases the total scan time. Radial and spiral sampling of 

the k-space during MRI image acquisition are considered to be more motion robust 

compared to conventional Cartesian k-space sampling. For example, the PROPELLER 

imaging sequence [21] exploits this strategy to correct for bulk in-plane motion. Such MR 

sequences, however, often fail in cases of through plane motion [23] and many of them take 

significantly longer to acquire than conventional scans.

Retrospective methods are applied after image data have been acquired. These have a 

disadvantage in not being fully capable of correcting through-plane motion because of the 

spin history effect [9]. Additionally, the algorithms may take several hours to reconstruct the 

final volume, depending on the size of the volume and the resolution required. However, 

shorter scan times and non-time critical post-processing have made these approaches 

popular in fetal imaging. The most promising approaches use a combination of 2D/3D 

registration, as well as robust statistics to exclude highly corrupted slices, along with 

regularized super-resolution [24], [5] or slice intersection-based optimization [4].
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IV Method

The method proposed in this paper consists of several steps. Figure 2 gives an overview over 

the individual components of the approach. First, we describe a method for estimating the 

relative amount of motion per stack of images in Section IV-A. We then present a general 

model for the motion compensated transformation of scanned 2D slices into a reconstruction 

volume in Section IV-B.

The outlier removal and bias correction approaches employed are methodologically similar 

to [5]. For completeness, these are briefly described in Section IV-C. Super-resolution 

reconstruction is described in Section IV-D. This has been extended with support for 

arbitrary PSFs compared to [5]. Section IV-E briefly discusses the final step of slice-to-

volume registration, which is methodologically similar to all SVR approaches. Finally, we 

discuss the parallelization and implementation of our method on GPU hardware in Section V 

and evaluate the method in Section VI.

A Surrogate measure to estimate motion within one stack

Estimating the correct alignment between slices is a crucial step for all motion corrected 

reconstruction methods. Optimizing the intensity profiles of intersecting slices can be 

achieved without an initial registration template [4]. However, this method is sensitive to 

confounding parts of the anatomy, e.g., maternal tissue during a fetal scan, which needs to 

be suppressed by a spatial mask during registration. The alternative is to use an approximate 

and often manual segmentation, and to align all stacks to an initial registration target using 

3D-3D registration as a starting point for subsequent slice to volume image reconstruction 

[25]. It is possible to automated the segmentation but available approaches provide either a 

very rough segmentation of the central slices of a stack [26] or require stacks with very little 

motion to be accurate [27]. Furthermore, they are only applicable specific regions for which 

training data are available, e.g., the fetal brain.

The initial target region segmentation and the 3D-3D registration would both benefit from a 

measurement of the relative motion within the stacks. This is so that the stack with least 

motion artefacts may be selected for the initial 3D-3D registration. We propose a fast fully 

automatic method to provide such a measure in this section.

We consider k aligned 2D slices I 1,…,Ik ∈ ℝw×h individually uncorrupted by motion 

through a stationary 3D object. The vec operator that transforms a m-pixel image region 

ℝw×h into a vector of intensity values ℝm, m = wh, allows us to define a matrix

A ≐ vec(I1); …; vec(Ik) ∈ ℝm × k . (1)

Given that, within a limited extent and when well aligned, the slices of an object should be 

linearly correlated, the data matrix A for this area should be approximately low-rank. In 

practice, however, the slices are slightly different from each other, motion corrupted (i.e., 

mis-aligned), and subject to noise. Hence, an error E = [vec(e 1); …; vec(ek)] ∈ ℝm×k needs 

to be incorporated. While A can be considered to be low-rank, the observed data matrix D = 
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A+E will most likely be full rank. Experimentally, we found that the (mis)alignment of 

slices, i.e., the motion of the scanned object, has the highest contribution to E when testing 

the centre slices of an image stack. Inspired by Peng et al. [28], we can use a low-rank 

approximation as a surrogate estimate for the extent to which a subset of anatomically 

similar (i.e. usually central) slices in the stack are mis-aligned. Peng et al. [28] aim to align 

pictures of human faces, which show differences because of photographic effects and 

different poses. In our work, the data consists of slices within a stack. For these, variation 

will be due to neighbouring slices representing slightly different anatomy, as well as due to 

noise artefacts and mis-alignment.

As indicated by [28], the data matrix for a well-aligned set of images is better approximated 

by a rank deficient matrix compared with a badly aligned set. Indeed, the rank of the data is 

used to formulate an objective function that can be optimised to estimate the alignment 

parameters. While the rank does not provide a direct or intrinsic measure of the extent of 

motion, in our application it can provide a surrogate measure of motion, one that we can use 

to assign an ordering to the stacks, in terms of the alignment quality of their slice data.

The singular values for the data matrix D ∈ ℝm×k with k < m can be written as s 1, s 2,…, sk 

in descending order s 1 ≥ s 2 ≥… ≥ sk ≥ 0. The singular value decomposition of D is a 

product of three matrices, U, S and V. S contains the singular values on the diagonal, and U 
and V are both matrices with orthogonal sets of columns (of size m × k and k × k). D can be 

recovered exactly by D = USVT.

This decomposition can be used to provide low rank approximations of the original matrix 

D. If we take the first r columns of U and V and the top-left r × r sub matrix of S, denoting 

them as U', V', and S', then we can approximate D with the matrix D' = U'S'V'T. Assuming D 
is full-rank (i.e. of rank k), then D' will be of rank r (i.e. it is rank-deficient). In fact among 

all rank-r matrices, D ' is the one that provides the best approximation to D [29].

The singular values that contributed to D' are the first r singular values of the original matrix. 

To measure how well D' approximates D, we use the Frobenius norm ‖D − D'‖. 
Consequently, the matrix norms of D, D' and D − D' satisfy 

D = ∑i = 1
k si2, D′ = ∑i = 1

r si2,  and D − D′ = ∑i = r + 1
k si2 . The relative error of 

the approximation can be

δr = D − D′
D =

∑i = r + 1
k si2

∑i = 1
k si2

. (2)

Evaluating this for different values of r =1,2,…, k, we can find the minimal rank r for each 

stack that satisfies a given error threshold β,i.e., arg minr {δr < β}. The resulting values of r 
and δr can be combined into a surrogate measure ω for the amount of error within each 

stack, i.e., the stack's suitability as a 3D registration template. In practice we use

ω = r ⋅ δr (3)

to obtain the surrogate measure for the amount of motion.
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Most parts of the scanned slices show significant correlation and this is the case in particular 

for fetal MRI, where maternal tissue with little movement occupies large areas of the 2D 

field-of-view. The movements of the fetus cause larger discrepancies between the slices, 

therefore the proposed measure is well-suited to estimate an expected amount of motion 

corruption per stack of fetal 2D images. The key aspect of the method is that, once the 

approximate rank r is obtained for all stacks, it provides a relative ordering of the stacks in 

terms of their levels of motion corruption. This can be then used as a criterion for selecting a 

good initial reference. The approach can also be used to reject stacks with too much motion 

at an early stage of the algorithm.

B Transformation of slice data

Considering one stack as a target template, we first perform 3D rigid volumetric registration 

between all stacks and the template stack to account for global transformations of the region 

of interest. From this point on we consider each image slice Ii ∈ ℝw×h, i ∈ 1…k and their 

unknown motion transformation parameters θi, i ∈ 1…k to be arranged in lists I = [I 1, …, 

Ik] for the image slices and T = [θ 1, …, θk] for unknown rigid transformation matrices. 

Additionally, we define a list W s = θ1
w, …, θk

w  containing all image to world coordinate 

transformation matrices for all image slices. These transform the discrete coordinates of a 

pixel in a 2D or 3D image to continuous locations in world (or scanner) coordinates. 

Another image to world transformation matrix, Wr, is used for the reconstructed target 

volume X so that we can define the transformation between a voxel pr = [x,y,z, 1]T in X and 

a pixel location ps = [i, j, 0,1]T in the kth acquired slice as finding the nearest voxel centre in 

space of the destination image using ⌊⋅⌉

F = W s
−1(k) ⋅ T −1(k) ⋅ W r,

ps = F ⋅ pr ,
(4)

and the inverse transformation

F−1 = W r
−1 ⋅ T (k) ⋅ W s(k),

pr = F−1 ⋅ ps ,
(5)

To achieve a physically correct estimation of the image acquisition process and to model the 

actual appearance of data points in physical space, the intensities of voxels ps within each 

slice are defined as continuous point spread functions (PSFs). This means that our approach 

makes it possible to sample an exact value for every voxel of the target reconstruction 

volume (within the limits of computational accuracy). The Kuklisova-Murgasova et al. (KM) 

approach [5] used pre-computed low resolution (∼8 × 8 × 8) representations of the PSF per 

voxel and subsequent linear interpolation to acquire an approximation of the PSF value. This 

was carried out in order to avoid significant computation times.

Computing PSFs as exactly as possible is motivated by both imaging research and by 

clinical practice. Our results in Section VI-F and feedback from clinicians show that exact 

calculation of the PSF yields improved image contrast. This helps in both manual 

examination and in subsequent (semiautomatic) image segmentation methods. The exact 
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shape of the PSF is acquisition dependent. Jiang et al. [30] measured the PSF generated by 

the ssFSE sequences using a phantom and rotating imaging encoding gradients so that the 

image plane was perpendicular to the excited slice. The resulting PSF is given by a sinc 

function in-plane, and its shape in through-slice direction is given by the slice profile. An 

ideal rectangular profile has an extended spectrum and would require very dense and 

inefficient spatial sampling. Therefore, we use a Gaussian slice profile, with a full width at 

half maximum equal to the slice thickness to allow more practical sampling requirements. 

We can model the ssFSE sequence PSF by approximating it as a 3D Gaussian function

PSFGauss = exp −dx2

2σx2
+ −dy2

2σy2
+ −dz2

2σz2
, (6)

where dx, dy, dz are the offsets from the centre of a reconstructed voxel. Alternatively, with 

our framework, it is also possible to evaluate the function

PSFMRI = sin c2 R ⋅ exp −dz2

2σz2
, (7)

which directly models the true PSF occurring in ssFSE MRI and where R = dx2 + dy2 is the 

in-plane radial distance from the voxel centre. In practice, we apply a 2-D Bartlett window 

to the in-plane component of the PSFMRI function.

Note that we implement the PSF as a continuous and precisely sampled function at all times 

during parallel computing. This is in contrast to the previous approach of using precomputed 

PSF matrices (PSFtrunc) for each location that are discrete and truncated, and need to be 

transformed and linearly interpolated to acquire continuous values at arbitrary locations in 

the reconstruction. On SIMD architectures, the computational cost of calculating the PSF 

function on-the-fly is less than that needed by memory transfer and linear interpolation. 

Furthermore, this approach improves memory efficiency because there is no need to pre-

compute PSF matrices [5]. We evaluate the effects of different PSF definitions in Section VI.

PSF-based volume update: To fill every voxel of X at an arbitrarily chosen voxel size, we 

extend the spatial relationship between slice and volume voxels from Eq. IV-B and Eq. 5. In 

general, Ps and Pr will not be perfectly aligned and, considering the physical properties of 

the image acquisition process, one ps will contribute to more than one pr. To correctly model 

this, we sample M around every voxel in X which has at least one corresponding pixel in S 
and use the PSF function to correctly weight the pixel's contribution during each iteration n 
with

Ik(ps) X(pr), ∀pr ∈ M :

pr = F−1 ⋅ ps , ps = F ⋅ pr,

X(prn + 1) = PSF (ps − ps) ⋅ Ik(ps) + X(prn)
(8)

Coordinates in PSF space are transformed with the slice voxel dimensions. In order to 

provide an acceptable runtime to the algorithm, we sample the exact PSF value at the voxel 

center positions of a local neighbourhood in the target reconstruction volume, i.e., we 
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sample the PSF with the desired resolution of the motion corrected volume, until the 

difference between successive estimates is less than a predefined small ε. The KM approach 

[5] used a small number of voxels (four to eight) to define a local neighbourhood within the 

reconstruction volume instead of sampling the PSF space directly. In the proposed approach 

it is possible (1) to use an arbitrary PSF, hence to adjust the method easily according to the 

scanning device used and (2) to weight a theoretically infinite number of reconstructed 

voxels, thus providing infinite support of the PSF.

C Slice simulation, outlier removal, and bias field correction

Having established a spatial relationship between S and X we can also reverse this process 

and simulate the scan process using the PSF function and generate a list of simulated slices 

Iss = I1
ss, …, Ik

ss , Ik
ss ∈ ℝw × ℎ .

Comparing the information from the simulated slices to the real slices at the same position in 

world coordinates can be used to classify each slice voxel into inliers and outliers. In an 

approach similar to [5], we train an EM model with the probability density function for the 

inlier class as a zero-mean Gaussian distribution. Outliers are modelled by a uniform 

distribution with constant density. The likelihood images P = [P 1,…,Pk], Pk ∈ Rw×h for the 

voxels in each slice to be inlier can be used to weight the super-resolution volume update. 

Additionally, individual slices are classified according to this scheme and the average of the 

individual slice pixel weights is used for another instance of the EM algorithm [5]. This 

yields another list of scaling factors for each slice S = [s 1,…, s k], sk ∈ ℝ1.

A multiplicative bias field model B = [B 1,…, Bk], Bk ∈ ℝw×h yields the relationship 

between Ik (ps) → X (pr) and Eq. 8 can be written as

X(prn + 1) = PSF (ps − ps) ⋅ skexp −Bk(ps) Ik(ps) + X(prn) (9)

This is commonly used in SVR approaches [31], [5]

D Super-resolution volume update

For the final step we aim to minimize the sum of squared differences of errors Ek = [E 1, 

…,Ek], Ek ∈ ℝw×h between the intensity corrected slice pixelsIk* = skexp( − Bk)Ik and 

simulated slice values Iss,

ps = F ⋅ pr, ps = ps ,

Iss(ps) = PSF (ps − ps) ⋅ X(pr),
(10)

and calculate the error

Ek(ps) = Ik*(ps) − Ik
ss(ps) . (11)

Gradient descent is applied to optimise an objective function of the form ∑E 2 + λR(X). To 

restrict the effect of noise and to avoid local minima during optimisation iterations, we add 
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the regularization term αλ ∂
∂xi

R(X), with smoothing parameter α, implemented as edge 

preserving smoothing. This extends Eq. 9 to an iterative update scheme for X:

pr = F−1 ⋅ ps , ps = F ⋅ pr,

X(prn + 1) = α ⋅ PSF (ps − ps) ⋅ pk(ps) ⋅ sk ⋅ Ek(ps) +

+αλ ∂
∂xi

R(X), + X(prn) .
(12)

For the regularization term we use a similar strategy as proposed in [5] and formulate it with 

anisotropic diffusion [32] and decreasing λ after each slice-to-volume registration iteration 

to avoid local minima. Therefore, considering the smoothing in direction d ∈ ℝ3, the 

regularization term can be written as

αλ ∂
∂xi

R(X) = 1
∂2 ∑

d

1

d 1 + X(prn + d) − X(prn)

δ d 2

. (X(prn + d) − X(prn)) .
(13)

E Slice-to-volume registration

We can consider X as an approximate reconstruction of the volume of interest after the first 

iteration of Eq. 12. Therefore we can optimize each individual θk ∈ T by registering each 

slice to the current X rigidly [33] using any voxel-based similarity measure. We use cross-

correlation for MRI and normalised mutual information for US images and restart the super-

resolution volume reconstruction with the resulting refined alignment of ps and pr.

V Implementation

We have implemented the proposed algorithm using GPUs and Nvidia's Compute Unified 

Device Architecture (CUDA) [34]. CUDA is a highly evolved SIMD programming language 

which allows a large part the proposed framework to be mapped onto GPU hardware. 

Currently, CUDA is the only high-level GPGPU language that provides, for example, bi-

directional texture access via surfaces in a kernel, which is essential for the efficient 

implementation of certain parts our framework (for example the registration step). In this 

section we discuss the key implementation details.

A Parallelization

SVR methods offer two major opportunities for parallelization. First, individual slices can be 

treated separately for large parts of the reconstruction process. This allows the application of 

simple parallel computation schemes for multi-core CPUs. For comparison and evaluation 

we have implemented such a Multi-CPU version of the KM SVR method [5] using Intel's 

Threading Building Blocks [35].

A second layer of parallelization is given by the individual slice pixels ps and volume voxels 

pr. Most pixel/voxel based operations are independent of each other and calculations 
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involving these can be executed in parallel on SIMD machines. When processing individual 

slices, it is certainly possible to parallelize computations on a per pixel level but this is 

unlikely to provide good performance on current hardware due to the small number of pixels 

in a single slice in comparison to the number of processors on a GPU, which would leave the 

GPU under-utilized. Parallelization over multiple slices and pixels within those slices is 

therefore desirable for slice-based operations. Kernel level parallelization enables us to 

implement our own efficient SVR method including flexible accurate evaluation of PSFs as 

discussed in Section IV.

a Kernel level parallelization—We divide individual procedures, i.e., computing 

kernels, into three classes.

The first class maps volume data to volume data of the same size. Examples of such 

procedures are the edge preserving regularization used in Eq. 12 and the bias-field correction 
illustrated in Figure 2. These procedures can be implemented using a three-dimensional 

computation grid starting one thread per voxel. Reading from and writing to memory is 

often a bottleneck when working with volume datasets To address this, we use CUDA 

textures for read-only volume data, and layered surfaces [34] for modifiable slice data. Both 

storages go through texture cache and thus enable fast access and improved algorithm 

performance.

The second class of procedures map pixels in the acquired slices to voxels in the target 

volume, e.g., when integrating slices to the accumulated volume. As pixels from different 

slices can map to the same voxel a straightforward parallelization over multiple slices is not 

possible. A naive alternative would be to apply a kernel to each of the slices individually. 

However, this would again lead to low GPU utilisation and disappointing performance gains. 

To avoid this bottleneck, we store all slices in a coalesced memory area with contiguous 

memory addresses. This storage forms a volume with an extent equal to the maximum 

occurrence slice dimensions in ℝw×h. The volume's depth is defined by the number of slices. 

To avoid race conditions when accessing voxels, we rely on atomic operations [34], e.g., in 

Eq. 9 when carrying out the mapping Ik (ps) → X (pr). Figure 3 shows a schematic overview 

of the implementation of these types of procedure. Additionally, when volumes are used as 

input, parallelization across the three dimensions of the volume is straightforward although 

care must be taken in order to exclude voxels as determined by an optional manual mask. 

We achieve this by immediately terminating threads started for these voxels.

The third class of procedures maps multiple input pixels or voxels to a single output value. 

Summations and minimum/maximum operations over entire slices make up large parts of 

the slice-to-volume registration algorithm [33] and such operations cannot be entirely 

parallelized. However, to avoid sequential execution, we apply parallel reductions [36] in 

these parts. Again, a parallelization over individual slices would not be sufficient to fully 

utilise a GPU. Thus, we execute reductions for multiple slices in parallel. Reduction 

operations which are concurrently required for the same slices can be fused as they require 

the same input data. This reduces memory access to effectively one third, directly increasing 

performance by a factor of three.
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b Multi-GPU parallelization—While kernel level parallelization yields speedups on 

single GPU machines, it is desirable to utilize the power of multi-GPU systems where 

available. To parallelize our method to multiple GPUs, we follow a similar idea to the multi-

threaded parallelization for CPUs: we assign subsets of slices to each GPU. This idea not 

only leads to performance increases, but also allows larger datasets to be handled as data can 

be distributed over multiple GPUs. It is not possible, however, for the GPUs to work 

completely independently, as data need to be integrated into a common volume and error 

measurements need to be propagated. Essentially, after each SVR step, a synchronization 

among all GPUs is required to enable data transmission. To allow completely parallel 

execution within each step, we assign an individual worker thread to each GPU. These 

worker threads are controlled by a master thread which collects and distributes data, starting 

the execution of the individual steps. In this way, we can achieve good speed-ups when 

going from a single-to a multi-GPU setup and are able to scale the performance linearly with 

the number of available GPUs.

B Motion Correction and Measurement

Registration is performed either on a CPU using multi-core rigid registration implemented 

within the IRTK1 software package [33], or on a GPU using our own specially designed 

registration framework for optimal execution on GPUs with parallel reduction operations.

For our motion measurement approach from Section IV-A we make use of the GPU 

accelerated CULA library [37], which provides fast CPU and GPU methods for large matrix 

rank determination.

VI Evaluation and Results

We implemented the framework using Intel's Threading Building Blocks and Nvidia's 

CUDA. It has been tested on an Intel Xeon E5-2630 v2 2.60GHz system with 16 GB RAM, 

an Nvidia Tesla K40 with 12 GB RAM and a Geforce 780 Graphics card with 6 GB RAM. 

We use real data from volunteer freehand ultrasound of the liver (Section VI-A) and fetal 

MRI data (Section VI-B). For quantitative evaluation used simulated data sets (Section VI-

C) with known ground truth. We analyse the method's parameter space (Section VI-D) and 

quantify the performance of our template stack estimation approach in Section VI-E. Finally, 

we evaluate the effect of different PSFs in Section VI-F and give a detailed overview of the 

required computing time and memory footprint in Section VI-G.

A Freehand compound ultrasound

To demonstrate the effectiveness of our method we have applied it to freehand 3D 

ultrasound (US) scans of the liver from two volunteers. A regular 2D abdominal probe 

(Siemens S2000, 4C1-S) was used with a magnetic tracking system (Ascension 3D 

Guidance). The tracking information was calibrated to the US image space and used to 

establish the 3D location of every image frame. Three sweeps from different angles were 

used, where the original image frames with a resolution of 0.45mm × 0.45mm were passed 

1Image Registration Toolkit (IRTK), https://github.com/BioMedIA/IRTK.
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to our reconstruction framework. This was compared against compounded volumes from the 

individual sweeps, constructed as described in [3]. Utilizing data from multiple freehand 

sweeps can provide more complete coverage of anatomic structures, such as fine hepatic 

vasculature. However, a simple averaging of the image data is not possible due to non-linear 

deformations of the liver (from respiratory or patient motion, as well as US probe pressure) 

as well as orientation-dependent artefacts, due to different angles of the acoustic windows 

and tracking errors. Figure 4 shows the result of our reconstruction approach. This is 

compared to one of the original freehand US slices, as well as to the average intensity 

volume of all used sweeps [3].

Super-resolution approaches, such as the one proposed in this work, are difficult to apply to 

these types of data, because the input space is typically much larger than for the MRI case 

(Section VI-B). The required computation times are therefore often infeasible. One 

limitation of this experiment is, that we assume a Gaussian PSF with a constant slice 

thickness of 2.5mm. This is of course not true for real US data and the consequences of an 

inhomogeneous PSF should be investigated in future work. Figure 4 shows results from a 

volunteer experiment, and compares the average image data to the result of our proposed 

approach. Manual examination by clinical experts confirmed that our method leads to more 

accurate and faster (semi-automatic) image segmentation and is able to compensate for more 

rigid organ movements than standard methods.

B Fetal MRI data

Fetal MR datasets were acquired on a Philips Achieva 1.5T (24 datasets) and 3T scanner (5 

datasets), with the mother lying at a 20° tilt on the left side to avoid pressure on the inferior 

vena cava. The study was approved by the local ethics committee at Imperial College 

London and the UK's NHS National Research Ethics Service. Single-shot fast spin echo 

(ssFSE) T2-weighted sequences with half Fourier acquisition [26] and SENSE [22] were 

used to acquire a stack of images of the mother's womb. Each acquisition of a 2D image 

takes approximately 200–800ms, which is fast enough to freeze fetal motion in each image, 

but generally results in inconsistent anatomical positioning between slices. Visual inspection 

of the data confirmed that the scans contain small to medium amounts of motion of the fetus. 

Several of these image stacks are acquired in axial, coronal and sagittal planes with respect 

to the fetal anatomy. The 3D resolution of each stack is approximately 288 × 288 × 90 

voxels with a size of 1.2mm × 1.2mm × 1.25mm for both field strengths. We obtained 

measurements of σx, σy, σz from scanner calibration data as follows

σx = 1.2 ⋅ vdimx
2.3548 ,

σy = 1.2 ⋅ vdimy
2.3548 , and

σz = vdimz
2.3548 ,

(14)

where vdim represents the chosen size of the slice voxels.
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C Scan simulation

To make our simulated images comparable and to be able to predefine known motion 

trajectories, we have developed a computer simulation using test data that comprise a 128 × 

128 ×128 Shepp-Logan phantom [38], previously reconstructed fetal brain scans (140 × 140 

× 100) and a T2 weighted artificial brain dataset (181 × 217 × 181) from the BrainWeb 

database [39]. Maximal motion amplitude is expressed in cm/s. From fetal cine sequences 

[40] we know that fetuses can move their heads randomly in any direction combined with a 

small omni-directional jitter caused by the baby and by maternal movements (breathing, 

digestive movements, etc.). The speed of head motion we have measured from these 

sequences was between 0.25 and 2.0 cm/s. To simulate the scan process we sample the data 

in parallel slices while transforming the phantom according to this motion trajectory. Fig. 5 

compares a real and a simulated motion corrupted dataset.

D Optimal parameter definition

Like most complex algorithms, our method has a number of possible parameters. 

Empirically determined parameter values of SVR methods have been reported such as the 

number of iterations and smoothing factors. For this paper, we make use of modern 

parameter space exploration methods and use Tuner, a tool for visual response surface 

exploration [41]. We explore the input space for those parameters that have the most 

significant impact on the final reconstruction quality and the computation time. These are 

the number of motion estimation/registration iterations (outer loop in Figure 2) the number 

of super-resolution reconstruction iterations (inner loop in Figure 2) and the number of 

super-resolution iterations during the final loop, the number of stacks and the amount of 

motion. Motion generated by our simulation framework enables us to quantify its effect 

comprehensively. A summary of the evaluated input parameter range and their optimal 

values for a low amount of motion (∼ 0.3cm/s, shown by most of our datasets) is given in 

Table I.

To avoid testing every single combination of parameter values, Tuner samples the input 

parameter space sparsely and estimates algorithm performance for untested areas using a 

Gaussian process model. Figure 6 shows the decreasing PSNR with increasing (artificially 

added) motion for a real fetal brain dataset while the remaining parameters are fixed (to the 

values shown in Table I).

E Motion Measurement

To evaluate the method to determine the stack least affected by motion (Section IV-A), we 

simulated motion at a variety of amplitudes using our scan simulation (Section VI-C) and 

compare the known motion amplitude to the surrogate measure provided through rank-

approximation.

Note that it is only necessary to determine a relative estimate for the motion amplitude to 

define the best template stack. During our experiments using the central third of slices per 

stack and an error threshold of α = 0.99 provided the best results to determine ω from Eq. 3. 

Figure 7 illustrates the strong correlation between the amplitude of the known motion and 

the values of ω derived from the stack data matrices D.
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F Choice of point-spread function

With our approach it is possible to evaluate arbitrary PSFs accurately within a complete 

framework. Different PSFs influence the recovery of local details but do not significantly 

influence a global quality metric, such as PSNR. In our experiments the global PSNR was 

found to be around 40dB for our phantom dataset with different realistic simulated motion 

corruption. In order to evaluate the influence of different PSF functions, a qualitative 

evaluation of local image details is required. Figure 8 shows examples for local differences 

with (a) truncated pre-computed and interpolated Gaussian PSFtrunc [5], (b) continuous 

Gaussian PSFGauss (Eq. 6), and (c) continuous PSFMRI (Eq. 7). Figure 8(d) shows a selected 

intensity profile of the resulting reconstructions. Figure 9 compares two such slice profiles 

with the originally acquired image and thus PSF at the shown position. PSFMRI seems to 

reconstruct slice profiles most similar to the originally acquired data.

To assess the influence of different PSFs on the accuracy of segmentations we chose an 

artificial brain dataset from the BrainWeb database [39] and used the 0% noise 0% intensity 

non-uniformity data to generate a ground truth segmentation for the ventricles, the white 

matter and the grey matter. We use a semi-automatic segmentation method to define coarse 

foreground and background constraints for the target structure. The constraints can be used 

to obtain a full segmentation using the automatic Geodesic Image Segmentation method 

[42]. We chose this algorithm, an exemplar of many standard methods for semi-automatic 

image segmentation, because we hypothesise that different point spread functions may result 

in different image gradient profiles and a geodesic contour approach may be sensitive to this. 

The scan simulation from Section VI-C was used to simulate six stacks of motion corrupted 

images at a maximum of 1.5cm/s. These stacks were reconstructed to the original resolution 

of 1mm isotropic voxel-size using different PSFs. After rigid 3D-3D registration to the 

ground truth image, which is necessary to compensate for potentially small offsets of the 

reconstruction caused by the artificial motion corruption, Geodesic Image Segmentation [42] 

is applied with the same foreground and background constraint as defined for the ground 

truth segmentation. To evaluate the segmentation quality, we compare the results using the 

Dice metric in Table II. While all PSFs perform similarly for high contrast structures like the 

ventricles, our approach of sampling the PSF leads to improved results for less well defined 

structures such as white matter and the cortex.

Our PSF sampling strategy was also confirmed by clinical partners to be beneficial for 

automatic image segmentation algorithms used in their clinical pipelines. There is no 

significant difference in runtime for the different PSFs.

G Runtime

We have implemented the discussed algorithm for execution on a single GPU (1xGPU – one 

Nvidia Tesla K40) and on multiple GPUs (2xGPUs – one Nvidia Tesla K40 and one Geforce 

780). For comparison we have implemented the KM algorithm [5] using a single CPU 

(1xCPU) and we have parallelized it on the slice level using multiple CPU cores (12xCPU). 

We compare the runtimes of the individual parts and the overall time required for a full 

reconstructions in Table III. The GPU implementations utilize multi-threaded CPU cores, 

multiple GPUs, and directly evaluated PSFs at full sampling resolution. Our GPU 
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accelerated methods clearly outperform the CPU versions for reconstructions using an 

isotropic target voxel size of either 1.0mm or 0.5mm.

We compare the resulting image quality with the CPU versions of the KM algorithm and the 

most recent version of the Baby Brain Toolkit (BTK) [7], which is currently the only other 

publicly available framework for volumetric reconstruction from motion corrupted image 

stacks.

The results for the same datasets with similar parameters are shown in Figure 10. For this 

test we did not apply bias correction step (cp. Figure 2) to allow a fair comparison with 

BTK. The KM approach used a truncated and interpolated PSF while our method uses a 

precise definition of PSFMRI. Even though BTK does not use robust statistics and uses super 

resolution only once, the 2xGPUs-approach is still approximately four times faster for 

comparable reconstruction volumes while providing a better resulting image quality by 

integrating both outlier rejection and super resolution in the SVR computation. This was 

approximately three times faster with activated bias correction, depending on the number of 

slices (with more slices, a greater speed-up is possible with multi-GPU acceleration).

The KM algorithm yields a runtime and image quality comparable to our 12xCPU 

implementation. Our results from Figure 10 were confirmed after correspondence with the 

authors of KM [5] and BTK [7]. We jointly concluded that the comparison to BTK is not 

entirely fair for the dataset shown in Figure 10(d) because BTK does not support outlier 

removal using robust statistics.

Table III shows measured runtime for the most computationally expensive parts of our 

algorithm at the full PSF resolution. The upper section corresponds to steps of the outer 

(registration) loop, the middle section to parts of the inner (super-resolution) loop, and the 

lower section to the total runtime when configured for a real-world dataset. The values show 

results for a target resolution of 1.0mm and 0.5mm and for three and six input stacks. The 

total is given for a real scenario with a high amount of motion and aiming for a maximum 

reconstruction quality, i.e., executing the registration/outer loop eight times to compensate 

for a high amount of motion, executing the reconstruction/inner loop four times and 13 times 

during the final iteration as given by Table I. Bias correction (g) is optional and only 

required for MRI data. It is possible to approximate the required runtime by using the 

equation at the bottom of the table (where m denotes the number of motion correction 

iterations, ñ the number of super-resolution and robust statistics iterations, and ñ the number 

of super-resolution and robust statistics iterations during the last iteration of m, c.p. Table I). 

The last row gives approximate values for the memory required memory for our framework's 

implementation, which is not currently memory optimized. The CPU methods were 

evaluated using precomputed and interpolated truncated PSFs, which leads to a significant 

reduction of computation time but also to increased memory requirements.
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VII Source Code

The source code for the implementation of the SVR reconstruction is publicly available 

together with binaries for Windows and Ubuntu Linux. It is licensed under creative 

commons public license.

The proposed approach is currently deployed to the clinical research practice at St. Thomas 

Hospital London, King's College London, Imperial College London, Oxford University, UK, 

and Medical University of Vienna, Austria. It is publicly available on github2.

VIII Limitations

While our approach is fast and accurate it has certain limitations. Nvidia SIMD computing 

hardware is required to execute our tools. We have also tested our approach on a laptop 

equipped with a GeForce GTX 660M and 16 GB RAM, which resulted in 3 × −4× slower 

execution compared to 2 × GPU in Table III.

Additionally, the 2D/3D registration is only able to recover relatively limited rotations of the 

target object, i.e., it currently cannot recover sudden movements of more than ∼ 90°. A 

limited number of these slices can be identified via robust statistics but if the initial 

reconstruction is already significantly corrupted, registration and reconstruction can fail. 

Therefore, manual inspection of the results by an expert user will remain necessary. Finally, 

for ultrasound, our approach requires a probe specific PSF distribution to be fully accurate. 

We are currently investigating how to measure this distribution of PSFs and will update the 

approach in future work.

IX Conclusion

We have presented a fully parallel SVR approach using accurately sampled and flexible 

PSFs for the reconstruction of high-resolution volumetric data from motion corrupted stacks 

of images. The implementation uses Nvidia CUDA and C++ and is publicly available. We 

have employed a quantitative approach (Tuner) to determine suitable model parameters. Our 

approach is approximately five to ten times faster than the fastest currently available multi-

CPU frameworks. Since we do not need to precompute and interpolate the PSF, the method 

has a minimal memory footprint while maintaining maximum accuracy. The required 

runtime scales well with the number of input stacks due to the use of high occupancy SIMD 

techniques. Comparisons with state-of-the-art techniques show that our approach gains a 

higher reconstruction quality while maintaining flexibility. Additionally, our approach 

incorporates automatic selection of the template stack based on matrix low-rank 

approximation. Overall, our approach is fast and accurate enough to be applied directly 

during examination and this will form the next step in our deployment process. With the 

subject remaining present during examination, the online availability of motion corrected 

reconstructions will help to determine if and where more scanning is necessary. Online 

reconstructions will also, in the longer term, enable a feedback loop to the scanner for 

optimal data sample acquisition and minimal scan time.
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Fig. 1. 
Top row: An example of three orthogonal views through a stack of 3T ssFSE MRI slices. 

Note the significant motion artefacts between the slices and the intensity bias. The left image 

shows an acquired ssFSE slice and the other two images orthogonal planes through a stack 

of these slices. Bottom row: The resulting reconstruction at 0.75mm isotropic voxel size 

after applying the proposed method.
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Fig. 2. 
An overview of the proposed approach. Thick solid lines represent the program flow and 

thin dotted lines the most important data flow. Boxes in dotted lines are optional, e.g., bias 

field correction for MR data.
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Fig. 3. 
2D slices Ik are arranged in a volumetric 3D computation grid to maximize SIMD 

occupancy (left). The grid spans the maximum slice size in x and y. Smaller slices are filled 

with zeros to reach the required grid size in x and y. Operations on the reconstruction 

volume are performed in a volume X sized grid.
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Fig. 4. 
Results of the application of our method to three stacks of freehand 2D compound 

ultrasound (US). This dataset is reconstructed to 0.6 mm isotropic voxel size and contains 

568×406×630 voxels. The investigated area in red shows the vessel tree of a volunteer’s 

liver. (a-c) show a multi-planar reconstruction of the compounded average [3] of the input 

slices resampled in a joint volume with 0.6 mm isotropic voxel size. (d) gives an overview 

over two of the acquired 2D sweeps in 3D. (e) shows the original data, (f-k) show the 

resulting reconstruction in three orthogonal orientations comparing the average of the image 

data to the result of our super-resolution (SR) framework.
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Fig. 5. 
Examples of a typical real motion corrupted scan (a) and a synthetically motion corrupted 

reconstructed dataset (b). Note that the slices shown serve only as illustration for the motion 

corruption artefacts and are not meant to show the same slices and same corruption in the 

same subject.
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Fig. 6. 
Decreasing PSNR with artificially and randomly increasing motion tested on a real brain 

dataset. For this test we kept the number of iterations constant and used 4 stacks as proposed 

by Tuner.
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Fig. 7. 
Comparison of the surrogate motion estimates (Eq. 3) and the amplitude actually used to 

simulate motion artefacts in a phantom dataset. The blue line shows the given, increasing 

motion amplitude and the connected dots show the result from our motion measurement 

approach.
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Fig. 8. 
Comparison of different types of point spread functions for a 0.75mm voxel size 

reconstructed volume. (a) shows a slice through a reconstruction of a truncated and 

interpolated Gaussian weighted PSFtrunc [5], (b) using an accurately sampled Gaussian 

weighted PSFGauss (Eq. 6), (c) an accurately sampled Sinc/Gauss PSFMRI (Eq. 7). (d) 

compared the intensity profile of the three PSFs at the line in (a-c). More distinct edges and 

finer details are provided by example (c).
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Fig. 9. 
Comparison between an originally acquired slice (a) and cutting planes through the 

reconstructed volume at the same position. The reconstructions (b), (d), and (e) have the 

same resolution as the input (1.18mm voxel size) and use different point spread functions. 

Two rows in the images are selected (marked as white lines) and their intensity profiles are 

compared in (c) and (f). Note that using an accurately sampled PSFMRI allows improved 

recovery of smaller details like the pupil in the eye (e). The PSFMRI profiles are also closest 

to the originally measured slice profiles (blue vs. black curves).
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Fig. 10. 
Qualitative comparison between BTK, KM, and the proposed approach: a fetal thoracic MR 

reconstruction (axial) and a reconstruction of the fetal brain (coronal), both acquired with a 

field strength of 3 Tesla. BTK’s minimum voxel size is defined by the minimum pixel size of 

the input stacks, which has been fixed for all tests (1.18 mm isotropic). The brain dataset 

shows a significant amount of motion and a 3T specific bias field, which causes a low 

reconstruction quality using BTK (d). The images show the same physical slices in world 

coordinates.
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Table I

Input Parameter Range for Parameter Space Exploration and Example Runtime-Optimal Values (222 s for this 

Test Case) with a Low Amount of Motion ~ 0.3cm/s) (Opt.).

Input Description Range Opt.

m-iter. (m) outer, motion estimation loop iterations 1–30 4

r-iter. (n) inner, reconstruction loop iterations 1–20 4

lr-iter. (ñ) inner loop final full quality iteration 1–40 13

stacks number of motion corrupted input stacks 3–12 4

motion amount of motion between the slices 0.0–5.0 0.3
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Table II

Left: Example Foreground (Yellow) and Background (Red) Constraints for the Segmentation of the Ventricles 

[42]. Right: Evaluating the Influence of Different PSFs on the Dice Coefficient for Semi-Automatic 

Segmentation Compared to a Ground Truth. We Evaluate the Accuracy of Ventricular, White-Matter, and 

Cortical Segmentation of the BrainWeb Dataset after Applying Simulated Motion Corruption and 

Reconstruction using each PSF.

PSF ventricles white-matter cortex

PSFtrunc 0.912 0.845 0.829

PSFGauss 0.916 0.853 0.840

PSFMRI 0.918 0.867 0.851
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Table III

Runtime and Memory Evaluation of Different System Configurations and Target Volume Resolutions.

input: 3 stacks, 255 slices × ~ 150 × 150 × 80 input: 6 stacks, 510 slices × ~ 150 × 150 × 80

1xCPU 12xCPU 1xGPU 2xGPU 1xCPU 12xCPU 1xGPU 2xGPU

target voxel 
size [mm]

1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5

a motion 
measurement 
[s]

4.36 4.36 4.36 4.36 0.76 0.76 0.76 0.76 8.72 8.72 8.72 8.72 1.46 1.46 1.46 1.46

b PSF 
volume 
update [s]

109.42 722.14 22.4 140.65 0.75 5.37 0.63 3.61 216.20 1458.40 42.33 278.64 1.48 8.94 0.78 4.74

c slice-to-
volume reg. 
[s]

227.16 1841.09 32.12 249.99 31.95 246.90 23.68 202.34 468.97 3564.43 65.67 505.07 39.08 114.39 26.83 77.68

d update RS 
parameter [s]

6.51 35.38 1.86 9.68 0.31 5.94 0.29 1.32 12.99 69.01 3.71 18.733 1.56 3.32 0.61 2.83

e bias 
estimation 
[s]

13.13 49.79 2.01 6.99 0.07 0.07 0.08 0.08 25.99 25.23 3.93 3.91 0.43 0.44 0.15 0.15

f super-
resolution [s]

8.23 72.62 1.91 14.92 0.68 5.94 0.48 4.64 12.26 90.59 2.66 19.47 1.36 12.38 1.12 10.52

g bias 
correction 
[s]

14.03 199.08 2.55 0.69 3.47 33.76 0.65 3.22 16.38 191.29 2.98 35.47 1.38 6.98 1.31 6.51

Total [min] 76.38 609.49 13.57 100.76 5.70 45.63 4.38 34.42 142.22 951.95 24.36 162.83 8.98 33.81 6.10 26.02

Total runtime approximation [s]: total = a + m ⋅ (b + c + n ⋅ (d + e + f + g) + ñ ⋅ (d + e + f + g))

Memory 
footprint 
[GB]

> 10 > 12 > 12 > 20 < 0.5 < 0.5 < 0.5 < 0.5 > 16 > 24 > 16 > 24 < 1.0 < 1.0 < 1.0 < 1.0
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