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Abstract

Tumour mutational burden (TMB) predicts immunotherapy outcome in non-small cell lung cancer 

(NSCLC), consistent with immune recognition of tumour neoantigens. However, persistent antigen 

exposure is detrimental for T cell function. How TMB affects CD4 and CD8 T cell differentiation 

Ghorani et al. Page 3

Nat Cancer. Author manuscript; available in PMC 2020 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



in untreated tumours, and whether this affects patient outcomes is unknown. Here we paired high-

dimensional flow cytometry, exome, single-cell and bulk RNA sequencing from patients with 

resected, untreated NSCLC to examine these relationships. TMB was associated with 

compartment-wide T cell differentiation skewing, characterized by loss of TCF7-expressing 

progenitor-like CD4 T cells, and an increased abundance of dysfunctional CD8 and CD4 T cell 

subsets, with significant phenotypic and transcriptional similarity to neoantigen-reactive CD8 T 

cells. A gene signature of redistribution from progenitor-like to dysfunctional states associated 

with poor survival in lung and other cancer cohorts. Single-cell characterization of these 

populations informs potential strategies for therapeutic manipulation in NSCLC.

Tumour neoantigens are a key substrate for T cell-mediated recognition of cancer cells1. 

Neoantigen-specific T cells respond to immune checkpoint-blockade (ICB) and have been 

detected in the blood and tumours of patients with non-small cell lung (NSCLC)2,3 and other 

cancer types4. Although tumour mutational burden (TMB) predicts response to checkpoint 

blockade2,5,6, clinically evident tumours usually progress without therapy, suggesting 

functional impairment of anti-tumour T cell responses7,8.

T cell activation is determined by antigen characteristics including abundance, 

physiochemical properties, MHC affinity and self-similarity9–11. In acute infection and 

vaccination, optimal T cell stimulation results in differentiation from progenitor (e.g. naive, 

central memory) to effector and memory phenotypes, together with acquisition of diverse 

effector functions12. However, persistently high antigen load13–15 in cancer and chronic 

infections leads to continuous, or repetitive T cell receptor (TCR) stimulation, which induces 

transcriptional, epigenetic and metabolic changes that drive differentiation into 

dysfunctional states with progressively limited T cell effector functions16–18. Two broad 

states of functional impairment have been described in these settings. Firstly, T cell 

exhaustion (interchangeably referred to as “dysfunction”), which is characterized by 

expression of transcription factors such as TOX, high levels of co-inhibitory and co-

stimulatory receptors, impaired cytokine production and replicative capacity19. Secondly, 

terminal differentiation which is characterized by a senescence phenotype including 

shortened telomeres signifying a history of cell division20, heightened sensitivity to 

apoptosis21, and expression of markers including CD57, KLRG1 and Eomes22,23.

Whilst functional impairment is considered one endpoint of intratumour CD8 T cell 

differentiation, recent studies have highlighted the existence of progenitor-like CD8 T cells 

that respond to ICB and are characterized by expression of transcription factors TCF7 and 

LEF1 that regulate a gene expression programme conferring high proliferative capacity, self-

renewal and the ability to repopulate more differentiated subsets following antigen re-

exposure24–28. Less is known about dysfunctional and progenitor-like CD4 T cell states 

within the tumour microenvironment. In general, CD4 T cells play a central role in 

orchestrating adaptive immunity including initiation29 and maintenance of anti-pathogen 

CD8 responses30. In tumour models, optimal CD8 activity requires CD4 T cell help31 and 

human studies indicate a role for neoantigen specific CD4 responses in tumour control32,33.

The role of antigen exposure on the relative balance and functional characteristics of tumour 

infiltrating CD4 and CD8 subsets is unknown, and potentially relevant to identify critical 
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targetable pathways restricting anti-tumour T cell function. To characterize how the T cell 

differentiation landscape in NSCLC is affected by TMB as a surrogate for antigenic load, we 

integrated high-dimensional flow cytometry, RNA and whole exome sequencing (WES) data 

from surgically resected, untreated, NSCLC specimens obtained from patients in the 

‘Tracking Cancer Evolution through Therapy’ (TRACERx) 100 cohort34, along with bulk 

and single T cell RNA sequencing data from independent cohorts.

Diverse progenitor-like and dysfunctional CD4 and CD8 T cell populations 

identified by high-dimensional phenotyping of NSCLC TILs

To characterize NSCLC tumour infiltrating lymphocytes (TILs) we performed 19 parameter 

flow cytometry on 41 tumour regions from 15 treatment-naïve patients with stage IA-IIIA 

disease amongst the first 100 enrolled to the TRACERx study34. Thirteen patients had paired 

non-tumour adjacent (NTA) tissue (Extended Data Fig. 1A-B, Supplementary Table 1). 

Samples were selected on the basis of available paired WES and sufficient single-cell digest 

material. Clustering of viable CD3+ cells in tumour and NTA samples revealed 26 T cell 

subpopulations (Figures 1A-B). Visualization of the T cell differentiation landscape by 

UMAP35 dimension reduction revealed CD8 and CD4 T cells located in distinct groups 

containing populations characteristic of each lineage, including heterogeneous CD4+ Foxp3+ 

regulatory cells (Treg clusters 24, 25, 26) and a large subset of CD8+ terminally 

differentiated effector memory cells re-expressing CD45RA (cluster 13, TEMRA), co-

defined by high CD57, GZMB and Eomes expression and low levels of the co-receptors PD1 

and ICOS. We found an abundance of PD1hi CD4 (Figure 1C) and CD8 (Figure 1D) T cells, 

consistent with the phenotype of chronically stimulated, tumour reactive and dysfunctional T 

cells in NSCLC3,16,36. PD1hi CD8 T cells were divided into two main subsets distinguished 

by differential expression of CD57, a characteristic marker of extensive replication and 

terminal effector function in circulating T cells (Figures 1B, D). In keeping with this, CD57+ 

PD1hi CD8 T cells had high expression of GZMB and Eomes and were accordingly labeled 

terminally differentiated dysfunctional T cells37 (TDT; CD8 clusters 10, 11, 12). Based on 

their phenotypic similarity to dysfunctional populations reported in mouse and human 

studies36,38,39 CD57- PD1hi CD8 T cells were labeled as Tdys (CD8 clusters 6, 7). Within 

the CD4 compartment, PD1hi cells were similarly divided between CD57+ (TDT clusters 21, 

22) and CD57- (Tdys cluster 19) populations, with GZMB expression restricted to a subset 

of TDT cells (cluster 22). CD8 and CD4 T compartments also contained early-differentiated 

(naive or central memory-like) subsets that lacked markers of terminal differentiation 

(CD57-) or chronic antigen stimulation (low to intermediate PD1 expression) (Figure 1A). 

These included small populations of naive- (cluster 1 CD45RA+CD27+CD57-PD1-) and 

TCM-like CD8 T cells (cluster 2, CD45RA-CD27+CD28+) and four heterogeneous 

populations of CD45RA-CD28+ TCM-like early-differentiated CD4 T cells exhibiting 

variable expression of CD27 and low to intermediate levels of ICOS and PD1 (CD4 clusters 

15, 16, 17, 18), consistent with a memory progenitor state. The remaining pool of CD3+ 

TILs comprised CD8 (clusters 3-5, 8-9) and CD4 (cluster 20) T cells with heterogeneous 

effector memory (TEM) profiles and clusters positioned between CD4 and CD8 T cell 

subsets (Intermediate TEMRA cluster 23, double negative [DN] cluster 14) on the UMAP 

plot.
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Tdys and TDT populations were significantly enriched in tumour regions compared to 

matched NTA tissue (cluster 19, Tdys CD4; cluster 21, TDT CD4; cluster 22, TDTGZMB 

CD4; cluster 6, Tdys CD8) or trended towards greater abundance (cluster 10, TDT CD8; 

cluster 7, TdysCD27-) (Figure 1E-F). In contrast, TEMRA, CD57+ TEM and early 

differentiated CD4 T cells were of higher abundance in NTA.

Taken together, these data suggest a process of T cell antigen recognition in the NSCLC 

tumour environment, driving accumulation of heterogeneous dysfunctional CD4 and CD8 

subsets and the loss of bystander or progenitor populations.

Tumour mutational burden associates with T cell differentiation skewing in 

NSCLC

To explore the hypothesis that the intratumour T cell differentiation landscape is patterned 

by neoantigen exposure, we examined samples with paired flow cytometry and WES data 

(n=15 patients; 39 tumour regions, Extended Data Fig.1A). Self-organizing map-based 

clustering was repeated 1000 times on regions with >2000 live CD3+ events (37 tumour 

regions) to account for stochasticity in population identification (see Methods) and the 

abundance of each cluster was evaluated for its relationship with TMB in each iteration 

(Figure 2A). Clusters that stably correlated with TMB displayed a CD45RA-PD1hi 

phenotype, including three CD4 (Tdys, TDT, TDTGZMB) and three CD8 (Tdys, TDT, 

TDTEomes-) populations, suggesting a positive relationship between TMB and the abundance 

of antigen-engaged T cell subsets (Figure 2B-D). Conversely, clusters that negatively 

correlated with TMB lacked PD1 expression and included progenitor-like subsets within 

both the CD4 (Early, EarlyCD27-) and CD8 (Naive-like) pool, in addition to terminal memory 

cell clusters that exhibited a phenotype consistent with pathogen-specific bystander T cells 

(CD4 Terminal EM, CD8 Terminal EM, CD8 TEMRA)38. Treg clusters with high (activated 

Treg; Treg act.) and low (Treg) co-inhibitory receptor expression also correlated positively 

and negatively with TMB, respectively (Figure 2B-D).

To confirm these relationships, we sampled an independent, second set of tumour regions 

from the TRACERx 100 cohort, using the same criteria as before (n=16 patients, 27 regions 

of which 26 had WES data; Extended Data Fig. 1A) and carried out flow cytometry on TILs 

using an overlapping antibody panel. Subsets were manually identified by conventional 

biaxial gating in both cohorts, according to expression profiles found by clustering analysis 

of cohort 1 (Extended Data Fig. 2A, C). The abundance of manually-gated Early CD4 T 

cells was negatively associated with TMB in both cohorts, whilst the frequency of CD4 Tdys 

and TDT populations was positively correlated (Figure 2E). In a combined analysis (Figure 

2E right column), this pattern of CD4 differentiation skewing remained significant after 

accounting for potential confounding effects of histology and multiple tumour regions, in 

linear mixed effects models (see Methods). Similarly, amongst CD8 T cells, the abundance 

of Tdys and TDT subsets was positively correlated with TMB in both cohorts (Figure 2F). In 

the combined analysis, these relationships were significant (TDT) or showed a positive trend 

(Tdys) when corrected for histology and multiple tumour regions. The negative correlation 

of naive-like CD8 T cells with TMB was not observed in cohort two, but showed an overall 
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negative trend in combined analysis, suggesting this small population may not consistently 

negatively correlate with TMB (Figure 2F).

Tumour mutations can be categorized as clonal events shared by all cancer cells or subclonal 

mutations carried by a fraction of the population34. We found the burden of clonal but not 

subclonal mutations correlated with an increased frequency of dysfunctional subsets 

amongst CD4 and CD8 T cells and a decreased abundance of the CD4 Early population 

(Extended Data Fig. 2F), further supporting the notion that T cell differentiation skewing 

results from antigen recognition. Neither the burden of insertion-deletion mutations, nor 

tumour region subclonal diversity measured by the Shannon index (see Methods), correlated 

with the abundance of these subsets (Extended Data Fig. 2F).

The identity of progenitor-like, Tdys and TDT cells was confirmed using the second flow 

cytometry panel in cohort two. CCR7 expression was highest in Early CD4 and Naive-like 

CD8 T cells, consistent with TCM or naive identity, respectively (Extended Data Fig. 2G, 

H). In contrast, markers of recent antigen engagement (HLA-DR) and cytotoxic potential 

(GZMB) were enriched amongst dysfunctional CD8 populations and the CD4 TDT subset 

(Figure 2G, H; Extended Data Fig. 2G, H). Consistent with dysfunction, Tdys populations 

showed the highest expression of ICOS and the co-inhibitory receptor CTLA4, whilst TDT 

populations were distinguished by expression of Eomes and low levels of IL-7 receptor 

(CD127) as previously described for T cell terminal differentiation in the context of chronic 

viral infection (Figure 2G, H; Extended Data Fig. 2G, H)22,40. The majority of dysfunctional 

CD8 T cells expressed the tissue resident memory (TRM) marker CD103, which was highest 

in Tdys, consistent with the association between CD8 exhaustion and TRM differentiation in 

other studies (Figures 2G, Extended Data Fig. 2G)36,41,42. Only a minority of CD4 T cells 

were CD103+, with expression predominantly amongst TDT cells (Figures 2H, Extended 

Data Fig. 2H). Finally, CD8 and CD4 dysfunctional subsets showed preferential expression 

of CD95 (Fas), indicative of late differentiation.

The phenotypic characteristics of chronic TCR stimulation amongst Tdys and TDT cells, 

and the correlation between their abundance and TMB, suggested these populations 

harbored neoantigen reactive clones. To validate this in CD8+ T cells, we performed MHC-

multimer screens of predicted neoepitopes from three patients with untreated NSCLC as 

previously described3 (see Methods) and characterized their expression profile ex vivo by 

flow cytometry. Neoantigen-multimer positive (Mult+) CD8 TILs from patient L011 

enrolled in the TRACERx lung cancer pilot study (see Methods) expressed high levels of 

PD1 and ICOS, were heterogeneous for CD57 and lacked CD45RA expression, consistent 

with the phenotype of Tdys and TDT subsets of both CD8 and CD4 cells (Figure 2I-J). 

Characteristic of dysfunctional CD8 T cells41, Mult+ cells from L011 contained a 

proliferating, Ki67+ population (Figure 2J). In keeping with PD1 as a marker of 

dysfunctional36 and neoantigen reactive cells43, we found significantly higher levels of PD1 

expression on all Mult+ CD8 T cell populations identified across three patients, compared to 

Mult-TILs, matched NTA and PBMC derived CD8 T cells (Figure 2J, Extended Data Fig. 

2I). These data indicate that the CD4 and CD8 Tdys and TDT populations that correlate with 

TMB have a dysfunctional phenotype resembling neoantigen reactive CD8 T cells in 

NSCLC.
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Finally, in chronic viral infection, loss of early differentiated44 and gain in dysfunctional 

subsets13 associates with impaired immunity. In the combined flow cytometry cohort, low 

CD4 Early and high frequency of CD4 and CD8 TDT cells (grouped according to the 

median) correlated with worse disease-free survival (DFS), suggesting skewing of the 

intratumour T cell differentiation landscape may mark impaired anti-tumour immunity 

(Extended Data Fig. 2J).

Progenitor-like and dysfunctional subsets are clonally related

Reciprocal, TMB-associated relationships between progenitor-like and dysfunctional T cell 

subsets is suggestive of a differentiation process connecting these states. To test this, we 

carried out T cell receptor (TCR) sequencing on digitally sorted CD4 and CD8 subsets. For 

all patients (n=3 for both CD4 and CD8), we found CDR3 sharing between progenitor-like 

and dysfunctional subsets within both CD4 and CD8 compartments (Figure 3A, B; Extended 

Data Fig. 2K, L), confirming these states are linked by a differentiation pathway.

Short peptide motifs within the CDR3 are important for defining antigen specificity, and a 

single antigen can be recognized by multiple related TCRs. Consequently, CDR3 sequence 

clustering is characteristic of an antigen-driven T cell response45. We therefore hypothesized 

that if CDR3 sharing between intratumour T cell subsets results from antigen driven 

differentiation between cell states, shared CDR3 sequences (i.e. those belonging to clones 

that have responded to antigen by undergoing differentiation) will have greater evidence of 

sequence similarity compared to unshared CDR3s. Applying our recently described 

approach to measure sequence similarity based on triplet amino acid composition in 

pairwise comparisons45, we found significantly greater similarity amongst shared vs. 

unshared CDR3 sequences in both CD4 and CD8 compartments (Figure 3C-F). These data 

support the notion that TCR sharing between progenitor and dysfunctional T cell states 

reflects an antigen-driven differentiation process within the TME.

Single-cell transcriptomics unveils distinct developmental and regulatory 

programmes in progenitor and dysfunctional T cells

We characterized the transcriptional features of CD4 and CD8 populations of interest by 

combined analysis of a publicly available NSCLC TIL single cell RNA sequencing 

(scRNAseq) dataset42, scRNAseq from sorted CD8 neoantigen-multimer reactive and non-

reactive TILs from patient L011, and bulk RNAseq of CD8 Tdys and non-Tdys cells sorted 

from three TRACERx cohort patients as previously described45.

Within the TIL scRNAseq dataset, subsets were identified by a manual gating strategy based 

on phenotypes identified in our flow cytometry analysis (Figure 4A and Extended Data Fig. 

3A). Concordance between scRNAseq and flow cytometry identified populations was 

confirmed by evaluating expression of genes characterized by flow cytometry and not used 

for scRNAseq gating (including CTLA4, EOMES, FAS and HLA-DRA; Extended Data Fig. 

3B, C).
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We confirmed transcriptional features of dysfunction amongst these populations by gene set 

enrichment analysis (GSEA) using T cell signatures from studies of cancer46, chronic 

infection19,47 and autoimmunity48,49. All CD8 signatures were derived from antigen specific 

cells. Since equivalent CD4 RNAseq data were unavailable, we used signatures from mixed 

antigen specific/non-specific dysfunctional CD4 populations. Both CD4 and CD8 scRNAseq 

identified Tdys and TDT subsets had significant transcriptional similarity to T cell 

populations characterized as dysfunctional in relation to persistent antigen exposure (Figure 

4B, Extended Data Fig. 3D).

To test whether Tdys and TDT subsets transcriptionally resemble neoantigen-reactive 

populations in NSCLC, we generated gene signatures of neoantigen reactivity composed of 

top-ranking genes characterizing CD8 Mult+ and bulk sequenced CD8 Tdys cells. These 

gene sets of tumour-reactive cells were significantly enriched in all dysfunctional 

populations except CD4 TDT (Figure 4C, Extended Data Fig. 3E).

Differential gene expression analysis revealed significant transcriptional differences between 

subsets (Figure 4D, Extended Data Fig. 4A-C), and high similarity between CD8 Tdys and 

TDT despite differences in KLRG1 and IL7R (encoding CD127) expression, revealed by 

gene expression heatmaps (Extended Data Fig. 4D).

To explore potential mediators of Tdys and TDT tissue accumulation, we analyzed genes 

encoding adhesion molecules and chemokine receptors (Figure 4D). Both scRNAseq 

identified CD4 and CD8 dysfunctional subsets expressed CXCR3, involved in T cell tissue 

surveillance, whereas dysfunctional CD8 subsets had elevated expression of the chemokine 

receptor encoding gene CCR6 that marks autoreactivity50.

Effector gene analysis suggested functional capacity amongst Tdys and TDT cells of both 

compartments, including shared expression of IFNG. CD40LG expression amongst CD4 

Early and Tdys cells suggested antigen engagement and helper function. Naïve-like CD8 T 

cells did not express TNFRSF9 (encoding 4-1BB; a marker of CD8 T cell antigen 

engagement) that was highly expressed in dysfunctional CD8 subsets, suggesting antigen-

engagement of CD4 Early but not CD8 Naïve-like cells. Both CD8 dysfunctional 

populations expressed multiple mediators of cytotoxicity in common with CD4 TDT cells, 

as previously described for CD4 terminal differentiation22.

Co-stimulatory and -inhibitory receptor encoding genes were discordantly expressed, 

suggesting differential subset regulation by potential immunotherapy targets (Figure 4D). 

CD4 Tdys highly expressed TNFRSF18 and TNFRSF4 (encoding GITR and OX40 

respectively), whereas CD4 TDT cells preferentially expressed CD27 in keeping with our 

flow cytometry data. Tdys subsets expressed high levels of multiple co-inhibitory receptor 

encoding genes including ENTPD1 (encoding CD39) in CD8 T cells, a further indication of 

tumour reactivity38. CD39 protein expression by dysfunctional subsets was confirmed by 

flow cytometry of TILs from three TRACERx patients (Extended Data Fig. 5A, B).

We found characteristic transcription factor expression profiles including Early/Naïve-like 

expression of TCF7. Notably, an intermediate level of expression was observed amongst the 

CD4 Tdys population but not CD4 TDT, whilst expression was reduced in CD8 Tdys and 
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TDT cells, findings we confirmed by flow cytometry (Extended Data Fig. 5A, B). In 

general, TCF7 expression was higher amongst CD4 vs. CD8 T cells, both by scRNAseq and 

flow cytometry (Figure 4D, Extended Data Fig. 5C). As TCF7 expression has been 

associated with sustained T cell effector responses in the context of chronic antigen 

exposure24,25, these data suggest a gradient of functionality with relative preservation in the 

CD4 vs. CD8 compartments. Finally, the exhaustion-related transcription factor encoding 

gene TOX 51 was expressed across all dysfunctional subsets.

To find shared and compartment-specific dysfunction-related genes, we identified leading 

edge genes from GSEA analyses carried out as described above. Amongst those in the 

leading edge of 2 or more gene sets, 14 and 197 genes were unique to analysis of CD4 and 

CD8 subsets respectively (Extended Data Fig. 6A). Of 17 genes shared across 

compartments, 15 were expressed by neoantigen-multimer sorted CD8 cells (Extended Data 

Fig. 6B) with upregulation amongst Mult+ cells of genes including the lung residency 

marker RGS1 52, CCR5 that is expressed by tissue reactive CD8 cells and CXCL13 that has 

recently been described to characterize CD8 dysfunction in lung cancer53.

Gene ontology analysis revealed 27 shared pathways enriched by dysfunctional subsets and 

Mult+ cells, relative to their early differentiated or Mult- control populations. These 

pathways formed 6 groups (Figure 4E, Extended Data Fig. 6C, D) revealing a mixed pattern 

of processes downstream of T cell receptor signalling including pathways related to cell 

cycle, chemotaxis and effector function47,54, in keeping with the notion that efficacy of 

dysfunctional subsets is attenuated but not lost.

TCF7 expression has been associated with the ability to sustain long-term effector 

responses, in agreement with our findings that Early CD4 abundance correlates with 

survival. However, transcriptional evidence suggests that the dysfunctional subsets retain 

effector capacity. To evaluate the functional potential of these populations, we tested their 

transcriptional similarity to RNAseq data from antigen specific T cells with anti-viral 

effector function (effector), reversibly dysfunctional cells after short term tumour residency 

(reversible) and irreversibly dysfunctional cells after long term residency (irreversible)54 to 

derive reversibility and efficacy scores for each cell. We found the CD4 Early population had 

the most favourable effector (Figure 4F) and reversibility (Figure 4G) indices whilst CD8 

Tdys had the lowest values.

CD4 T cells support effective anti-tumour CD8 function, but their cross talk within the 

human tumour microenvironment is not well characterized. To investigate pathways of T cell 

communication in NSCLC, we used the recently described CellphoneDB package that 

comprises both a database of interacting receptor-ligand pairs and a statistical framework to 

test whether such pairs are significantly expressed on single cell populations of interest55. 

We found expression of 259 unique ligand-receptor pairs between populations in the lung 

TIL scRNAseq dataset (Extended Data Fig. 7A). Reciprocal connections between population 

pairs had a low degree of pathway overlap (Extended Data Fig. 7B). The global distribution 

of interactions fell within three groups defined by dysfunctional CD8 participation. The two 

closely related dysfunctional CD8 populations shared the highest number of pathways, 

whilst an intermediate group comprised pairs composed of one dysfunctional CD8 
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population. Interactions not involving dysfunctional CD8 populations were of low intensity 

(Extended Data Fig. 7C). To characterize the activity of each subset, we analyzed the 

number of pathways where each population was the signalling, ligand-bearing partner vs. the 

signal-receiving, receptor-bearing partner. Whilst the dysfunctional CD8 populations were 

involved in a similar number of signal sending/receiving interactions, the CD4 Early 

population mostly participated as a signal-receiver (Extended Data Fig. 7D). Analysis of 

individual pathways revealed chemokine expression to comprise the bulk of dysfunctional 

CD8 signalling, whilst interactions between CD4 cells and dysfunctional CD8 populations 

have the potential for inhibition (CD274-PDCD1; CD47-SIRPG), anti-apoptotic effects 

(TNF-TNFRSF1B; GRN-TNFRSF1B) and stimulation (CD48-CD244; CD58-CD2).

A transcriptional signature of mutation associated T cell differentiation 

skewing associates with survival in independent cohorts

To characterize T cell differentiation skewing in bulk tumour RNAseq, we analyzed 

TRACERx samples with paired flow cytometry and RNA sequencing data (46 regions from 

22 patients). T cell maturation is accompanied by TCF7 loss. We hypothesized that a gene 

signature indicating loss of this and the related transcription factor LEF1 may reflect 

intratumour differentiation skewing (DS), and generated a TCF7/LEF1 loss signature (TL-

DS) using RNAseq from mouse T cells lacking these genes56.

As differentiation skewing was most evident by flow cytometry in the CD4 compartment, we 

first tested the correlation between TL-DS and other signatures of CD4 differentiation state, 

with the ratio of CD4 Early to dysfunctional (defined as the sum of Tdys and TDT) subset 

abundance (Figure 5A). Amongst seven tested, only the signature of TCF7 loss correlated 

significantly (Figure 5B).

CD4 and CD8 differentiation skewing occur in parallel. We therefore tested whether this 

signature similarly predicts changes in the CD8 compartment. The TL-DS signature was 

found to correlate with loss of individual early differentiated subsets and gain in abundance 

of Tdys and TDT subsets across CD4 and CD8 populations (Figure 5C).

Finally, we confirmed the signature correlated with TMB in TRACERx samples with paired 

RNA and exome sequencing (n=64 patients, 161 regions), and independent NSCLC TCGA 

cohorts (Figure 5D; lung adenocarcinoma [LUAD], n=511; lung squamous cell carcinoma 

[LUSC], n=482).

Since differentiation skewing was associated with survival in the TRACERx flow cytometry 

cohort, we tested whether the TL-DS signature performs similarly in the larger TRACERx 

RNAseq and TCGA NSCLC cohorts. In a univariate analysis, this signature associated with 

worse outcomes amongst TRACERx and TCGA LUAD, but not LUSC patients (Figure 5E). 

In a multivariable analysis adjusting for stage, histological subtype, TIL infiltration and 

mutational burden, the progenitor loss signature remained a negative predictor of survival in 

TRACERx (adjusted for TMB in Figure 5F, p=0.021, HR 5.61; adjusted for clonal 

mutational burden, p=0.042, HR 4.53).
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T cell differentiation skewing in association with persistent antigen exposure may occur 

across tumour types. To test this, we measured TL-DS signature expression across TCGA 

cohorts (n=5290 patients, 23 cohorts). This significantly associated with survival in 9 

tumour types after correction for multiple tests (Extended Data Fig. 8A). Amongst these 

cohorts, the TL-DS signature remained a significant indicator of survival in multivariable 

regression accounting for TIL infiltration, TMB and stage in 6 tumour types (LUAD, 

SKCM, LIHC, SARC, MESO, ACC; Extended Data Fig. 8B).

Discussion

Here we combined high dimensional flow cytometry, genomic, bulk and single-cell 

transcriptional data to characterize the NSCLC intratumour T cell infiltrate and its relation to 

TMB. Recent studies of T cell function in the context of persistent antigen exposure have 

focused on two themes: firstly, TCF7-expressing early differentiated T cells sustain 

immunity44,48 and response to checkpoint immunotherapy27,28, and secondly, 

hypofunctional intratumour effectors are marked by inhibitory co-receptor, TOX51 and 

CD39 expression38,57. We show that these two states share CDR3 sequences indicating an 

early to dysfunctional differentiation pathway and that shared CDR3 sequences have greater 

similarity than unshared sequences, in keeping with an antigen driven process of 

differentiation. These subsets exist in a balance shaped by mutational burden and skewing of 

this balance towards late differentiation associates with worse outcomes amongst treatment 

naive patients with NCSLC and within multiple TCGA cohorts.

Whilst attention has focused on CD8 progenitor populations, we show that intra-tumoural 

differentiation skewing is most striking amongst CD4 cells, where the majority of TCF7-

expressing T cells reside, including within the PD1/TOX co-expressing Tdys subset that is 

phenotypically and transcriptionally similar to neoantigen-multimer reactive CD8 T cells. 

Conversely, CD8 Tdys cells have a near complete absence of TCF7 gene and protein 

expression and TCF7-expressing CD8 T cells represent a smaller proportion of TILs 

(Extended Data Fig. 5C).

Heterogeneity amongst tumour infiltrating, dysfunctional CD8 T cells is now well 

recognized42,58 but little understood in the CD4 compartment. Here, we identify 

phenotypically and transcriptionally distinct CD4 Tdys and TDT populations with PD1 and 

TOX expression in keeping with a history of antigen encounter, that share CDR3 sequences 

indicating a clonal relationship. Despite high co-inhibitory receptor expression, the Tdys 

subset retains features of fitness including expression of CD40L, TCF7, IFNγ and Ki67 
(Extended Data Fig. 9A), suggesting an activated, proliferative phenotype that previously 

has been noted for dysfunctional CD8 T cells36,41. In contrast to Tdys, we found the TDT 

subset expressed a CD8-like effector profile consistent with terminal differentiation, but the 

absence of CD40L, IFNγ and Ki67 suggests these cells are not actively engaged in a 

response. Maintained PD1 expression is consistent with an epigenetically determined state 

of “irreversible dysfunction” that is well described amongst anti-tumour CD8 T cells39,54. 

Whilst we have relied on the marker and transcriptional profile of these subsets to infer their 

functional status, further work is required to define this more closely.
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Although the relationship between decline of CD4 Early subset abundance and TMB 

suggests a proportion of these cells undergo antigen-induced differentiation, a limitation of 

our study is that we do not have direct evidence that changes within the TIL differentiation 

landscape are antigen driven. However, along with CDR3 sharing between Early and 

dysfunctional subsets, several additional observations support this notion. Firstly, there is an 

inverse relationship between TMB and flow cytometry measured expression of the early 

differentiation markers CD27 and CD28 upon CD4 Early cells (Extended Data Fig. 10A, B). 

A similar feature was observed in the scRNAseq dataset, with an inverse correlation between 

CD4 Early and dysfunctional subset abundance (Extended Data Fig. 10C). Secondly, at the 

transcriptional level, as the abundance of the scRNAseq identified CD4 Early population 

declined, we found the remaining cells in the subset to have increased expression of 

signatures characteristic of Tdys and TDT populations (Extended Data Fig. 10D, E).

The relationship between differentiation skewing and clonal but not subclonal mutations is 

further evidence in favor of this process being antigen driven and suggests the importance of 

antigen abundance. Whilst CD8 differentiation may be driven by direct interaction with 

MHC I expressing tumour cells, as the majority of NSCLCs do not express MHC II59 

required for CD4 recognition, class II bearing antigen presenting cells are likely key 

mediators of CD4 anti-tumour immune responses. Clonal mutations may preferentially drive 

differentiation skewing by generating neoantigen levels above minimum thresholds for 

immune activation, compared to subclonal mutations60. However, the low range of subclonal 

mutations in our cohort may limit accurate evaluation of a relationship with T cell 

differentiation skewing and further work is warranted to explore this.

Recent studies suggest mutational burden is positively associated with outcomes amongst 

immunotherapy-treated patients2,5,6. Conversely, we and others have shown differentiation 

skewing and T cell dysfunction to occur with persistent antigen exposure14,15 and/or 

associate with poor outcome53. These observations suggest opposing effects of mutations on 

immune function, depending on the context of antigen encounter. Opposing effects of TMB 

may occur if mutations generate antigenic targets for tumour recognition and control by 

early differentiated T cells that are driven to dysfunctional states by chronic target exposure 

or deprived of niche within the tumour microenvironment as later differentiated cells 

accumulate. Additionally, checkpoint inhibition may modify the balance between antigen-

driven T cell anti-tumour efficacy vs. differentiation skewing arising from chronic exposure, 

by favouring enhanced activity of pre-existent checkpoint-expression high cells within the 

tumour.

Our study suggests multiple potential translational avenues for further exploration. Single 

cell RNAseq analysis revealed divergent and previously undescribed features of the co-

stimulatory and –inhibitory receptor landscape of Tdys and TDT subsets, including 

expression of ITIM encoding genes with unexplored roles in T cell inhibitory pathways. 

More broadly, our data suggest strategies to enhance the abundance or activity of the 

progenitor pool may yield a therapeutic advantage.
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Methods

Patients and samples

Patients within this study were drawn from the first 100 enrolled to the UK multicentre lung 

TRACERx study as previously described33 (https://clinicaltrials.gov/ct2/show/

NCT01888601, independent Research Ethics Committee approval reference 13/LO/1546; 

further information on research design is available in the Nature Research Summary linked 

to this article).

Informed consent for entry into the TRACERx study was mandatory and obtained from 

every patient. There were 68 male and 32 female patients with NSCLC in the TRACERx 

study, with a median age of 68. The cohort is predominantly early-stage: Ia (26), Ib (36), IIa 

(13), IIb (11), IIIa (13) and IIIb (1). Seventy-two had no adjuvant treatment and 28 had 

adjuvant therapy. All patients were assigned a study identity number that was known to the 

patient. These were subsequently converted to linked study identities such that the patients 

could not identify themselves in study publications. All human samples (tissue and blood) 

were linked to the study identity number and barcoded such that they were anonymized and 

tracked on a centralized database, which was overseen by the study sponsor only.

TILs of patients from the TRACERx study beyond the first 100 cohort were used in TCRseq 

and additional flow cytometry assays (TCF7 and CD39 stains). The demographics of these 

patients are shown Supplementary Table 2. In addition, samples from the TRACERx lung 

pilot study (UCLHRTB 10/H1306/42) were included (prefixed with L0). Sample collection 

and data analysis was carried out with written consent from all participants. All tumour 

samples were verified by independent pathology review of H&E slides.

Flow cytometry

Fresh tumour and NTL surgical resection specimens were minced into 1mm pieces in 

RPMI-1640 (Sigma) with Liberase TL (Sigma) and DNAase I (Roche) followed by 

mechanical disaggregation using a gentleMACS dissociator (Miltenyi Biotec) at 37°C for 1 

hour. Single cells were obtained by gently passing the suspension through a 70µm cell 

strainer with 5ml complete RPMI-1640 (PBS containing 2% FBS and 2mM EDTA) and 

lymphocytes isolated by density gradient centrifugation (750g for 10minutes) on Ficoll 

Paque Plus (GE Healthcare). The interface was washed twice with complete RPMI-1640, 

resuspended in 90% FBS with 10% DMSO (Sigma) and cryopreserved prior to staining. 

Blood samples were collected in Vacutainer EDTA blood collection tubes (BD), PBMCs 

isolated by gradient centrifugation of Ficoll Paque Plus and stored in liquid nitrogen.

For staining, cells were thawed and washed in FACS buffer (5% FBS). Cells were stained 

with the antibodies listed in the reporting summary using brilliant staining buffer 

(Biolegend) and the FOXP3 Transcription Factor Staining Buffer set (ThermoFisher 

scientific) according to manufacturer’s instructions. In all samples, eBioscience Fixable 

Viability Dye eFluor 780 (ThermoFisher scientific) was used to exclude non-viable cells. 

Data were acquired on a BD Symphony flow cytometer and cells gated for size, granularity, 

singlets, viability and CD3+CD8- T cells in FlowJo v10 (Treestar) for further analysis.
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Tumour sequencing

Multiregional whole exome sequencing, mutation calling and clonality estimation were 

carried out as described before34. Briefly, raw paired end whole exome sequencing reads 

from tumour and matched germline samples were aligned to the hg19 genomic assembly. 

Non-synonymous mutations were identified and classified as clonal or subclonal using a 

modified version of PyClone61, considering variant allele frequency, copy number and 

tumour purity. Synonymous and non-synonymous mutations from each tumour region were 

identified by comparing germline and tumour DNA.

As previously described34, RNA was extracted using a modification of the AllPrep kit 

(Qiagen) and ribosome depleted prior to library preparation of samples with an RNA 

integrity score of >=5, measured by TapeStation (Agilent Technologies). Second-strand 

cDNA synthesis incorporated dUTP. The cDNA was end-repaired, A-tailed and adaptor-

ligated. Before amplification, samples underwent uridine digestion. The prepared libraries 

were size-selected, multiplexed and underwent quality control before paired-end sequencing. 

75bp paired end sequencing with an average of 50 million reads per sample was carried out. 

FASTQ data underwent quality control and were aligned to the hg19 genome using STAR. 

Transcript quantification was performed using RSEM with default parameters.

TIL evaluation

TIL estimation was carried out according to International Immuno-Oncology Biomarker 

Working Group guidelines62 that have been shown to be reproducible amongst trained 

pathologists63. Using region level H&E slides, the relative proportion of stromal to tumour 

area was determined and percentage TILs reported for the stromal compartment by 

considering the area of stroma occupied by mononuclear inflammatory cells divided by total 

stromal area. In an intra-personal concordance test, high reproducibility was demonstrated. 

The International Immuno-Oncology Biomarker Working Group has developed a freely 

available training tool to train pathologists for optimal TIL-assessment on H&E slides 

(www.tilsincancer.org).

TCGA data

Pancancer TCGA data were downloaded from the GDC website (https://gdc.cancer.gov/

about-data/publications/panimmune)64. This included upper quartile normalized gene 

transcript count estimates, clinical and mutational burden data. Clinical data were used as 

previously published65. To test the relationship between the TL-DS signature and TMB in 

TCGA lung cancer cohorts, non-synonymous mutational burden as an absolute count was 

calculated using data generated by the MC3 project66 for comparison with TRACERx data. 

For survival and linear regression analyses, z-score scaled non-silent mutations per Mb were 

used as published (https://gdc.cancer.gov/about-data/publications/panimmune) and found to 

give very similar results to mutational burden estimated from the MC3 project data.

Analysis of flow cytometry data

Clustering—Clustering was carried out using a pipeline modified from Nowicka et al.67, 

on samples from cohort 1 with over 2000 live CD3+ events. FCS files were read in and 
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subjected to automatic quality control of signal acquisition and dynamic range carried out 

with the package flowAI using default parameters. Logicle transform was then applied using 

the estimateLogicle function of the flowCore package. Markers with low contribution to 

intercellular phenotypic variance were removed prior to clustering analysis based on low 

expression above background and calculation of the PCA based non-redundancy score 

(NRS), as previously defined67, resulting in exclusion of the markers TIM3, Ki67 and 41BB.

Data were clustered onto a 12x12 node square self-organising map (SOM) implemented in 

the FlowSOM package68. This was followed by high resolution clustering of nodes into 66 

subpopulations by hierarchical consensus clustering with the ConsensusClusterPlus package, 

to ensure homogeneity of individual groups as described67. To understand the phenotypic 

relationship between individual clusters, we applied the UMAP algorithm for dimension 

reduction of events from all samples acquired35. UMAP was carried out using the package 

uwot. Finally, high resolution clusters were manually grouped into final subsets described in 

Figure 1. Clusters were combined based on similar localisation on the UMAP plot and 

similar expression of key markers previously used to define T cell states (e.g. 

CD8+CD45RA+CD27-CD57+ cells were defined as TEMRA).

Manual gating—To ensure validity of the populations identified by clustering, we 

manually identified early differentiated and dysfunctional populations in both cohort 1 and 2 

by conventional biaxial gating. Tumour regions with >1000 live T helper or CD8 cells were 

analyzed. All downstream analyses were carried out with manually gated populations.

Liberase treatment has previously been described to cleave the CD4 antigen resulting in 

variable detection of this marker69. We therefore gated CD3+CD8- cells to ensure complete 

capture of the T helper population. We confirmed the CD4 status of Early, Tdys and TDT 

populations gated from amongst CD3+CD8- cells using regions with a clear CD4+ 

population (n=20/61 across both cohorts). Evaluation of the percentage of CD4+ cells 

amongst these three subsets revealed over 85% CD4 expression (mean CD4+ 86.8, 95.2 and 

85.7% in early, Tdys and TDT subsets respectively; Extended Data Fig. 2B).

Differential abundance analysis—To determine differential abundance of clusters 

between tumour and NTL tissue accounting for sample multiregionality and pairing, we 

applied negative binomial generalised linear models using the package edgeR as recently 

described for cytometry data70.

Discovery of populations differentially abundant with TMB—FlowSOM initialises 

SOM node weights by randomly selecting data points (cells) at the beginning of the learning 

process. As a consequence of random node initialisation, the final cluster each cell is 

assigned to can vary between runs and repeating the clustering process multiple times with 

different random starts has been recommended71.

To address the issue of clustering stochasticity, we repeated the clustering procedure x1000 

with random starts. Following each clustering run, we tested the relationship between 

abundance of each FlowSOM cluster and sample TMB by Spearman rank tests. Following 

each run, positive and negatively correlating clusters with a Benjamini-Hochberg false 
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discovery rate (FDR) of <0.1 were retained. Similar clusters found across multiple iterations 

were combined based on their marker profile to identify subsets that stably change with 

TMB. The most abundant populations (composed of individual clusters observed over 50 

times across 1000 iterations, n=14) were retained for further analysis. As shown in Extended 

Data Fig. 2D, these 14 subsets had varying but consistently positive or negative correlation 

with TMB over 1000 iterations. To further evaluate clustering stability, we first labelled the 

population identity of each cell in a representative iteration. Then for each cell, we 

calculated a probability of being identified within each of the 14 subsets of interest by 

dividing its frequency of identification within a given subset by the total frequency of 

identification to generate the Extended Data Fig. 2E heatmap.

Tumour clonal diversity

Tumour clonal diversity was estimated as previously published72. The Shannon entropy was 

calculated for each region, based on the number and prevalence of each clone, implemented 

using the entropy package. A region composed of a single subclone was assigned a value of 

0.

Neoantigen reactive CD8 T cell identification and single cell sequencing

Identification of neoantigen binders—Novel 9-11mer peptides that could arise from 

identified non-silent mutations were determined. The predicted IC50 binding affinities and 

rank percentage scores, representing the rank of the predicted affinity compared to a set of 

400,000 random natural peptides, were calculated for all peptides binding to each of the 

patient’s HLA alleles using netMHCpan-2.8 and netMHC-4.0. Predicted binders were 

considered those peptides that had a predicted binding affinity <500nM or rank percentage 

score <2% by either tool. Strong predicted binders were those peptides that had a predicted 

binding affinity <50nM or rank percentage score <0.5%.

Multimer analysis of neoantigen reactive T cells—Neoantigen-specific CD8 T cells 

were identified using high throughput MHC multimer screening of candidate mutant 

peptides generated from patient-specific neoantigens of predicted <500nM affinity for 

cognate HLA as previously described3. 288 and 354 candidate mutant peptides (with 

predicted HLA binding affinity <500nM, including multiple potential peptide variations 

from the same missense mutation) were synthesized and used to screen expanded L011 and 

L012 TILs respectively. In patient L011 with lung adenocarcinoma, TILs were found to 

recognize the HLA-B*3501 restricted, MTFR2D326Y-derived mutated sequence 

FAFQEYDSF (netMHC binding score: 22), but not the wild type sequence FAFQEDDSF 

(netMHC binding score: 10). No responses were found against overlapping peptides 

AFQEYDSFEK and KFAFQEYDSF. In patient L012 with lung squamous cell carcinoma, 

TILs were found to recognize the HLA-A*1101 restricted, CHTF18L769V-derived mutated 

sequence LLLDIVAPK (netMHC binding score: 37) but not the wild type sequence: 

LLLDILAPK (netMHC binding score: 41). No responses were found against overlapping 

peptides CLLLDIVAPK and IVAPKLRPV. Finally, in patient L012, TILs were found to 

recognize the HLA-B*0702 restricted, MYADMR30W-derived mutated sequence 

SPMIVGSPW (netMHC binding score: 15) as well as the wild type sequence SPMIVGSPR 
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(netMHC binding score: 1329). No responses were found against overlapping peptides 

SPMIVGSPWA, SPMIVGSPWAL, SPWALTQPLGL and SPWALTQPL.

We additionally screened 235 peptides from a library of predicted clonal neoantigens for 

patient L021, a 72-year old male smoker (50 pack years) with stage IIIA LUSC (poorly 

differentiated, 51mm right upper lobe primary and 2/6 hilar lymph nodes involved). TIL 

responses to HLA and matched viral peptides were simultaneously assessed. TILs were 

found to recognize the HLA-A*3002 restricted, ZNF704L301F-derived mutated sequence 

YFVHTDAY (netMHC binding score: 61) as well as the wild type sequence YLVHTDHAY 

(netMHC binding score: 27). No response to overlapping peptides TLYFVHTDH, 

TLYFVHTDHAY, LYFVHTDHAY and APTTLYFVH were detected.

Neoantigen-specific CD8 T cells were tracked with peptide-MHC multimers conjugated 

with either streptavidin PE, APC, BV650 or PE-Cy-7 (all from Biolegend) and gated as 

double (L011, L021) or single (L012) positive cells among live, single CD8 T cells.

Single-Cell RNA sequencing of multimer reactive T cells—We have previously 

identified neoantigen multimer reactive CD8 T cells targeted against a clonal neoantigen 

(arising from the mutated MTFR2 gene) in NSCLC tumour regions derived from patient 

L0113. We repeated the staining of multimer reactive T cells based on dual fluorescent 

multimer labelling using a freshly thawed vial of cryopreserved TILs from the same patient 

using antibodies described in the reporting summary. Multimer-reactive and negative single 

cells from tumour regions were sorted directly into the C1 Integrated Fluidic Circuit (IFC; 

Fluidigm). Cell lysing, reverse transcription, and cDNA amplification were performed as 

specified by the manufacturer. Briefly, 1000 single, multimer reactive or negative CD8 T 

cells were flow sorted directly into a 10- to 17-μm-diameter C1 Integrated Fluidic Circuit 

(IFC; Fluidigm). Ahead of sorting, the cell inlet well was preloaded with 3.5ul of PBS 0.5% 

BSA. Post-sorting the total well volume was measured and brought to 5ul with PBS 0.5% 

BSA. 1ul of C1 Cell Suspension Reagent (Fluidigm) was added and the final solution was 

mixed by pipetting. Each C1 IFC capture site was carefully examined under an EVOS FL 

Auto Imaging System (Thermo Fisher Scientific) in bright field, for empty wells and cell 

doublets. An automated scan of all capture sites was also obtained for reference. Cell lysing, 

reverse transcription, and cDNA amplification were performed on the C1 Single-Cell Auto 

Prep IFC, as specified by the manufacturer. The SMARTer v4 Ultra Low RNA Kit (Takara 

Clontech) was used for cDNA synthesis from the single cells. cDNA was quantified with 

Qubit dsDNA HS (Molecular Probes) and checked on an Agilent Bioanalyser high 

sensitivity DNA chip. Illumina NGS libraries were constructed with Nextera XT DNA 

Sample Preparation kit (Illumina), according to the Fluidigm Single-Cell cDNA Libraries 

for mRNA sequencing protocol. Sequencing was performed on Illumina NextSeq 500 using 

150bp paired end kits.

Sorted T cell bulk sequencing

Population sorting—The BD FACSAria II flow cytometer was used to sort tumour-

infiltrating lymphocytes. For CD8 Tdys RNAseq, cells were stained and sorted as previously 

described45. For CD4 and CD8 subsets sorted for TCRseq, cells from LUAD patients listed 
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above were sorted with the antibodies described in the reporting summary according to 

gating show in Figure 2J and K. 1000-50,000 TILs were sorted directly into 800μl Trizol 

reagent (Invitrogen) and snap frozen in dry ice (long term storage at -80C).

Bulk RNAseq—At the time of extraction, the samples were thawed at RT and 160ul of 

chloroform was added to each. Following a centrifugation step the RNA was isolated from 

the aqueous phase and precipitated through the addition of equal volumes of isopropanol 

supplemented with 20μg linear polyacrylamide. Samples were washed twice in 80% ethanol 

(first wash overnight at 4°C, second wash 5 minutes at RT). RNA pellets were resuspended 

in 3-15μl of diethylpyrocarbonate treated water (DEPC). RNA was then quantified by 

loading of 0.5-1ul on an Agilent Bionalyser RNA 6,000 pico chip. Where possible 

equivalent amounts of total RNA (100pg) from all samples were used for first strand 

synthesis with the SmartERv3 kit (Takara Clontech) followed by 15-18 cycles of 

amplification (according to manufacturers’ instruction). cDNA was purified on Agencourt 

AMPureXP magnetic beads, washed twice with fresh 80% ethanol and eluted in 17μl elution 

buffer. 1μl cDNA was quantified with Qubit dsDNA HS (Molecular Probes) and checked on 

an Agilent Bioanalyser high sensitivity DNA chip. Sequencing libraries were produced from 

150pg input cDNA using Illumina Nextera XT library preparation kit. A 1:4 miniaturized 

version of the protocol was adopted (see “Fluidigm Single-Cell cDNA Libraries for mRNA 

sequencing”, PN_100-7168_L1). Tagmentation time was 5mins, followed by 12 cycles of 

amplification using Illumina XT 24 or 96 index primer kit. Libraries were then pooled (1-2ul 

per sample depending on the total number of samples) and purified with equal volumes (1:1) 

of Agencourt AMPureXP magnetic beads. Final elution was in 66-144ul of resuspension 

buffer (depending on the total number of pooled samples). Libraries were checked on an 

Agilent Bioanalyser high sensitivity DNA chip (size range 1502000bp) and quantified by 

Qubit dsDNA HS (Molecular Probes). Libraries were sequenced on Illumina NextSeq 500 

using 150bp paired end kits as per manufacturer’s instructions.

TCR sequencing—TCR alpha and beta sequencing was performed utilizing whole cDNA 

extracted from sorted T cell subsets as described above, using a quantitative experimental 

and computational TCR sequencing pipeline45. An important feature of this protocol is the 

incorporation of a unique molecular identifier (UMI) attached to each cDNA TCR molecule 

that enables correction for PCR and sequencing errors. The suite of tools used for TCR 

identification, error correction and CDR3 extraction are freely available at https://

github.com/innate2adaptive/Decombinator. The raw DNA fastq files and the processed TCR 

sequences will be available on the NCBI Short Read Archive and Github respectively, 

following publication. The number of alpha and beta transcripts is highly correlated. We 

consistently detect more beta chains than alpha chains, most likely due to the higher number 

of beta TCR transcripts. In order to validate the sequencing efficiency, we correlated the 

number of alpha and beta TCR transcripts with matched bulk RNA sequencing data for the 

tumour regions studied, quantifying T cell infiltration either by the expression of CDR3 

gamma, delta and epsilon chains, or with by RNAseq expression of a T cell gene signature. 

We note that on average, each unique TCR:UMI combination is seen more than 10 times in 

the raw uncorrected data, making it unlikely that these singletons arise from sequencing 

errors.
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Single cell RNA-sequencing analysis

Data processing and imputation—All sequencing data generated in this study was 

assessed to detect sequencing failures using FastQC and lower quality reads were filtered or 

trimmed using TrimGalore. Outlier samples containing low sequencing coverage or high 

duplication rates were discarded. The multimer sorted single cell RNAseq data were mapped 

to the GRCh38 reference human genome, as included in Ensembl version 84, using the 

STAR algorithm and transcript and gene abundance were estimated by RSEM. Count and 

metadata from the study of Guo et al.42 were downloaded from the Gene Expression 

Omnibus website (accession number GSE99254).

In both datasets, cells with library size or number of genes with count >0 below three 

median absolute deviations (MADs) from the median of all cells were excluded, as were 

genes with an average count of <1 or those expressed in fewer than 10 cells. For multimer 

sorted cells, those with a mitochondrial gene count of over 3 MADs from the median of all 

cells were excluded. The downloaded Guo et al. dataset was prefiltered for cells with 

elevated mitochondrial gene expression.

For the Guo dataset, the package scImpute was used to identify and perform imputation on 

dropout expression values73. Imputed values were used for gating and differential expression 

analysis. For calculation of mean expression values across genes and ligand-receptor pair 

analysis, non-imputed values were used.

Gating—Subsets of interest were manually gated from the Guo dataset. Both flow 

cytometry and scRNAseq provide continuous measurements of individual markers expressed 

at a single cell level. For samples with matched cytometry and scRNAseq data, cross-

platform concordance in identification of populations has been reported, supporting flow 

cytometry-like gating approaches to scRNAseq data74. Counts per million (CPM) expression 

data were normalized by the trimmed mean of M-values (TMM) procedure to account for 

compositionality, followed by log10 transformation for manual gating of populations on 

biaxial plots. B3GAT1 that generates the CD57 antigen had a high dropout rate (80.3% and 

70.6% of CD4 and CD8 T cells respectively). As KLRG1 and CD57 are highly coexpressed 

upon terminally differentiated T cells23 we used the former to identify TDT cells. Of 2469 

CD4 T cells from 14 patients, we identified 175 Early (FOXP3 - CD28 + CCR7 + PDCD1 - 

KLRG1 - ICOS low), 272 Tdys (FOXP3 - CD28 + PDCD1 + KLRG1 - ICOS high) and 143 

TDT (FOXP3 - CD28 + PDCD1 + KLRG1 +) cells. Of 1508 CD8 T cells, we identified 19 

Naïve-like (CD27+PDCD1-KLRG1-CCR7+SELL+IL7R+), 143 Tdys 

(CD27+PDCD1hiKLRG1-ICOShi) and 44 TDT cells (CD27+PDCD1+KLRG1+IL7R-

ICOShi). UMAP visualization of the CD4 and CD8 compartments revealed the manually 

gated populations to localize to distinct clusters (Extended Data Fig. 9A, B).

Differential gene expression analysis—Genes differentially expressed between 

subsets were identified using the edgeR edgeRQLFDetRate procedure recently described as 

a top-ranking approach to differential expression analysis in single-cell RNA-seq data75. The 

analyses were conducted with patient as a co-factor. Differential analysis was carried out on 

genes with >1 CPM in over 25% of cells. In the Soneson et al. study, this approach resulted 
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in a type I error control rate of slightly above the imposed level of p=0.05. To apply a strict 

control to this, genes identified by edgeR as differentially expressed between groups with 

fold change>2 and FDR<0.05 were retained for further analysis if they were additionally 

identified as differentially expressed (p<0.05) between subsets using a Wilcoxon rank-sum 

test. Heatmaps were generated using log10 CPM expression values using the 

ComplexHeatmap package.

GSEA—The package fgea was used for preranked GSEA with 10 000 permutations. Genes 

were ranked according to their log2 fold change (logFC) between groups using 

edgeR::glmFit with prior.count=5.

GSEA was carried out using published datasets of T cell CD4 dysfunction, and genes 

differentially expressed by sorted CD8 Tdys and multimer reactive cells. Data on CD4 T cell 

dysfunction were from mouse studies of chronic viral infection19, lupus nephritis49 and 

autoimmune colitis48. We constructed signatures by selecting the top 200 differentially 

expressed genes in each study. Data on antigen-specific CD8 dysfunction were from studies 

of human46 and murine76 cancer and murine chronic infection15. Human orthologues were 

identified using Ensembl and NCBI HomoloGene databases. To confirm enrichment of T 

cell progenitor-like signatures amongst the Early subset, we carried out GSEA on C7 gene-

sets from MSigDB77, filtered to include T central memory signatures only and represent the 

top four pathways in Extended Data Fig. 3F, from the following publications; GSE11057, 

GSE26928, GSE3982. We additionally used previously published signatures of T cell 

activation and differentiation78 to characterize CD4 Tdys and TDT vs. Early cells.

Gene Ontology pathway analysis—We evaluated the enrichment of selected GO 

pathways, limited to the terms “cell cycle”, “cell killing”, “immune system process”, 

“locomotion”, “metabolic process”, “cell death” and “cytokine production”. Only pathways 

with expression of over 4 genes in the Guo and multimer sorted scRNAseq dataset were 

retained. For each pathway, enrichment was calculated as the mean expression of 

corresponding genes by each cell. Overexpressed pathways were identified as those with 

higher mean enrichment amongst CD4 dysfunctional vs. Early, CD8 dysfunctional vs. 

Naïve-like and multimer reactive vs. multimer negative cells.

Similarity of populations to bulk RNAseq—We used data from Philip et al. to 

evaluate the transcriptional similarity of single cell populations to antigen-specific CD8 T 

cells with well characterized functional attributes. For each individual cell in the Guo and 

multimer sorted scRNAseq datasets, we measured the Pearson correlation index to bulk 

RNAseq data from effector, reversible and irreversible populations to define similarity 

indices. For each cell, efficacy score was defined as the effector – irreversible similarity. 

Reversibly score was defined as reversible – irreversible similarity.

Correlation between CD4 Early population abundance and transcriptomic 
signatures—The enrichment of Charoentong et al. signatures78 was calculated for 

individual cells by calculating the mean expression of constituent genes. The relationship 

between falling CD4 Early population (1 – number of CD4 Early cells/total CD4 cells) and 

Ghorani et al. Page 21

Nat Cancer. Author manuscript; available in PMC 2020 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



gene signature enrichment amongst cells within each subset was evaluated using linear 

mixed effects models with patient as the grouping variable.

Dimension reduction and clustering—UMAP dimension reduction of the Guo dataset 

was done with the uwot package. High resolution SOM clustering of CD4 and CD8 cells 

was done with the top 2000 most variably expressed genes (calculated using the NRS, as 

described above) on 6x5 and 7x7 grids respectively, followed by manual combination of 

clusters expressing similar levels of T cell subset specific genes shown in the Extended Data 

Fig. 9 heatmaps.

Ligand-receptor expression analysis—To analyze cell–cell interactions between 

populations of interest, we used CellPhoneDB55 to identify significant ligand-receptor pair 

expression within the Guo dataset. Potential receptor-ligand interactions were identified 

based on specific expression of a receptor by one cell type and the corresponding ligand by 

another. The interaction score is the log of the mean of the individual ligand-receptor partner 

average expression values in the corresponding interacting pairs of cell types. The heatmap 

in Extended Data Fig. 7 shows pathways with a score greater than 1.2 for at least one pair of 

populations. The “significant_means” output file from CellPhoneDB was manually curated 

to systematically organize pairs as gene 1=ligand encoding and gene 2=receptor encoding. 

For each population, we enumerated its ligand bearing and receptor bearing interactions. The 

direction imbalance score was calculated as the ratio of the highest value in the latter counts 

divided by the lowest value. We then subtracted 1 from this ratio to calculate how much a 

given population deviates from a perfectly balanced number of ligand bearing and receptor 

bearing interactions. Network diagrams were drawn using the igraph package.

Bulk RNA-sequencing data analysis

Bulk RNAseq analysis—RNAseq data from sorted CD8 T cell populations were mapped 

to the GRCh38 reference human genome, as included in Ensembl version 84, using the 

STAR algorithm and transcript and gene abundance were estimated by RSEM. Genes with 

expression lower than 7.5 CPM in at least two samples were removed. Differential 

expression analysis was carried out using edgeR::glmFit with patient as a co-factor.

T cell subset gene signatures—Gene signature enrichment was evaluated using upper 

quartile normalized TCGA and TRACERx RNA sequencing RSEM count data (see 

Extended Data Figure 9F for signatures used). For patients with matched RNA sequencing 

and pathologist evaluated TILs (n=56 patients, 144 regions), we found the Danaher T cell 

transcriptional signature79 to closely correlate and therefore used this to estimate TIL 

density. For each signature, expression of constituent genes was log10 transformed, z-score 

scaled and the mean value per sample used to represent enrichment. Non-protein coding 

genes and those not represented in both TCGA and TRACERx data were excluded.

TCGA xCell signatures were used as previously calculated80. For TRACERx RNAseq data, 

xCell signature values were generated using the published package (https://github.com/

dviraran/xCell) and z-score scaled across all samples for which RNA sequencing was 

available.
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TCF7/LEF1 signature—Xing et al. have previously published RNA sequencing data on 

genes differentially expressed by mouse Tcf7/Lef1 knockout vs. wildtype CD8 

thymocytes56. Genes upregulated in knockout cells characterize later differentiated T cells, 

whilst genes downregulated characterize progenitor-like T cells. We selected 141 

upregulated and 68 downregulated genes (amongst those with FPKM>1; fold change >4, 

FDR <0.01) to generate late differentiation and stemness gene sets respectively. As 

differentiation skewing involves a loss of early differentiated cells and a gain of later 

differentiated subsets, TL-DS signature was defined as the value of the stemness minus late 

differentiation gene sets.

Statistics and reproducibility

All calculations were carried out in the R statistical programming environment version 3.4.3. 

No statistical methods were used to predetermine sample size, experiments were not 

randomized and investigators were not blinded to allocation during experiments and 

outcome assessment. Samples for flow cytometry were selected based on availability of 

single cell digest material of adequate quantity and whole exome sequencing. Regions with 

fewer than 2000 live CD3+ events were excluded from clustering analysis, regions with 

fewer than 1000 live CD4 or CD8 events were excluded from manual gating. Individual 

regions were treated as independent data points in exploratory analyses. Correlation analysis 

was carried out according to the Spearman rank test method and the two-tailed Wilcoxon 

rank-sum test was utilised to evaluate whether two samples were derived from the same 

population.

Different numbers of regions were obtained from individual patient tumours. To account for 

dependencies within the data due to this and the effects of histology (resulting in within 

patient and within group similarities respectively), we carried out mixed effects linear 

regression using the package nlme.

Where appropriate, p-values were adjusted by the Benjamini-Hochberg method, to control 

the type 1 error rate in the context of multiple testing. Survival analysis was carried out with 

Cox regression models implemented in the survival package. Kaplan-Meier plots and log-

rank p-values were generated using the package survminer.

Extended Data
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Extended Data Fig. 1. Sample data availability.
(a) Sample data availability and disposition for TRACERx 100 flow cytometry and RNA 

sequencing cohorts, with details of matched data relevant to key analyses. * 41 regions had 

>2000 live CD3+ events; ^ 18 NTA specimens in total, including from two patients without 

matched tumour tissue; # 37 regions had WES data and >2000 live CD3+ events. (b) 

Patients and regional data availability for flow cytometry cohorts 1 and 2. All patients with 

at least one tumour region are shown.
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Extended Data Fig. 2. Progenitor-like and dysfunctional T cell subsets correlate with clonal 
mutational burden and their abundance associates with patient outcomes.
(a) Gating strategy to define CD4 Early, Tdys and TDT populations. (b) For n=20 lung 

samples with distinct CD4 staining, the percentage of CD4+ cells amongst manually gated 

Early, Tdys and TDT populations from n=61 total samples, is shown for each subset. (c) 

Gating strategy to define CD8 Naive-like, Tdys and TDT populations. (d) Boxplots show the 

Spearman correlation between cluster abundance and TMB (n=39 regions from 15 patients) 

across all iterations (n=1000) of the clustering workflow. Each point represents the result of 

a single run. (e) Heatmap showing cluster stability across 1000 clustering iterations. The 
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cluster identity of each cell was determined for one representative iteration (labels are on the 

left of the heatmap). For each cell, the probability of being assigned to each cluster (labelled 

below the plot) across all iterations is represented. (f) Relationship between CD4 population 

abundance (60 regions from 29 patients) and tumor genomic features. Two-sided p-values 

and regression slopes (β coefficients) reflecting the direction and magnitude of relationships 

tested are from linear mixed effects regression models accounting for tumor histology and 

multiregionality. (g, h) Percentage of cells amongst manually gated cohort 2 CD8 (g) and 

CD4 (h) populations positive for key markers (26 regions from 16 patients). All comparisons 

p<0.05 by two-sided Wilcoxon rank sum test except for those labelled. Violin plots show 

median and interquartile range. (i) Neoantigen-multimer reactive (Mult+) CD8 T cell 

identification and PD1 expression for two patients in comparison to matched multimer non-

reactive (Mult-), NTA and circulating (PBMC) CD8 T cells. Line graph shows CD8 T cell 

PD1 MFI (relative to PBMC) in Mult+, Mult- and NTA populations. Data points show mean 

PD1 MFI from n=4 multimer reactive populations from n=3 patients, error bars show SEM. 

P-values are from paired 2-Way ANOVA (Fisher’s least significant difference test). (j) 

Disease free survival (DFS) probability of patients with high vs. low abundance of CD4 

(upper row) and CD8 subsets (from n=29 and n=31 patients respectively), categorized 

according to the median value. The number of patients at risk at each time point, log-rank p-

value and hazard ratios with 95% confidence intervals are shown. (k) Sort strategy for CD4 

(top) and CD8 subsets, for TCRseq. (l) Venn diagrams show CDR3 beta chain sharing 

between CD4 (left two diagrams) and CD8 subsets, for two patients each. Boxplots in (b) 

and (d) represent median and interquartile range.
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Extended Data Fig. 3. Identification and single cell transcriptomic characterization of 
progenitor-like and dysfunctional T cell subsets.
(a) Full gating strategy to identify the CD4 Early, CD8 Naïve-like, CD8 Tdys and CD8 TDT 

subsets by single T cell RNA expression. (b, c) Confirmation of CD4 (n=590 cells; b) and 

CD8 (n=206 cells; c) subset identity by evaluating expression of genes not used in the gating 

strategy but whose relative expression is known based on analysis of flow cytometry data. 

Each point represents an individual T cell and two-sided Wilcoxon rank sum test p-values 

are shown (***p<0.0001). Violin plots show the median and interquartile range. (d, e) 

GSEA to evaluate enrichment of gene sets upregulated in published T cell dysfunction 
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datasets (d) and sorted CD8 Tdys and multimer reactive cells (e), amongst genes ranked by 

their expression in CD4 TDT vs. Early (143 vs. 175 cells) and CD8 TDT vs Naive-like 

populations (143 vs. 19 cells). For each gene set tested, the top 200 most differentially 

expressed genes were selected. Normalized enrichment scores (NES) and FDR adjusted p-

values from permutation tests are shown. (f) GSEA to confirm the T central memory like 

transcriptional status of CD4 Early vs. Tdys/TDT subsets (175 vs. 415 cells). Normalized 

enrichment scores (NES) and FDR adjusted p-values by permutation test are shown.
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Extended Data Fig. 4. Expression profile of progenitor-like and dysfunctional T cell subsets.
(a) Differentially expressed transcription factor encoding genes in CD4 (n=590 cells) and 

CD8 (n=206 cells) subsets at the single T cell RNA expression level. Each gene has >2-fold 

differential expression in one subset with FDR adjusted p<0.05 (quasi-likelihood F-test with 

edgeR). Differentially expressed genes encoding adhesion molecules and chemokine 

receptors (b) and ITIM containing proteins (c); All genes shown are >2-fold differentially 

expressed between subsets within the same compartment, FDR adjusted p<0.05. (d) 

Expression of the top 500 most variably expressed genes between CD4 and CD8 subsets.
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Extended Data Fig. 5. TCF7 and CD39 protein expression in CD4 and CD8 T cell subsets.
(a) Flow cytometry of concatenated data from n=3 patients (CRUK0939, CRUK0952 and 

CRUK1037) in manually-gated subsets of tumor infiltrating CD4 (Early; CD45RA-PD1-

FOXP3-CD27+CCR7+, Tdys; FOXP3-CD27+PD1hiCD57-, TDT FOXP3-

CD27+PD1hiCD57+) and CD8 (Naïve-like; CD45RA+PD1-CD27+CD57-, Tdys; 

CD45RA-CD27+PD1hiCD57-, TDT CD45RA-CD27+PD1hiCD57+) T cells. (b) 

Quantification of TCF7 and CD39 expression in CD8 (top row) and CD4 subsets identified 

amongst n=3 patients in (a). Error bars represent the SEM. (c) PD1 vs. TCF7 expression of 

CD4 and CD8 TILs from the same patients as (a).
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Extended Data Fig. 6. Transcriptional similarity and gene pathway analysis amongst 
dysfunctional subsets.
(a) For each gene set tested in enrichment analysis, leading edge genes shared between at 

least two sets were identified and their overlap between CD4 and CD8 dysfunctional 

population is shown. (b) Of the 19 shared leading edge genes common to both CD4 and 

CD8 populations, 17 were expressed in single cell RNA sequencing data from multimer 

reactive cells. Violin plots show expression in multimer positive (n=36) vs. negative cells 

(n=39). Unadjusted two-sided Wilcoxon rank sum test p-values are shown. Violin plots 

represent the median and interquartile range. (c) Bar chart shows enrichment in multimer 

reactive vs. non-reactive cells of shared GO terms that distinguish dysfunctional T cell 
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populations, identified in Figure 3E. Selected pathways are identified in the table and their 

enrichment within each population vs. control is shown in (d). FDR adjusted two-sided 

Wilcoxon rank sum test p-values are represented. CD8 Tdys vs. Naive-like (143 vs. 19 

cells), CD4 Tdys vs. Early (272 vs. 175 cells), CD4 TDT vs. Early (143 vs. 175 cells) and 

Mult+ vs. Mult- (36 vs. 39 cells)
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Extended Data Fig. 7. Transcriptional evidence of signalling pathways active between T cell 
subsets.
(a) Network diagram of ligand–receptor interactions as determined by cellPhoneDB; Solid 

lines represent pathways between two populations, the width of each line is proportional to 

the number of pathways. For each pair of populations, pathways were split depending on 

which population is ligand-bearing vs. receptor-bearing. Arrows indicate communication 

from ligand-bearing to receptor-bearing populations. (b) Summary of overlap in reciprocal 

pathways between population pairs. The heatmap represents the Jaccard similarity index of 

overlapping pathways for each pair of populations. (c) Summary of directed pathway counts. 
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The heatmap represents the number of pathways for each directed pair of populations. (d) 

Number of pathways where each population is the ligand-bearing partner (left column) or 

receptor-bearing partner (right column) and the ratio between the count of each group. (e) 

Summary of ligand–receptor interactions. Log2 means of the average expression level of 

receptor-ligand pair genes are shown.
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Extended Data Fig. 8. Pan-TCGA association between a signature of T cell differentiation 
skewing and patient outcomes.
(a) Forest plot showing the relationship between the TL-DS signature and survival across 

TCGA cohorts (n=6853 patients). HRs and FDR adjusted p-values are from univariable Cox 

regression analysis. (b) Relationship between the TL-DS signature and survival, corrected 

for T cell infiltration, TMB and stage, in cohorts from (b) in which the signature predicted 

survival (9 cohorts, n=2418 patients). HRs and p-values are from multivariable Cox 

regression analysis. Cohorts in which the relationship was significant are shown.
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Extended Data Fig. 9. Single T cell RNAseq cluster analysis.
(a, b) UMAP dimension reduction plot of NSCLC CD4 (a) and CD8 (b) TIL single cell 

RNA sequencing data (2469 and 1508 cells respectively). Manually identified subsets are 

located in the upper panels of A and B. Clustering analysis reveals 10 CD4 and 10 CD8 

subsets (lower panels). Relative expression (z-score) of selected genes is shown in the 

adjacent heatmaps (each column represents a single cell).
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Extended Data Fig. 10. Marker and transcriptional changes within the CD4 Early population in 
relation to TMB and subset abundance.
(a) Workflow to determine the relationship between flow cytometry measured marker 

expression intensity and TMB in CD4 Early (n=23,597 cells), Tdys (n=25,271 cells) and 

TDT (n=11,880 cells) subsets. Each point represents an individual cell, FDR adjusted two-

sided p-values and regression coefficients were derived from linear mixed effects models 

accounting for patient histology and tumor multiregionality and plotted in (b). Volcano plots 

show the relationship between marker intensity and TMB for each CD4 subset. (c) Change 

in CD4 Tdys and TDT with Early abundance (as a percentage of all CD4+ cells, n=12 

patients). Two-sided Pearson p- and r-values are shown. Shaded bands represents the 95% 

confidence interval of a linear regression slope. (d) GSEA of T helper subset signatures 

enriched in Tdys and TDT vs. Early (n=590 cells), using modules from Charoentong et al. 

201778. Normalized enrichment scores (NES) and FDR adjusted p-values from permutation 

tests are shown. (e) Correlation between falling abundance of the CD4 Early population (175 
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cells, n=12 patients) and expression of gene signatures from (d) indicative of CD4 later 

differentiation state. Two-sided p-values and regression coefficients were derived from linear 

mixed effects models with patient as the random effect. Published T cell subset signatures 

used in the study are summarized in (f).
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Figure 1. The landscape of tumour infiltrating CD4 and CD8 T cells in non-small cell lung 
cancer.
(a) T cell clusters identified in high dimensional flow cytometry analysis of n=41 regions 

from 15 patients with NSCLC are visualized by UMAP dimension reduction. (b) Heatmaps 

show min-max scaled, transformed expression of markers expressed by CD8 and CD4 T 

cells. Each row represents an individual cell from a sample of 10,000 cells from each 

population. UMAP projections show expression intensity of key markers in CD4 (c) and 

CD8 (d) T cells. (e, f) Analysis of differential cluster abundance in tumour (n=41 regions) 

vs. non-tumour adjacent (NTA; n=18 regions) tissue for CD4 (e) and CD8 (f) T cells. FDR 
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adjusted p-values (quasi-likelihood F-test with edgeR) and log2 fold change values are 

represented for each cluster in the volcano plots, the size of points reflects cluster 

abundance.
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Figure 2. T cell differentiation skewing occurs in association with tumour mutational burden.
(a) Workflow to identify clusters of intratumour T cells that vary in abundance in association 

with TMB. Heatmaps show min-max scaled, transformed marker expression of CD4 (b) and 

CD8 (c) clusters that vary positively (upper region of heatmaps) or negatively in abundance 

with TMB (Spearman’s rank test; n=37 regions from 15 patients). Cluster abundance was 

calculated as a proportion of all CD3+ cells in each region. (d) The abundance of CD4 and 

CD8 clusters identified in (b, c) for all tumour regions is shown. Regional TMB is indicated 

above the plot. NL, naive-like. (e, f) Populations found to vary in abundance with TMB by 
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unsupervised analysis were manually gated within cohort 1 and a second validation set of 

n=26 regions from 16 patients drawn independently from the first 100 TRACERx cohort. 

Scatter plots show the relationship between population abundance and TMB for CD4 (e) and 

CD8 (f) subsets in cohorts 1 (left columns), 2 (middle columns) and a combined analysis 

(right column). P- and correlation coefficient r-values are from Spearman’s rank tests. Two-

sided p-values (pc) from linear mixed effects regression models to correct for effects of 

histology and multiple tumour regions are additionally shown. Shaded bands represent the 

95% confidence interval of a linear regression slope. (g, h) Marker expression profiles of 

manually gated CD4 (G) and CD8 (H) subsets in validation cohort 2 (concatenated data 

from n=16 patients are shown). (i) PD1, CD57 and CD45RA expression profile of 

neoantigen-multimer reactive (Mult+) CD8 T cells from a representative patient (similar 

results were found amongst four Mult+ populations from n=3 patients). Lower panel shows 

corresponding profile of CD8 Tdys and TDT subsets amongst all CD8 TILs. (j) PD1, ICOS 

and Ki67 expression profile of multimer reactive, non-reactive, NTA localized and 

circulating (PBMC) CD8 T cells.
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Figure 3. T cell subsets are clonally related.
CD4 (a) and CD8 (b) subsets were sorted for TCRseq; left panels show sort gates, right 

panels show Venn diagrams of CDR3 β-sequence sharing between subsets from a 

representative patient (values represent unique CDR3 sequences). Heatmaps show pairwise 

similarity (measured by sharing of triplet amino acids) amongst shared and unshared CD4 

(c) and CD8 (d) CDR3 β-sequences from patient CRUK0939. Unique CDR3 sequences are 

arranged across rows and columns, points of intersection are colored according to the 

similarity between CDR3 pairs. The right hand panels show the mean CDR3 similarity 

within shared and unshared sequences for CD4 and CD8 CDR3 sequences respectively (n=3 

patients each). Network diagrams show shared and unshared CDR3 sequences (points) that 

have similarity of >0.8 to at least one other CDR3 sequence amongst CD4 (e) and CD8 (f) 

compartments.
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Figure 4. Single cell transcriptomic characterization of CD4 and CD8 subsets reveals distinct 
regulatory mechanisms.
(a) CD4 and CD8 subsets were identified by a biaxial gating strategy applied to single cell 

RNAseq data42 (n=14 patients), based on markers identified by flow cytometry. The gating 

scheme for CD4 Tdys and TDT cells is shown (CD3E + CD3G + CD4 + CD8 - cells were 

pre-gated, see Figure S3A). Expression values are represented as normalized, log10 

transformed read counts per million (log10 CPM). (b, c) GSEA to evaluate enrichment of 

published gene sets of T cell dysfunction (b) and sorted CD8 Tdys and multimer reactive 

cells (c), amongst genes ranked by their expression in CD4 Tdys vs. Early (n=272 vs. 175 
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cells) and CD8 Tdys vs Naive-like populations (n=143 vs. 19 cells). For each gene set 

tested, the top 200 most differentially expressed genes were selected. Normalized 

enrichment scores (NES) and FDR adjusted p-values from permutation tests are shown. (d) 

Heatmaps showing relative expression (z-score) of genes involved in key T cell regulatory 

pathways. All genes shown are >2-fold differentially expressed in a comparison between 

two subsets within with same population (FDR adjusted p<0.05). (e) Venn diagram shows 

sharing of Gene Ontology (GO) terms enriched in single cell analysis of CD8 Tdys vs. 

Naïve-like (n=143 vs. 19 cells), CD4 Tdys vs. Early (n=272 vs. 175 cells), CD4 TDT vs. 

Early (n=143 vs. 175 cells) and Mult+ vs. Mult- (n=36 vs. 39 cells). Pathways with FDR 

adjusted two-sided Wilcoxon rank sum test p-value <0.05 were considered significant. 

Pathways shared by all populations were grouped according to the legend and exemplary 

pathways from each group are tabulated. (f, g) Comparison of transcriptional profiles of 

individual cells in subsets of interest with effector, reversibly dysfunctional and irreversibly 

dysfunctional antigen-specific CD8 T cells54. Similarity between individual cells in each 

population (cell numbers as described above) and previously published bulk RNAseq data 

was calculated by Pearson correlation. Violin plots show the difference between reversible 

vs. irreversible scores (f) and effector vs. irreversible scores (g) for each population 

calculated at the single cell level.
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Figure 5. A gene signature of progenitor T cell loss correlates with flow cytometry measured 
differentiation skewing and predicts lung cancer survival.
(a) Workflow of gene signature validation. Using regions with both high dimensional flow 

cytometry and RNAseq data (n=46 regions from 22 patients), CD4 and CD8 subsets were 

gated within the flow cytometry data and expression signatures measured within RNAseq 

data to identify gene signatures that predict subset abundances. (b) Correlation between gene 

signatures of TCF7/LEF1 loss (TL-DS), CD4 early differentiation/exhaustion and the ratio 

between Early:dysfunctional subset abundance (calculated as the sum of Tdys and TDT). 

Spearman rank correlation r- and two-sided FDR adjusted p-values are shown. (c) 
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Relationship between the TL-DS signature and CD4 (upper row) and CD8 subset 

abundances. Spearman rank correlation r- and two-sided p-values are shown. Shaded bands 

represents the 95% confidence interval of a linear regression slope. (d) The TL-DS signature 

correlates with TMB in TRACERx RNAseq (n=161 regions from 64 patients) and TCGA 

NSCLC cohorts (LUAD, n=511, LUSC, n=482). Progenitor loss signature values were z-

score scaled, TMB values were log10 transformed. Spearman rank correlation r- and two-

sided p-values are shown for TCGA analyses. An FDR adjusted, two-sided p-value (pc) is 

shown for the TRACERx cohort from a mixed effects regression model accounting for 

tumour multiregionality and histology. Shaded bands represents the 95% confidence interval 

of a linear regression slope. (e) Forest plot shows relationship between TL-DS expression 

and patient outcome in TRACERx RNAseq (DFS; n=64) and TCGA cohorts (OS; n=486 

LUAD, n=455 LUSC). P-values are from univariable Cox regression analysis. (f) Forest plot 

shows relationship between TL-DS and patient DFS in the TRACERx RNAseq cohort, 

adjusting for multiple potential confounders. P-values are from a multivariable Cox 

regression analysis.

Ghorani et al. Page 50

Nat Cancer. Author manuscript; available in PMC 2020 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Diverse progenitor-like and dysfunctional CD4 and CD8 T cell populations identified by high-dimensional phenotyping of NSCLC TILs
	Tumour mutational burden associates with T cell differentiation skewing in NSCLC
	Progenitor-like and dysfunctional subsets are clonally related
	Single-cell transcriptomics unveils distinct developmental and regulatory programmes in progenitor and dysfunctional T cells
	A transcriptional signature of mutation associated T cell differentiation skewing associates with survival in independent cohorts
	Discussion
	Methods
	Patients and samples
	Flow cytometry
	Tumour sequencing
	TIL evaluation
	TCGA data
	Analysis of flow cytometry data
	Clustering
	Manual gating
	Differential abundance analysis
	Discovery of populations differentially abundant with TMB

	Tumour clonal diversity
	Neoantigen reactive CD8 T cell identification and single cell sequencing
	Identification of neoantigen binders
	Multimer analysis of neoantigen reactive T cells
	Single-Cell RNA sequencing of multimer reactive T cells

	Sorted T cell bulk sequencing
	Population sorting
	Bulk RNAseq
	TCR sequencing

	Single cell RNA-sequencing analysis
	Data processing and imputation
	Gating
	Differential gene expression analysis
	GSEA
	Gene Ontology pathway analysis
	Similarity of populations to bulk RNAseq
	Correlation between CD4 Early population abundance and transcriptomic signatures
	Dimension reduction and clustering
	Ligand-receptor expression analysis

	Bulk RNA-sequencing data analysis
	Bulk RNAseq analysis
	T cell subset gene signatures
	TCF7/LEF1 signature

	Statistics and reproducibility

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	Extended Data Fig. 10
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

