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Abstract

Systems neuroscience seeks explanations for how the brain implements a wide variety of 

perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design 

computational systems based on the tasks they will have to solve. In the case of artificial neural 

networks, the three components specified by design are the objective functions, the learning rules, 

and architectures. With the growing success of deep learning, which utilizes brain-inspired 

architectures, these three designed components have increasingly become central to how we 

model, engineer and optimize complex artificial learning systems. Here we argue that a greater 

focus on these components would also benefit systems neuroscience. We give examples of how 

this optimization-based framework can drive theoretical and experimental progress in 

neuroscience. We contend that this principled perspective on systems neuroscience will help to 

generate more rapid progress.

Introduction

Major technical advances are revolutionizing our ability to observe and manipulate brains at 

a large-scale and quantify complex behaviors1,2. How should we use this data to develop 

models of the brain? When the classical framework for systems neuroscience was 

developed, we could only record from small sets of neurons. In this framework, a researcher 

observes neural activity, develops a theory of what individual neurons compute, then 

assembles a circuit-level theory of how the neurons combine their operations. This approach 

has worked well for simple computations. For example, we know how central pattern 

generators control rhythmic movements3, how the vestibulo-ocular reflex promotes gaze 

stabilization4, and how the retina computes motion5. But, can this classical framework scale 

up to recordings of thousands of neurons and all of the behaviors that we may wish to 

account for? Arguably, we have not had as much success with the classical approach in large 

neural circuits that perform a multitude of functions, like the neocortex or hippocampus. In 

such circuits, researchers often find neurons with response properties that are difficult to 

summarize in a succinct manner6,7.

The limitations of the classical framework suggest that new approaches are needed to take 

advantage of experimental advances. A promising framework is emerging from the 

interactions between neuroscience and Artificial Intelligence (AI)8–10. The rise of deep 

learning as a leading machine learning method invites us to revisit Artificial Neural 

Networks (ANNs). At their core, ANNs model neural computation using simplified units 

that loosely mimic the integration and activation properties of real neurons11. Units are 

implemented with varying degrees of abstraction, ranging from highly simplified linear 
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operations to relatively complex models with multiple compartments, spikes, etc.11–14. 

Importantly, the specific computations performed by ANNs are not designed, but learned15.

However, human design still plays a role in determining three essential components in 

ANNs: the learning goal, expressed as an objective function (or loss function) to be 

maximized or minimized; a set of learning rules, expressed as synaptic weight updates; and 

the network architecture, expressed as the pathways and connections for information flow 

(Fig. 1)15. Within this framework, we do not seek to summarize how a computation is 

performed, but we do summarize what objective functions, learning rules and architectures 

would enable learning of that computation.

Deep learning can be seen as a rebranding of long-standing ANN ideas11. Deep ANNs 

possess multiple layers, either feedforward, or recurrent over time. The “layers” are best 

thought of as being analogous to brain regions, rather than as specific laminae in biological 

brains16,17. “Deep” learning specifically refers to training hierarchical ANNs in an end-to-

end manner, such that plasticity in each layer of the hierarchy contributes to the learning 

goals15, which requires a solution to the “credit assignment problem” (Box 1)18,19. In recent 

years, progress in deep learning has come from the use of bigger ANNs, trained with bigger 

datasets using Graphics Processing Units (GPUs) that can efficiently handle the required 

computations. Such developments have produced solutions for many new problems, 

including image20 and speech21 classification and generation, language processing and 

translation22, haptics and grasping23, navigation24, sensory prediction25, game playing26 and 

reasoning27.

Many recent findings suggest that deep learning can inform our theories of the brain. First, it 

has been shown that deep ANNs can, in some cases closely, mimic the representational 

transformations in primate perceptual systems17,28, and thereby can be leveraged to 

manipulate neural activity29. Second, many well-known behavioral and neurophysiological 

phenomena, including grid cells24, shape tuning30, temporal receptive fields31, visual 

illusions32, and apparent model-based reasoning33, have been shown to emerge in deep 

ANNs trained on tasks similar to those solved by animals. Third, many modeling studies 

have demonstrated that the apparent biological implausibility of end-to-end learning rules, 

e.g. learning algorithms that can mimic the power of the canonical backpropagation-of-error 

algorithm (backprop) (see Box 1), is overstated. Relatively simple assumptions about 

cellular and subcellular electrophysiology, inhibitory microcircuits, patterns of spike timing, 

short term plasticity, and feedback connections can enable biological systems to 

approximate backprop-like learning in deep ANNs12,14,34–39. Hence, ANN-based models of 

the brain may not be as unrealistic as previously thought, and simultaneously, they appear to 

explain a lot of neurobiological data.

With these developments, it is the right time to consider a deep-learning-inspired framework 

for systems neuroscience8,19,40. We have a growing understanding of the key principles that 

underlie ANNs, and there are theoretical reasons to believe that these insights apply 

generally41,42. Concomitantly, our ability to monitor and manipulate large neural 

populations opens the door to new ways of testing hypotheses derived from the deep 
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learning literature. Here we sketch the scaffolding of a deep learning framework for modern 

systems neuroscience.

Box 1

Learning and the “credit assignment problem”

A natural definition of learning is that it is a change to a system that improves its 

performance. Suppose we have an objective function, F(W), which measures how well a 

system is currently performing, given the N-dimensional vector of its current synaptic 

weights, W. If the synaptic weights change from W to W + ΔW, then the change in 

performance is ΔF = F(W + ΔW)−F(W). If we make small changes to W, and F is locally 

smooth, then ΔF, is given approximately by

ΔF ≈ ΔWT ⋅ ∇W F

where ∇W F is the gradient of F with respect to W41. Suppose we want to guarantee 

improved performance, i.e. we want to ensure ΔF > 0. We know that there is an N-1 

dimensional manifold of local changes in W that all lead to the same improvement. 

Which one should we choose? Gradient-based algorithms derive from the intuition that 

we want to take the smallest step that gets us a specific level of improvement. If we 

choose a small step size, η, times the gradient ∇W F, then we will improve as much as 

possible for that step size. Thus, we have:

ΔF ≈ η ∇W FT ⋅ ∇W F > 0

In other words, the objective function value increases with every step (when η is small) 

according to the length of the gradient vector.

The concept of “credit assignment” refers to the problem of determining how much 

“credit” or “blame” a given neuron or synapse should get for a given outcome. More 

specifically, it is a way of determining how each parameter in the system (e.g., each 

synaptic weight) should change to ensure that ΔF > 0. In its simplest form, the “credit 

assignment problem” refers to the difficulty of assigning credit in complex networks. 

Updating weights using the gradient of the objective function, ∇W F, has proven to be an 

excellent means of solving the credit assignment problem in ANNs. A question that 

systems neuroscience faces is whether the brain also approximates something like 

gradient-based methods.

The most common method for calculating gradients in deep ANNs is backprop15. It uses 

the chain rule to recursively calculate gradients backwards from the output11. But 

backprop rests on biologically implausible assumptions, such as symmetric feedback 

weights and distinct forward and backward passes of information14. Many different 

learning algorithms, not just backprop, can provide estimates of a gradient, and some of 

these do not suffer from backprop’s biological implausibility12,14,34–38,91–93. However, 

algorithms differ in their variance and bias properties (Fig. 2)36,94. Algorithms such as 

weight/node perturbation, which reinforce random changes in synaptic weights through 

rewards, have high variance in their path along the gradient94. Algorithms that use 

random feedback weights to communicate gradient information have high bias36,95. 
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Various proposals have been made to minimize bias and variance in algorithms while 

maintaining their biological realism37,38.
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Figure 2. Bias and variance in learning rules.
Many learning rules provide an estimate of the gradient of an objective function, even if they 

are not explicitly gradient-based. However, as with any estimator, these learning rules can 

exhibit different degrees of variance and bias in their estimates of the gradient. Here, we 

provide a rough illustration of how much bias and variance some of the proposed 

biologically plausible learning rules may have relative to backprop. It is important to note 

that the exact bias and variance properties of many of the learning rules are unknown, and 

this is just a sketch. As such, for some of the learning rules shown here, e.g. contrastive 

Hebbian learning, predictive coding (ref. 35), dendritic error learning (ref. 14), regression 

discontinuity design (RDD) (ref. 93), and attention-gated reinforcement learning (AGREL) 

(ref. 37), we have indicated their location with a question mark. For others, namely 

backpropagation, feedback alignment (ref. 36), and node/weight perturbation (ref. 94), we 

show their known relative positions.

Constraining learning in artificial neural networks and the brain with “task 

sets”

The “No Free Lunch Theorems” demonstrated broadly that no learning algorithm can 

perform well on all possible problems43. ANN researchers in the first decade of the 21st 

century thus argued that AI should be primarily concerned with the set of tasks that “…most 

animals can perform effortlessly, such as perception and control, as well as … long-term 

prediction, reasoning, planning, and [communication]”44. This set of tasks has been termed 
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the “AI Set”, and the focus on building computers with capabilities that are similar to those 

of humans and animals is what distinguishes AI tasks from other tasks in computer science44 

(note that the word “tasks” here refers broadly to any computation, including those that are 

unsupervised.)

Much of the success of deep learning can be attributed to the consideration given to learning 

in the AI Set15,44. Designing ANNs that are well-suited to learn specific tasks is an example 

of incorporating “inductive biases” (Box 2): assumptions that one makes about the nature of 

the solutions to a given optimization problem. Deep learning works so well, in part, because 

it uses appropriate inductive biases for the AI Set15,45, particularly hierarchical architectures. 

For example, images can be well described by composing them into a hierarchical set of 

increasingly complex features: from edges, to simple combinations of these, to larger 

configurations that form objects. Language too can be considered a hierarchical 

construction, with phonemes assembled into words, words into sentences, sentences into 

narratives. However, deep learning also eschews hand-engineering, allowing the function 

computed by the system to emerge during learning15. Thus, despite the common belief that 

deep learning relies solely on increases in computational power, or that it represents a “blank 

slate” approach to intelligence, many of the successes of deep learning have grown out of a 

balance between useful inductive biases and emergent computation, echoing the blend of 

nature and nurture which underpins the adult brain.

Similarly, neuroscientists focus on the behaviors/tasks that a species evolved to perform. 

This set of tasks overlaps with the AI Set, though possibly not completely, since different 

species have evolved strong inductive biases for their ecological niches. By considering this 

“Brain Set” for specific species—the tasks that are important for survival and reproduction 

for that species—researchers can focus on the features most likely to be key to learning. Just 

as departing from a pure blank slate was the key to the success of modern ANNs—e.g. by 

focusing on ANN designs with inductive biases that are useful for the AI Set—so we suspect 

that it will also be crucial to the development of a deep learning framework for systems 

neuroscience to focus on how a given animal might solve tasks in its appropriate Brain Set.

Recognizing the importance of inductive biases in deep learning also helps address some 

existing misconceptions. Deep networks are often considered different from brains because 

they depend on large amounts of data. However, it is worth noting that (1) many species, 

especially humans, develop slowly with large quantities of experiential data and (2) that 

deep networks can work well in low data regimes if they have good inductive biases46. For 

example, deep networks can learn how to learn quickly47. In the case of brains, evolution 

could be one means by which such inductive biases are acquired48,49.

The three core components of a deep learning framework for the brain

Deep learning combines human design with automatic learning to solve a task. What is 

designed are not the computations (i.e. the specific input/output functions of the ANNs), but 

three components: (1) objective functions, (2) learning rules, and (3) architectures (Fig. 1). 

Objective functions describe the goals of the learning system. They are functions of the 

synaptic weights of a neural network and the data it receives, but they can be defined without 
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making reference to a specific task or dataset. For example, the cross-entropy objective 

function, which is common in machine learning, specificies a means of calculating 

performance on any categorization task, from distinguishing different breeds of dog in the 

ImageNet dataset to classifying the sentiment behind a tweet. We will return to some of the 

specific objective functions proposed for the brain below50–53. Learning rules describe how 

the parameters in a model are updated. In ANNs, these rules are generally used to improve 

on the objective function. Notably, this is true not only for supervised learning (where an 

agent receives an explicit target to mimic), but also for unsupervised learning (where an 

agent must learn without any instruction) and reinforcement learning systems (where an 

agent must learn using only rewards/punishments). Finally, architectures describe how the 

units in an ANN are arranged and what operations they can perform. For example, 

convolutional networks impose a connectivity pattern whereby the same receptive fields are 

applied repeatedly over the spatial extent of an input.

Why do so many AI researchers now focus on objective functions, learning rules and 

architectures instead of designing specific computations? The short answer is that this 

appears to be the most tractable way to solve real-world problems. Originally, AI 

practitioners believed that intelligent systems could be hand-designed by piecing together 

elementary computations54. But results on the AI Set were underwhelming11. It now seems 

clear that solving complex problems with pre-designed computations (e.g. such as 

handcrafted features) is usually too difficult and practically unworkable. In contrast, 

specifying objective functions, architectures, and learning rules works well.

There is, though, a drawback: the computations that emerge in large-scale ANNs trained on 

high-dimensional datasets can be difficult to interpret. We can construct a neural network in 

a few lines of code, and for each unit in an ANN we can specify the equations that determine 

their responses to stimuli or relationships to behavior. However, after training, a network is 

characterized by millions of weights that collectively encode what the network has learned, 

and it is hard to imagine how we could describe such a system with only a small number of 

parameters, let alone in words55.

Such considerations of complexity are informative for neuroscience. For small circuits 

comprising only tens of neurons it may be possible to build compact models of individual 

neural responses and computations (i.e. to develop models that can be communicated using a 

small number of free parameters or words)3–5. But, considering that animals are solving 

many AI Set problems, it is likely that the brain uses solutions that are as complex as the 

solutions used by ANNs. This suggests that a normative framework that explains why neural 

responses are as they are, might be best obtained by viewing neural responses as an 

emergent consequence of the interplay between objective functions, learning rules, and 

architecture. With such a framework in hand, one could then train ANN models that do, in 

fact, predict neural responses well29,67,68. Of course, those ANN models would likely be 

non-compact, involving millions, billions or even trillions of free parameters, and being nigh 

indescribable with words. Hence, our claim is not that we could ever hope to predict neural 

responses with a compact model, but rather, that we could explain the emergence of neural 

responses within a compact framework.
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A question that naturally arises is whether the environment, or data, that an animal 

encounters should be a fourth essential component for neuroscience. Determining the “Brain 

Set” for an animal necessarily involves consideration of its evolutionary and ontogenic 

milieu. Efforts to efficiently describe naturalistic stimuli and identify ethologically-relevant 

behaviors are crucial to neuroscience, and have shaped many aspects of nervous systems. 

However, the core issue we are addressing in this perspective piece is how to develop models 

of complex, hierarchical brain circuits, so we view the environment as a crucial 

consideration to anchor the core components, but not as one of the components itself.

Once the appropriate Brain Set has been identified, the first question is: what is the 

architecture of the circuits? This involves descriptions of the cell types and their connectivity 

(micro, meso and macroscopic). Thus, uncontroversially, we propose that circuit-level 

descriptions of the brain are a crucial topic for systems neuroscientists. Thanks to modern 

techniques for circuit tracing and genetic lineage determination, rapid progress is being 

made56,57. But, to reiterate, we would argue that understanding the architecture is not 

sufficient for understanding the circuit; rather, it should be complemented by knowledge of 

learning rules and objective functions.

Many neuroscientists recognize the importance of learning rules and architecture. But 

identifying the objective functions that have shaped the brain, either during learning or 

evolution, is less common. Unlike architectures and learning rules, objective functions may 

not be directly observable in the brain. Nonetheless, we can define them mathematically and 

without making reference to a specific environment or task. For example, predictive coding 

models minimize an objective function known as the description length, which measures 

how much information is required to encode sensory data using the neural representations. 

Several other objective functions have been proposed for the brain (Box 3). In this 

perspective piece, we are not advocating for any of these specific objective functions in the 

brain, as we are articulating a framework, not a model. One of our key claims is that even 

though we must infer them, objective functions are an attainable part of a complete theory of 

how the architectures or learning rules help to achieve a computational goal.

This optimization framework has an added benefit: as with ANNs, the architectures, learning 

rules and objective functions of the brain are likely relatively simple and compact, at least in 

comparison to the list of computations performed by individual neurons58. The reason is that 

these three components must presumably be conveyed to offspring through a limited 

information bottleneck, i.e. the genome (which may not have sufficient capacity to fully 

specify the wiring of large vertebrate brains48). In contrast, the environment in which we live 

can convey vast amounts of complex and changing information that dwarf the capacity of 

the genome.

Box 3

Are there objective functions for brains?

Animals clearly have some baseline objective functions. For example, homeostasis 

minimizes an objective function corresponding to the difference between a physiological 

variable (like blood oxygen levels) and a set-point for that variable. Given the centrality 
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of homeostasis to physiology, objective functions are arguably something that the brain 

must be concerned with.

But, some readers may doubt whether the sort of objective functions used in machine 

learning are relevant to the brain. For example, the cross-entropy objective function used 

in ANNs trained on categorization tasks is unlikely to be used in the brain, since it 

requires specification of the correct category for each sensory input. Other objective 

functions are more ecologically plausible, though. Examples include the description 

length objective function used in predictive coding models50, the log-probability of action 

sequences scaled by the reward they have produced (which is used in reinforcement 

learning to maximize rewards)51, increases in mutual information with the 

environment100, and empowerment52,53, which measures the degree of control an agent 

has in their environment. These objective functions can all be specified mathematically 

for the brain without worrying about specific datasets, tasks or environments.

There are, however, real challenges in tying objective functions to empirical and 

theoretical models in neuroscience. Many potential plasticity rules may not follow the 

gradient of any objective function at all, or only follow it partially (Fig. 3). This 

apparently complicates our problems, and makes it impossible to guarantee that objective 

functions are always involved in neural plasticity. As well, the brain likely optimizes 

multiple objective functions40, some of which we may in fact learn (i.e. we may “learn-

to-learn”; for example, humans learn how to learn new board games), and some of which 

may have been optimized over the course of evolution rather than in an individual animal 

(i.e. reflexes or reproductive behavior).

Despite these complexities, we believe that consideration of objective functions is critical 

for systems neuroscience. After all, we know that biological variables, such as dopamine 

release, meaningfully relate to objective functions from reinforcement learning64. In 

addition, although many potential learning rules may not directly follow the gradient of 

the objective function, they would still lead to an improvement in that objective function. 

Here, identifying an objective function allows us to establish whether a change in the 

phenotype of a neural circuit should be considered a form of learning. If things don’t “get 

better” according to some metric, how can we refer to any phenotypic plasticity as 

“learning”as opposed to just “changes”?
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Figure 3. Learning rules that don’t follow gradients.
Learning should ultimately lead to some form of improvement, which could be measured 

with an objective function. But, not all synaptic plasticity rules need to follow a gradient. 

Here we illustrate this idea by showing three different hypothetical learning rules, 

characterized as vector fields in synaptic weight space. The x and y dimensions correspond 

to synaptic weights, and the z dimension corresponds to an objective function. Any vector 

field can be decomposed into a gradient and the directions orthogonal to it. On the left is a 

plasticity rule that adheres to the gradient of an objective function, directly bringing the 

system up to the maximum. In the middle is a plasticity rule that is orthogonal to the 

gradient, and as such, never brings the system closer to the maximum. On the right is a 

learning rule that only partially follows the gradient, bringing the system towards the 

maximum, but indirectly. Theoretically, any of these situations may hold in the brain, though 

learning goals would only be met in the cases where the gradient is fully or partially 

followed (left and right).

Since the responses of individual neurons are shaped by the environment, their computations 

should reflect this massive information source. We can see evidence of this in the ubiquity of 

neurons in the brain that have high entropy in their activity and that do not exhibit easy-to-

describe correlations with the multitude of stimuli and behaviors that experimentalists have 

explored to date6,7. To clarify our claim, we are suggesting that identifying a normative 

explanation using the three components may be a fruitful way to go on to develop better, 

non-compact models of the response properties of neurons in a circuit, as shown by recent 

studies that use task-optimized deep ANNs to determine the optimal stimuli for activating 

specific neurons29. As an analogy, the theory of evolution by natural selection provides a 

compact explanation for why species emerge as they do, one which can be stated in 
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relatively few words. This compact explanation of the emergence of species can then be used 

to develop more complex, non-compact models of the phylogeny of specific species. Our 

suggestion is that normative explanations based on the three components could provide 

similar high-level theories for generating our lower-level models of neural responses, and 

that this would bring us one step closer to the form of “understanding” that many scientists 

seek.

It is worth recognizing that researchers have long postulated objective functions and 

plasticity rules to explain the function of neural circuits59–62. Many of them, however, have 

sidestepped the question of hierarchical credit assignment, which is key to deep learning15. 

There are clear experimental success stories too, including work on predictive coding31,63, 

reinforcement learning64,65, and hierarchical sensory processing17,28. Thus, the 

optimization-based framework that we articulate here can, and has, operated alongside 

studies of individual neuron response properties. But, we believe that we will see even 

greater success if a framework focused on the three core components is adopted more 

widely.

Architectures, learning rules, and objective functions in the wet lab

How can the framework articulated here engage with experimental work? One way to make 

progress is to build working models using the three core components, then compare the 

models with the brain. Such models should ideally check out on all levels: (1) They should 

solve the complex tasks from the Brain Set under consideration. (2) They should be 

informed by our knowledge of anatomy and plasticity. And, (3) they should reproduce the 

representations, and changes in representation, we observe in brains (Fig. 4). Of course, 

checking each of these criteria will be non-trivial. It may require many new experimental 

paradigms. Checking that a model can solve a given task is relatively straightforward, but 

representational and anatomical matches are not straightforward to establish, and this is an 

area of active research66,67. Luckily, the modularity of the optimization framework allows 

researchers to attempt to study each of the three components in isolation.

Empirical studies of architecture in the brain

To be able to identify the architecture that defines the inductive biases of the brain, we need 

to continue performing experiments that explore neuroanatomy at the circuit level. To really 

frame neuroanatomy within an optimization framework, we must also be able to identify 

what information is available to a circuit, including where signals about action outcomes 

may come from. Ultimately, we want to be able to relate these aspects of anatomy to 

concrete biological markers that guide the developmental processes responsible for learning.

There is considerable experimental effort already underway towards describing the anatomy 

of the nervous system. We are using a range of imaging techniques to quantify the anatomy 

and development of circuits57,68. Extensive work is also conducted in mapping out the 

projections of neural circuits with cell-type specificity56. Research attempting to map out the 

hierarchy of the brain has long existed69, but several groups are now probing which parts of 

deep ANN hierarchies may best reflect which brain areas17,70. For example, the 
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representations in striate cortex (as measured, for example, by dissimilarity matrices) better 

match early layers of a deep ANN, while those in inferotemporal cortex better match later 

layers8,71. This strain of work also involves optimization of the architecture of deep ANNs 

so that they provide a closer fit to representation dynamics in the brain, e.g. by exploring 

different recurrent connectivity motifs66. Confronted with a bewildering set of anatomical 

observations that have been and will be made, theories and frameworks that place anatomy 

in a framework alongside objective functions and learning rules offer a way to zero in on 

those features with the most explanatory power.

Empirical studies of learning rules in the brain

There is a long tradition in neuroscience of studying synaptic plasticity rules. Yet, these 

studies have rarely explored how credit assignment may occur. However, as we discussed 

above (Box 1), credit assignment is key to learning in ANNs, and may be in the brain as 

well. Thankfully, top-down feedback and neuromodulatory systems have become the focus 

of recent studies of synaptic plasticity72–76. This has allowed some concrete proposals, e.g. 

as to how apical dendrites may be involved in credit assignment12,14, or how top-down 

attention mechanisms combined with neuromodulators may solve the credit assignment 

problem37,38 (Fig. 5). We may also be able to look at changes in representations and infer 

the plasticity rules from those observations77. It is important for experimentalists to measure 

neural responses both during and after an animal has reached stable performance, so as to 

capture how representations evolve during learning. Work on learning rules with an eye to 

credit assignment is producing a finer-grained understanding of the myriad of factors that 

affect plasticity78.

In the future, we should be better placed to study learning rules with optimization in mind. 

As optical technologies improve, and potentially give us a means of estimating synaptic 

changes in vivo 79, we may be able to directly relate synaptic changes to things like 

behavioral errors. We could also directly test hypothesized biological models of learning 

rules that can solve the credit assignment problem, such as those that use attention37,38 or 

those that use dendritic signals for credit assignment12,14 (Fig. 5).

Empirical studies of objective functions in the brain

In some cases, the objective functions being optimized by the brain may be represented 

directly in neural signals that we can monitor and record. In other cases, objective functions 

may only exist implicitly with respect to the plasticity rules that govern synaptic updates. 

Normative concepts, such as optimal control, are applicable80, and evolutionary ideas can 

inform our thinking. More specifically, ethology may provide guidance81 as to which 

functions would be useful for animals to optimize, giving us a meaningful intuitive space in 

which to think about objective functions.

There is a long-standing literature trying to relate experimental data to objective functions. 

This starts with theoretical work relating known plasticity rules to potential objective 

functions. For example, there are studies that attempt to estimate objective functions by 

comparing neural activity observed experimentally with the neural activity of ANNs trained 
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on natural scenes59,82. There are also approaches that use inverse reinforcement learning to 

identify what a system optimizes83. Moreover, one could argue that we can get a handle on 

objective functions by looking for correlations between representational geometries 

optimized for a given objective and real neural representational geometries28,84. Another 

newly emerging approach asks what an animal’s circuits can optimize when controlling a 

Brain Computer Interface (BCI) device85. Thus, a growing literature, which builds on 

previous work80, helps us explore objective functions in the brain.

Caveats and concerns

One may argue that a focus on architectures, learning rules, and objective functions, and a 

move away from studying the coding properties of neurons, loses much of what we have 

learned so far, e.g. orientation selectivity, frequency tuning, spatial-tuning (place cells, grid 

cells). However, our proposed framework is heavily informed by this knowledge. 

Convolutional ANNs directly emerged from the observation of complex cells in the visual 

system86. Moreover, tuning curves are often measured in the context of learning 

experiments, and changes in tuning inform us about learning rules and objective functions.

In a similar vein, a lot of computational neuroscience has emphasized models of the 

dynamics of neural activity87, and that has not been a major theme in our discussion. As 

such, one might worry that our framework fails to connect with this past literature. However, 

the framework we articulate here does not preclude consideration of dynamics. A focus on 

dynamics may equally be repurposed for making inferences about architectures, learning 

rules and objective functions, which have long been a feature of models of neural 

dynamics49,88.

Another common objection to the relevance of deep learning for neuroscience is that many 

behaviors that animals engage in appear to require relatively little learning48. However, such 

innate behavior was “learned”, only on evolutionary timescales. Hardwired behavior is, 

arguably, best described as strong inductive biases, since even pre-wired behaviors can be 

modified by learning (e.g. horses still get better at running after birth). Hence, even when a 

neural circuit engages in only moderate amounts of learning, an optimization framework can 

help us model its operations48.

The framework that we have laid out here makes the optimization of objective functions 

central to models of the brain. But a comprehensive theory of any brain likely requires 

attention to other constraints unrelated to any form of objective function optimization. For 

example, many aspects of physiology are determined by phylogenetic constraints that may 

be hold-overs from evolutionary ancestors. While these constraints are undoubtedly crucial 

for our models in neuroscience, we believe that it is the optimization of objective functions 

within these constraints that produces the rich diversity of neural circuitry and behavior that 

we observe in the brain.

Some of us, who are inclined to a bottom-up approach to understanding the brain, worry that 

attempts to posit objective functions or learning rules for the brain may be premature, 

needing far more details of brain operation than we currently possess. Nonetheless, scientific 
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questions necessarily are posed within some framework of thought. Importantly, we are not 

calling for abandoning bottom-up explanations. Instead, we hope that important new 

experimental questions will emerge from the framework suggested by ANNs (see e.g. Fig. 

5).

Finally, some researchers are concerned by the large number of parameters in deep ANNs, 

seeing them as a violation of Occam’s razor and merely an overfitting to data. Interestingly, 

recent work in AI shows that the behavior of massively overparameterized learning systems 

can be counterintuitive—there appear to be intrinsic mathematical properties of over-

parameterized learning systems that enable good generalization42,89. Since the brain itself 

apparently contains a massive number of potential parameters to adapt (e.g. synaptic 

connections, dendritic ion channel densities, etc.), one might argue that the large number of 

parameters in deep ANNs actually makes them even more appropriate models of the brain.

Conclusion

Much of systems neuroscience has attempted to formulate succinct statements about the 

function of individual neurons in the brain. This approach has been successful at explaining 

some (relatively small) circuits and certain hard-wired behaviors. However, there is reason to 

believe that this approach will need to be complemented by other insights if we are to 

develop good models of plastic circuits with thousands, millions or billions of neurons. 

There is, unfortunately, no guarantee that the function of individual neurons in the central 

nervous system can be compressed down to a human-interpretable, verbally articulable form. 

Given that we currently have no good means of distilling the function of individual units in 

deep ANNs into words, and given that real brains are likely more, not less, complex, we 

suggest that systems neuroscience would benefit from focusing on the kinds of models that 

have been successful in ANN research programs, i.e. models grounded in the three essential 

components.

Current theories in systems neuroscience are beautiful and insightful, but we believe that 

they could benefit from a cohesive framework founded in optimization. For example, local 

plasticity rules, such as Hebbian mechanisms, explain a great deal of biological data. But, to 

achieve good performance on complex tasks, Hebbian rules must be designed with objective 

functions and architectures in mind34,90. Similarly, other researchers have, for good reason, 

pointed out the benefits of the inductive biases utilized by the brain48. However, inductive 

biases are not on their own sufficient to solve complex tasks, like those contained in the AI 

Set or various Brain Sets. To solve these difficult problems, inductive biases must be paired 

with learning and credit assignment. If, as we have argued, the set of tasks that an animal 

can solve are an essential consideration for neuroscience, then it is critical to build models 

that can actually solve these tasks.

Inevitably, both bottom-up descriptive work and top-down theoretical work will be required 

to make progress in systems neuroscience. It is important, though, to start with the right kind 

of top-down theoretical framing. Given the ability of modern machine learning to solve 

problems in the AI Set and numerous Brain Sets, it will be fruitful to guide the top-down 

framework of systems neuroscience research with machine learning insights. If we consider 
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research data within the framework provided by this mindset, and focus our attention on the 

three essential components identified here, we believe we can develop theories of the brain 

that will reap the full benefits of the current technological revolution in neuroscience.
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Box 2

What are inductive biases?

Learning is easier when we have prior knowledge about the kind of problems that we will 

have to solve43. Inductive biases are a means of embedding such prior knowledge into an 

optimization system. Such inductive biases may be generic, such as hierarchy, or specific, 

such as convolutions. Importantly, the inductive biases that exist in the brain will have 

been shaped by evolution to increase an animal’s fitness in both the broad context of life 

on Earth (e.g. life in a three-dimensional world where one needs to obtain food, water, 

shelter, etc.), and in specific ecological niches. Examples of inductive biases are:

Simple explanations: When attempting to make sense of the world, simple explanations 

may be preferred, as articulated by Occam’s Razor96. We can build this into ANNs using 

either Bayesian frameworks or by other mechanisms, such as sparse representations59.

Object permanence: The world is organized into objects, which are spatiotemporally 

constant. We can build this into ANNs by learning representations that assume consistent 

movement in sensory space97.

Visual translation invariance: A visual feature tends to have the same meaning 

regardless of its location. We can build this into ANNs using convolution operations98.

Focused attention: Some aspects of the information coming into a system are more 

important than others. We can build this into ANNs through attention mechanisms99.
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Figure 1. The three core components of ANN design.
When designing ANNs, researchers do not craft the specific computations performed by the 

network. Instead they specify these three components. Objective functions quantify the 

performance of the network on a task, and learning involves finding synaptic weights that 

maximize or minimize the objective function. (Often, these are referred to as “loss” or “cost” 

functions.) Learning rules provide a recipe for updating the synaptic weights. This can lead 

to ascent of the objective, even if the explicit gradient of the objective function isn’t 

followed. Architectures specify the arrangement of units in the network, and determine the 

flow of information, as well as the computations that are or are not possible for the network 

to learn.
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Figure 4. Comparing deep ANN models and the brain.
One way to assess the three components at once is to compare experimental data with 

changes in representations in deep ANNs that incorporate all three components. (a) For 

example, we could use a deep ANN with a hierarchical architecture, trained with an 

objective function for maximizing rewards that are delivered when it successfully 

discriminates grating orientations, and a gradient-based, end-to-end learning rule. (b) When 

examining the orientation tuning of the populations in different layers of the hierarchy, such 

models can make predictions. For instance, the model may predict that the largest changes in 

tuning should occur higher in the cortical hierarchy (top), with smaller changes in the 

middle, e.g. in V4 (middle), and the smallest changes occurring low in the hierarchy, e.g. in 

V1 (bottom). (c) This leads to experimentally testable predictions about the average 

magnitude of changes in neural activity that should be observed experimentally when an 

animal is learning.
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Figure 5. Biological models of credit assignment.
(a) Attention based models of credit assignment (refs. 37,38) propose that the credit 

assignment problem is solved by the brain using attention and neuromodulatory signals. 

According to these models, sensory processing is largely feedforward in early stages, then 

feedback “tags” neurons and synapses for credit, and reward prediction errors (RPE) 

determine the direction of plastic changes. This is illustrated at the bottom, where circles 

indicate neurons, and the gray level indicates their level of activity. These models predict 

that the neurons responsible for activating a particular output unit will be tagged (T) by 
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attentional feedback. Then, if a positive RPE is received, the synapses should potentiate. In 

contrast, if a negative RPE is received, the synapses should depress. This provides an 

estimate of a gradient for a category-based objective function. (b-d) Dendritic models of 

credit assignment (refs. 12,14) propose that gradient signals are carried by “dendritic error” 

(δ) signals in the apical dendrites of pyramidal neurons. (b) According to these models, 

feedforward weight updates are determined by a combination of feedforward inputs and δ. 

In an experiment where two different stimuli are presented, and only one is reinforced, this 

leads to specific predictions. (c) If a neuron is tuned towards a stimulus that is reinforced, 

then reinforcement should lead to an increase in apical activity. (d) In contrast, if a neuron is 

tuned to an unreinforced stimulus, its apical activity should decrease when reinforcement is 

received.
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