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Abstract

The Exact Regularized Point Particle (ERPP) method is extended to treat the interphase 

momentum coupling between particles and fluid in the presence of walls by accounting for the 

vorticity generation due to the particles close to solid boundaries. The ERPP method overcomes 

the limitations of other methods by allowing the simulation of an extensive parameter space 

(Stokes number, mass loading, particle-to-fluid density ratio and Reynolds number) and of particle 

spatial distributions that are uneven (few particles per computational cell). The enhanced ERPP 

method is explained in detail and validated by considering the global impulse balance. In 

conditions when particles are located close to the wall, a common scenario in wall-bounded 

turbulent flows, the main contribution to the total impulse arises from the particle-induced 

vorticity at the solid boundary. The method is applied to direct numerical simulations of particle-

laden turbulent pipe flow in the two-way coupling regime to address the turbulence modulation. 

The effects of the mass loading, the Stokes number and the particle-to-fluid density ratio are 

investigated. The drag is either unaltered or increased by the particles with respect to the 

uncoupled case. No drag reduction is found in the parameter space considered. The momentum 

stress budget, which includes an extra stress contribution by the particles, provides the rationale 

behind the drag behaviour. The extra stress produces a momentum flux towards the wall that 

strongly modifies the viscous stress, the culprit of drag at solid boundaries.

1 Introduction

Particle laden turbulent flows are ubiquitous and challenging due to the multi-scale physics 

involved, see der Hoef et al. (2008). Turbulence has an important role in the motion of 

particles. The transport, entrainment and redeposition, Soldati & Marchioli (2009), of solid 

particles, such as coal dust, is crucial in determining the overall efficiency of energy plants, 

Buhre et al. (2005). In automotive applications, the spray formation, Marmottant & 

Villermaux (2004), and the ensuing fuel jets, Jenny et al. (2012), impact the overall 

efficiency of combustion. Physical phenomena such as inter-particle collisions, Post & 
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Abraham (2002); Wang et al. (2009), and turbulent modification, Balachandar & Eaton 

(2010), play an important role. In many applications, the multi-scale nature of the 

phenomena involved calls for modelling both the fluid turbulence and the particle motion, 

see Meyer (2012); Peirano et al. (2006) for modelling strategies in Reynolds Averaged 

Navier Stokes (RANS) equations and Marchioli (2017); Innocenti et al. (2016) in Large 

Eddy Simulation (LES).

In the context of particle laden turbulent flow many studies have been conducted in the one-

way coupling regime, see Elghobashi (1994) for a discussion of the different regimes of 

coupling between fluid and particles, both from experimental point of view see e.g. 

Kostinski & Shaw (2001); Lau & Nathan (2016) and Eidelman et al. (2009), and from 

numerical point of view, see e.g. Toschi & Bodenschatz (2009); Bec et al. (2007); Sardina et 
al. (2012b); Picano et al. (2011); Marchioli & Soldati (2002); Goto & Vassilicos (2006) and 

Battista et al. (2011). On the other hand, the two-way coupling regime, where the fluid/

particle momentum exchange is significant, is still being thoroughly investigated and some 

open questions need to be addressed. The first one is related to the numerical technique 

employed to model a reliable fluid/particle interaction. The second is related to the physics 

and deals with the particle dynamics, their spatial distribution and most importantly, with the 

turbulence modulation.

In the literature, different techniques are used to model the fluid/particle interaction. The 

approaches mostly depend on the typical size of the particle, e.g. the diameter dp, that has to 

be compared with the characteristic length scales of the turbulent flow, see e.g. the recent 

review paper by Elghobashi (2019). The conceptually simplest approach is to resolve the 

particle boundary on the computational grid and to enforce the no-slip conditions on each 

particle boundary (particle-resolved simulation). This technique has recently become viable 

due to the ever-increasing computing resources. Among many, the immersed boundary 

technique, Uhlmann (2005); Breugem (2012), is employed to simulate suspensions under 

different conditions, for example in sedimentation problems, Fornari et al. (2016a,b), or 

dense suspensions, Costa et al. (2018). Given the tremendous computational cost, such 

simulations can currently only tackle problems in simplified geometries where the scale of 

the particle is roughly 10 times larger than the dissipative scale of the turbulent flow and the 

choice of density ratio is limited.

In many applications, the typical particle diameter is comparable to, or even smaller, than 

the dissipative scale and the density ratio is relatively large. In these conditions, it is 

unaffordable to carry out particle-resolved simulations. Being small, the particles are 

modelled as material points which behave as concentrated momentum sources/sinks for the 

fluid via the hydrodynamic drag that the (small) particle experiences along its trajectory.

In wall-bounded turbulent flows, the particles segregate towards the wall, (Caporaloni et al. 
1975; Young & Leeming 1997). The phenomena is known as turbophoresis and is relevant 

since the particles close to the wall affect the turbulence in the buffer region where the 

production of turbulent kinetic energy occurs together with the generation of the vortical 

structures, see Bijlard et al. (2010); Dritselis & Vlachos (2008, 2011) and Richter & Sullivan 

(2014) for the analysis of the topological modification of the structures in the buffer region.
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An important issue in wall-bounded turbulent flows is whether the disperse phase feedback 

produces an overall increase or decrease of the friction and whether the turbulent 

fluctuations are augmented or reduced by the particles. Zhao et al. (2010, 2013) found 

reduction of the friction, i.e. the flow rate in presence of particles is augmented with respect 

to the flow rate in absence of particles for the same pressure gradient that drives the 

turbulent channel flow. Picciotto et al. (2006) and Li et al. (2016a,b) considered the 

turbulence modulation in a boundary layer, showing an increase in the skin friction 

coefficient at the wall. Li et al. (2001) report that the overall drag might increase or decrease 

depending on the mass loading of the suspension and the particle Stokes number. Lee & Lee 

(2015) found an overall increase of the turbulent fluctuations for relatively small particles, 

and a decrease of the turbulent fluctuations for large particles. In contrast, Pan & Banerjee 

(1997) found an overall increase in drag in a channel flow.

All the simulations mentioned above exploit the classical Particle In Cell (PIC) approach 

introduced by Crowe et al. (1977), except for Pan & Banerjee (1997) who employed an 

alternative inter-phase momentum coupling based on the solution of a truncated steady 

Stokes flow for the disturbance flow produced by the particles. Simulations using PIC have 

been performed also in the pipe flow, see e.g. the DNS by Rani et al. (2004) and Vreman 

(2007), and Large-Eddy Simulation (LES) by Yamamoto & Okawa (2010). Recently, the 

effect of the wall roughness has been discussed by Vreman (2015) and De Marchis & Milici 

(2016).

From the experimental point of view, the motion, deposition, entrainment, spatial 

distribution and velocity profiles of the particles in a turbulent boundary layer have been 

addressed in Kaftori et al. (1995a , b) and Kaftori et al. (1998). The fluid velocity profiles 

show larger gradients close to the wall (drag increasing) and the turbulent velocity 

fluctuations are increased in the near wall region. These modifications are associated with an 

increase in wall shear stress. Similar results are found in the experiments by Wu et al. 
(2006); Li et al. (2012) and Righetti & Romano (2004). No substantial modification of the 

mean velocity profile has been reported by Kulick et al. (1994) where only turbulent 

fluctuations are depleted across the channel. In the geometry of the pipe, Tsuji et al. (1984) 

show an increase in wall shear stress as well as Hadinoto et al. (2005). See also other 

experiments by Caraman et al. (2003); Boré & Caraman (2005) and Ljus et al. (2002).

In the numerical simulations discussed, the inter-phase momentum coupling is mainly 

achieved using the PIC approach. Even though the approach is rather simple, it suffers from 

several drawbacks. Firstly, the backreaction field, that can be constructed given the 

configuration of the suspension, is grid dependent (Gualtieri et al. 2013). Secondly, the 

solution depends on how many particles per computational cell are available, see Gualtieri et 
al. (2013); Boivin et al. (1998) and the general discussion by Balachandar & Eaton (2010). 

The unphysical constraint on the number of particles per cell poses several limitations on the 

range of the dimensionless parameters (Stokes number, mass loading, particle-to-fluid 

density ratio and Reynolds number) that can be explored in the simulations, see the 

conclusion of Gualtieri et al. (2015). A further issue concerns the model required to compute 

the hydrodynamic force on each particle. In the simple model of the Stokes drag, the fluid 

velocity at the particle position must be correctly interpreted as the background fluid 
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velocity, i.e. as the fluid velocity in absence of the disturbance flow produced by the specific 

particle under consideration. Unfortunately, in two-way coupled simulations, the 

unperturbed flow is unavailable unless specific techniques are exploited to remove the 

particle self-disturbance, see e.g. Horwitz & Mani (2016, 2017); Capecelatro & Desjardins 

(2013) and Ireland & Desjardins (2017); Akiki et al. (2017) where several methods are 

proposed to circumvent this problem. These considerations pose challenging issues from the 

theoretical point of view and call for more accurate modelling of the particle/fluid 

interaction. The Exact Regularized Point Particle (ERPP) method has been proven to 

correctly evaluate the particle hydrodynamic force since the particle self-disturbance flow is 

known in a closed form. Moreover, the approach provides convergent turbulent statistics at 

the smallest scales of the flow, see Gualtieri et al. (2017); Battista et al. (2018).

The aim of the present manuscript is to generalise the ERPP method, originally derived for 

free space flows, for the simulation of particle-laden wall-bounded turbulent flows and to 

provide a parametric study of turbulence modulation in conditions inaccessible to the 

classical PIC method. A treatment of the particle phase which is not sufficiently accurate 

would produce an incorrect force field on the fluid, mostly in a narrow layer close to the 

bounding walls thus altering the delicate balance of momentum in the wall layer and may 

lead to unphysical macroscopic effects. Once particles form clusters and segregate near the 

wall, the force they exert on the fluid will depend on the cluster geometry and, since clusters 

are generated by the small turbulent scales, a non-convergent algorithm will poorly 

reproduce the overall physics, i.e. the modification of wall friction due to the particles. The 

extended ERPP method overcomes these issues and provides a systematic approach to 

accurately predict the dynamics of wall-bounded particle-laden turbulent flows free of 

numerical artefacts. After the basic dynamics is captured, more sophisticated observables 

can be addressed and trusted given the convergence properties of the approach, in order to 

address higher order statistics in shear dominated flows, Jacob et al. (2008), or the scale-by-

scale dynamics, Mollicone et al. (2018).

Technological applications generally involve turbulent flows in a complex geometry. In view 

of providing a sufficiently general approach, it is important to include the effects of wall 

curvature when studying the inter-phase momentum exchange between particles and fluid 

close to solid boundaries. For this reason, the simplest flow configuration that can be 

addressed is the turbulent flow inside a circular pipe, which we simulate using direct 

numerical simulation. Most of the turbulent fluctuations are generated in the near wall 

region, see e.g. Marusic et al. (2010, 2013); Mathis et al. (2009); Hwang & Cossu (2010), 

requiring an accurate modelling of the inter-phase momentum exchange close to solid walls.

The ERPP method enables a free choice of the control parameters, that is the Stokes number, 

mass loading, particle-to-fluid density ratio and Reynolds number, allowing to explore a 

region of the parameter space which is not possible for other approaches, such as the PIC 

method and resolved particle method. For example, when the particle-to-fluid density ratio is 

order 20 – 200, the number of particles turns out to be small for a given grid resolution 

imposed by the Reynolds number. These values roughly correspond to cases involving 

medicinal particulate commonly used for inhalable drug delivery systems, carbon dust 

transport, food industry powders resulting from the processing of cereals and sawdust 
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resulting from wood manufacturing. Another advantage arises when the carrier phase is 

relatively dense, such as water, resulting in relatively low density ratios considering common 

materials. The ERPP method also allows the simulation of flows where the particle spatial 

distribution is uneven and few particles per cell are found in some regions of the flow. This 

may occur, for example, in water steam flows where the condensation of small droplets, 

imposed by external thermodynamical conditions, dictates the number of particles in a 

specific flow region.

The paper is organised as follows: section 2 provides the theoretical background of the 

methodology for wall-bounded flows. Section 3 addresses the validation of the extended 

ERPP approach and section 4 discusses the simulation setup and parameters for the 

simulations of the turbulent pipe flow, the skin friction coefficient and the mean momentum 

balance. Section 5 summarises the main findings.

2 Methodology

The flow takes place in the domain D\Ω where D contains fluid and particles. Ω(t) = 

∪pΩp(t), where Ωp(t), p = 1,…Np, is the domain occupied by the p-th particle with diameter 

dp. The fluid is described by the incompressible Navier-Stokes equations with the no-slip 

condition at the solid boundaries

∇ ⋅ u = 0
∂u
∂t + u ⋅ ∇u = − 1

ρf ∇p + ν∇2u x ϵ D\Ω

u ∂Ωp(t) = Vp(x) ∂Ωp p = 1, …, Np

u(π)
∂D = 0

u ⋅ n ∂D = u(n)
∂D = 0

u(x, 0) = u0(x) x ϵ D\Ω0 .

(2.1)

In eq. (2.1), u 0(x) is the initial velocity field, ρf the fluid density, ν the kinematic viscosity 

and Ω 0 = Ω(0). At the boundaries ∂Ωp and ∂D, impermeability and no-slip conditions are 

assumed. Superscript n and π denote normal and tangent components of a given vector.

The particles affect the carrier fluid through the no-slip condition at the moving particle 

surface ∂Ωp(t) where the fluid matches the local rigid body velocity of the particle V p(x) = v 

p + ωp × (x − x p). The idea is to account for the effect of the moving particles on the fluid 

by defining a suitable correction field for which, in the limit of small particles, a closed form 

expression can be provided.

Given the current time t, for small intervals t + τ, 0 ≤ τ ≤ Dt, the carrier flow velocity is 

decomposed into two parts, u(x, t + τ) = w + v, that will be referred to as the background 

and perturbation velocity, respectively. The field w(x, τ), where dependence on the 

parameter t is dropped for notational simplicity, is assumed to satisfy the equations
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∇ ⋅ w = 0
∂w
∂τ + F = − 1

ρf ∇π + ν∇2w

w(π)
∂D = − v(π)

∂D

w ⋅ n ∂D = ω(n)
∂D = 0

w(x, 0) = u x, t),

(2.2)

where x ϵ D.

F =
u ⋅ ∇u for x ∈ D\Ω
Vp ⋅ ∇Vp for x ∈ Ω , (2.3)

defined in D, reproduces the convective term of the Navier-Stokes equation in the fluid 

domain D\Ω and is prolonged inside each particle using the corresponding rigid body 

particle velocity. For the present considerations, F can be treated as a prescribed forcing 

term. Note that, concerning w, no boundary conditions are applied to the particle surfaces.

The field v(x, τ) exactly satisfies the linear unsteady Stokes equations (the full nonlinear 

term being retained in the equation for w),

∇ ⋅ v = 0
∂v
∂τ = − 1

ρf ∇q + ν∇2v x ∈ D\Ω

v ∂Ωp = Vp(x) ∂Ωp − w ∂Ωp p = 1, …Np

v ⋅ n ∂D = υ(n)
∂D = 0

∂v(π)
∂n ∂D

= 0

v(x, 0) = 0 x ∈ D\Ω(τ) .

(2.4)

The field v is coupled to w through the boundary conditions at the particle surfaces. 

Symmetrically, w is coupled to v via the external boundary ∂D, where impermeability and 

free slip conditions are enforced on v. The resulting field u satisfies the required 

impermeability and no-slip conditions at all (particles and external domain) solid 

boundaries.

Since the linear field v obeys homogenous initial conditions at the initial time τ = 0, a 

simplified integral representation, see e.g. Piva & Morino (1987), is available for v,

υi(x, τ) = ∫
0

τ
dτ∫

∂Ω
tj(ξ, τ)Gij(x, ξ ,τ, τ) − vj( ξ , τ)τ ijk(x, ξ ,τ, τ)nk( ξ )dSξ, (2.5)

where Gij(x, ξ,τ, τ) is the Green function, a second order Cartesian tensor, appropriate for a 

free-slip, impermeable, external boundary ∂D. Physically, Ĝij is the i-th velocity component 

induced at position x and time τ due to a delta function-like impulsive force localised at ξ 
acting at time τ in direction j. The stress tensor associated to such velocity field is 
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τ ijk (x, ξ ,τ, τ) . In principle, for a generic domain D, the specific Green function can be 

evaluated numerically. For the present application, the much simpler free-space solution can 

be used when the particle is far from ∂D. Close to ∂D, the actual geometry can be 

approximated by the local tangent plane and the Green function obtained by the method of 

images. This idea consists in describing the effect of the wall through a mirrored particle 

(image particle) that, by superimposing its disturbance flow to the flow produced by the 

physical particle (note that the problem is linear), enforces the correct boundary condition at 

the wall, see e.g. Happel & Brenner (2012) or Blake & Chwang (1974). Equation (2.5) 

expresses v(x, τ) in terms of a time convolution and a boundary integral involving the 

(physical) stress vector tj( ξ ,τ) and the perturbation velocity υj( ξ ,τ) at the particle 

boundaries. (No integration on ∂D is needed since the domain Green function, or its 

approximation, is used).

Substituting the first order truncation of the Taylor series of Ĝij(x, ξ, t, ξ) and τijk(x, ξ ,t, τ),
centered at the particle geometric centre x p, in equation (2.5) provides the far field 

disturbance velocity, rp/dp ≫ 1, where rp = |x − x p|,

υi(x, τ) = − ∑
p
∫

0

τ
Dj

p(τ)Gij(x, xp, τ, τ)dτ . (2.6)

The disturbance field is expressed in terms of the hydrodynamic force D p(τ) on the 

particles, with Cartesian components Dj
p, and obeys the partial differential equation

∇ ⋅ v = 0
∂v
∂τ − ν∇2v + 1

ρf ∇q = − 1
ρf ∑

ρ
Dp(τ)δ x−xp(τ) + Dp(τ)δ[x − xp(τ)]

v(x, 0) = 0.

(2.7)

In eq. (2.7), the boundary conditions on ∂D are enforced by using the method of images 

including the additional forcing terms due to the mirrored particles which are indicated by 

the tildes. The image system is obtained by reflection with respect to the local tangent plane 

according to xp
π = xpπ, xp

n = − xpn, Dp
π = Dp

π, Dp
n = − Dp

n . The reflection to the local tangent 

plane is acceptable when the particle diameter is much smaller than the local curvature of 

the wall as will be carefully checked in section §3

Following the procedure described in detail in Gualtieri et al. (2015), the velocity field 

obeying eq. (2.7) can be non-canonically decomposed in the form v = vς + ∇ϕ, where the 

pseudo-velocity vς is the solution of

∂vζ
∂τ − ν∇2vζ = − 1

ρf ∑
p

Dp(τ)δ[x − xp(τ)] + Dp(τ)δ[x − xp(τ)]

vζ(x, 0) = 0.
(2.8)

By taking the curl of eqs. (2.7) and (2.8) one realises that ∇ × vς = ∇ × v with ∇ · vς ≠ 0. The 

complete field v is retrieved by projection on solenoidal fields which requires ∇2 ϕ = −∇ · 
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vς. The advantage of this procedure is twofold: i) the pseudo-velocity vς is localised around 

the sources; ii) the correction field ∇ϕ can be evaluated a posteriori with the same projection 

algorithm used to enforce zero divergence of the background velocity w, see Gualtieri et al. 
(2017) for application to two-way coupled particle laden homogeneous shear flows. The 

field vς can be expressed in terms of the integral representation for the (vector) heat 

equation, see e.g. Stakgold (2000),

vζ(x, τ) = − 1
ρf∫0

τ+
Dp(τ)g[x − xp(τ), τ − τ] + Dp(τ)g[x − xp(τ), τ − τ]dτ (2.9)

where the method of images has been used as before to enforce the boundary conditions on 

∂D and the free space Green's function reads

g(x − ξ , τ − τ) = 1
[4πν(τ − τ)]3/2exp − x − ξ 2

4ν(τ − τ) . (2.10)

vς is a singular field that can be regularised by limiting the upper integration limit to τ − εR, 

with εR << 1 a small regularisation parameter. The partial differential equation for the 

regularised field turns out to be,

∂vζR
∂τ − ν∇2vζR = − 1

ρf Dp(τ − ϵR)g[x − xp(τ − ϵR), ϵR] +

+Dp(τ − ϵR)g[x − xp(τ − ϵR), ϵR] ,
(2.11)

where again the boundary conditions are taken int account through the method of images. It 

is noteworthy that the forcing field is now expressed as a collection of Gaussians with small 

but finite variance σ τ = 2ν τ − εR ≥ σR = 2νεR  that can be discretised on a finite grid, 

provided the grid size is smaller than the minimum variance (Dx < σR). Note that the effect 

of the image particle decays in space faster than exponentially, hence its contribution may be 

neglected when the particle distance from the walls equals a few variances, say 3σR Another 

crucial aspect to take into account is the time delay in the position and drag of the particles, 

evaluated at the earlier time instant τ − εR. The regularisation procedure amounts to 

removing the effect of the vorticity generated by the drag force exerted by the particle on the 

fluid in the last time instants τ ≥ τ − εR, eq. (2.9). Such singular vorticity field cannot be 

resolved by a finite grid. It is not however neglected, since it is taken into account at later 

times, after it is spread out by diffusion. This aspect is of paramount importance to guarantee 

exact momentum conservation in the particle-fluid interaction and prevent the incurred error 

to accumulate in time, see Gualtieri et al. (2015).

The two fields, w and v R = vς R + ∇ϕR (ϕR being the potential correction needed to make v 

R solenoidal) can now be recombined in the complete, regularised velocity u R = w + v R, 

whose evolution equation is
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∇ ⋅ uR = 0

∂uR
∂τ + uR ⋅ ∇uR = − 1

ρf ∇p + ν ∇2uR − 1
ρf ∑

p

Np
Dp τ − ϵR g x−xp τ − ϵR , ϵR + D∼ p τ − ϵR g x−x∼p τ − ϵR , ϵR

uR
π ∂D = 0

u ⋅ n = uR
n ∂D = 0

uR x, 0 = u x, t .

(2.12)

Finally, the no-slip condition on ∂D in presence of the perturbation induced by particles is 

worth discussing. The background field w can be interpreted as the superposition of two 

other fields, w = w+w′ ⋅ w, satisfying the Navier-Stokes equations where the standard 

advection term is replaced by F, as in (2.3), with impermeability and no-slip at ∇D and 

initial condition w X, 0 = u X, t . Since the full non linear term is accounted for by w, w′ 
satifies the unsteady Stokes equations

∇ ⋅ w′ = 0
∂w′
∂τ = − 1

ρf ∇π′ + ν∇2w′

w π′ ∂ D = − vR
π ∂ D

w′ ⋅ n ∂D = w n′ ∂D = 0
w′ x, 0 = 0,

(2.13)

where the slippage imposed on ∂D balances the slip velocity due to the particle disturbance 

field. This is a generalisation of the well-known Stokes first problem for a flat plate which 

starts moving impulsively from rest. As in this classical problem, the slip velocity at the wall 

can be interpreted as a vortex sheet which is subsequently diffused in the flow domain, 

(Benfatto & Pulvirenti 1984), mimicking the mechanism of vorticity generation at the wall, 

see Morton (1984) and Casciola et al. (1996).

3 Validation

The method is validated by considering the global impulse balance. In free space, the 

coupling algorithm was already shown to conserve total momentum in Gualtieri et al. 
(2015). The conservation properties of the extended algorithm in presence of a solid wall are 

now discussed. The simple but stringent tests carried out are instrumental to turbulent wall-

bounded flows where the particles are known to accumulate in the near wall region, making 

momentum exchange between particles, fluid and the solid wall crucial.

A basic test case considers the fluid motion induced by a constant force, F, applied at a fixed 

point, x p, to the fluid initially at rest in presence of solid boundaries. A cylindrical domain 

D, of circular cross-section with radius R, is considered and the field is assumed to be 

periodic in the axial direction z. In cylindrical coordinates, x p = (rp, θp, zp), the applied 

force and the velocity field read F = (Fr, Fθ, Fz) and u = (ur, uθ, uz), respectively. The radial 

wall-normal distance is denoted by yp = R − rp. The constant force is applied in the z-

direction, F = (0,0, F 0), and the impulse grows linearly in time, I = F t.
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Time integration of the global axial force balance, ∂Iu/∂t = Df + F 0, where Iu(t) = ∫D ρf uz 

dV and Df = ∫∂D μ∂uz/∂r dS are the fluid impulse and the viscous drag force, respectively, 

yields

Iu t + If t = F0t (3.1)

where If t = − ∫0

t
Df τ dτ is the impulse due to friction drag. In dimensionless form, the 

different terms take the form νIu/ F0R2 = Iu* νt/R2 . In the ERPP method, the new 

parameter νεR/R 2 appears associated with the regularisation time scale εR e.g. 

νIu/ F0R2 = Iu* νt/R2, yp/R, ν ∈R /R2 ,

Iu* νt
R2 , yp

R , νεR
R2 + If*

νt
R2 , yp

R , νεR
R2 = νt

R2 , (3.2)

where the original form (3.1) is recovered in the limit νεR/R 2 approaching zero. Figure 1(a) 

corresponds to a test case with the force applied close to the wall (yp/R = 0.1) and νεR/R 2 = 

4 · 10−3, and shows that the impulse balance is satisfied within numerical accuracy on the 

(external) time scale R 2/ν. At steady state, the fluid impulse becomes constant and the drag 

impulse increases linearly with time, becoming dominant at large time. The correct 

evaluation of the friction drag impulse appears now in all its relevance for wall-bounded 

flows. Indeed, the approach we propose is able to generate vorticity at the wall in a 

physically consistent way as proved by the correct evaluation of the viscous shear stress at 

the wall. The relative error between the exact value of the total impulse IE and its numerical 

evaluation Iu + If is shown in the inset of panel a). The error does not accumulate in time.

A more subtle test concerns the impulse balance on the (inner) time scale of the 

regularisation parameter. Using εR as time in the dimensional analysis yields

Iu* * t
εR

, yp
2νεR

, R
2νεR

+ If* * t
εR

, yp
2νεR

, R
2νεR

= t
εR

, (3.3)

where, e.g., Iu/ F0εR = Iu* *  and, as in § 2, 2νεR = σR ⋅ This alternative dimensionless 

form stresses the behaviour of the solution on the time scale of the regularisation, 

corresponding to the diffusive length scale σR, which is of the order of the mesh size to be 

adopted in the numerical solution. The purpose of checking the impulse balance in the above 

form is a more stringent check of the boundary conditions. In the theoretical description of 

the approach, the Green's function of the domain was approximated using the method of 

images, mirroring the source with respect to the local tangent plane at the boundary.

Figure 1(b) shows the impulse balance for two wall-normal distances of the point force. In 

one case yp/σR = 1 (orange solid line) the distance of the source from the wall is comparable 

to the regularisation length scale σR. In the other, yp/σR = 30 (blue solid line, almost totally 

superimposed on the orange one), the point force is relatively far from the wall. In both 

cases, the numerically evaluated impulse follows the exact solution (circles). In the first case 

(particle close to the wall) the fluid impulse, Iu (orange dashed line) is initially comparable 
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with the drag impulse If (orange dash-dotted line). On the contrary, in the second case, when 

the force is applied far from the boundary, the friction drag is negligible on the observed 

(inner) time scale and the total impulse is almost all provided by the fluid. Overall, the result 

shows that the boundary condition and the associated vorticity generation is correctly 

captured by the algorithm. Panel c) illustrates the role of mirror image of the force by 

plotting results obtained by removing the image contribution. One expects that the effect of 

the image should be negligible when yp/σR ≫ 1. This is indeed the case, as shown by the 

comparison of the blue lines with the corresponding ones in panel b). On the contrary, when 

the distance of the application point is comparable with the regularisation length, yp/σR ≤ 1, 

the contribution of the image is crucial, as seen when comparing the orange solid lines with 

the corresponding ones in panel b). Since, for computational efficiency, the adopted Green's 

function is only approximate, it is important to identify the range of validity of the 

approximation. The curvature of the wall, measured in terms of the regularisation length 

scale, is crucial parameter that determines the accuracy. Panel d) shows that, when σR/R is 

sufficiently small (orange curves), the error is negligible. The error becomes larger as soon 

as this ratio increases (blue curves, wall curvature comparable with the regularisation 

length).

Figure 2 stresses the results of the previous figure, with emphasis on turbulent wall-bounded 

flows. As discussed in more detail in the following sections, inertial particles tend to 

accumulate in the viscous sublayer near the wall. The data reported in the figure artificially 

reproduce these conditions, by considering Np = 100000 randomly distributed point forces 

placed in an annular shell close to the cylindrical wall. As apparent in the plots, using the 

mirror images (orange curves) provides the total impulse. On the contrary, neglecting the 

images (blue symbols) completely spoils the quality of the simulation.

4 Particle-laden turbulent pipe flow

4.1 Simulation setup

The ERPP formulation is applied to a fully developed turbulent pipe flow. The 

dimensionless forms of equations (2.12) are solved in a cylindrical domain D = [0 : R]×[0 : 

2π] × [0 : Lz] where the (dimensionless) pipe radius is R = 1. Periodic boundary conditions 

are applied in the axial (z) direction, with Lz = 2π. The subscript R which is used to denote 

the regularised field will be dropped hereafter to ease notation. The reference quantities are 

the fluid density ρf, the pipe radius R, the bulk velocity of the purely Newtonian case Ub = Q 

0/(πR 2), where Q 0 is the flow rate of the reference uncoupled case, and the viscosity μ.

The flow is sustained by a constant mean pressure gradient applied in the direction of the 

axial unit vector e z, with the dimensionless pressure expressed as P = dp/dz|0(z − z 0) + p(r, 
θ, z, t),

∇ ⋅ u = 0
∂u
∂t + ∇ ⋅ u⊗u = − ∇p + 1

Reb
∇2u + f − dp

dz 0ez . (4.1)

The Reynolds number is Reb = UbR/ν and the field f is the particle feedback on the fluid
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f = − ∑
p

Np
Dp t − ϵ g x−xp t − ϵ , ϵ + Dp t − ϵ g x−xp t − ϵ , ϵ . (4.2)

The system consists of the carrier Newtonian fluid and of Np particles. The dimensionless 

drag force on the p-th particle is Dp = 3πdp/Reb u p + dp
2/24∇2u p − vp , where dp is the 

dimensionless particle diameter, v p the particle velocity and u|p = u(x p, t) is the fluid 

velocity at the particle position. Both the current time t and the regularisation time scale ϵR 

are made dimensionless with R/Ub, that is ϵ = ϵRUb/R.

Impermeability and no-slip conditions are enforced at the pipe wall. Equations (4.1) are 

solved in cylindrical coordinates by exploiting a second order finite difference on a 

staggered grid, see Costantini et al. (2018); Battista et al. (2014). The classical Chorin's 

projection method, Chorin (1968); Rannacher (1992), is used to enforce the divergence-free 

constraint imposed by the mass balance. Both convective and diffusive terms are explicitly 

integrated in time using a third-order low-storage Runge-Kutta method.

As customary, inner or wall units are given in terms of the viscous length ℓ * = ν/u * and the 

friction velocity u* = τw/ρf, with τw the average wall shear stress. The distance from the 

pipe wall in inner units is denoted y + = (1 − r)Re*, where the friction Reynolds number is 

Re* = u * R/ν. The same distance in external units is denoted by y = 1 − r.

All the simulations are performed with the same friction Reynolds number Re* = 180. The 

corresponding bulk Reynolds number for a purely Newtonian (no particle backreaction) flow 

is Reb = 2650. The grid resolution is Nθ × Nr × Nz = 576×129×576 in the azimuthal, wall-

normal and axial direction respectively. The grid in the radial direction is clustered near the 

wall with a minimum spacing of Δr +|w = 0.5 which gradually increases towards the 

centreline reaching Δr +|0 = 2. The grid resolution in the azimuthal and axial direction is 

(RΔθ)+ = 3.2 and Δz + = 3.2 respectively.

Given the large particle-to-fluid density ratio ρp/ρf, the only relevant hydrodynamic force is 

the Stokes drag where the Faxen correction is accounted for, see Maxey & Riley (1983); 

Gatignol (1983). The Newton's equations for the particles reduce to

dxp
dt = vp

dvp
dt = 1

Stb
u

p
+ dp2

24 ∇2u
p

− vp ,
(4.3)

where the bulk Stokes number is Stb = τpUb/R = ρp/(18ρf)Rebdp
2, with τp the Stokes 

relaxation time of the particle.

In eqs. (4.3) and in the expression for the drag force (4.2), u|p and ∇2 u|p are the fluid 

velocity and its Laplacian evaluated at the particle position taking into account the 

background fluid velocity including the disturbance of all the particles except the p-th one. 

This field is evaluated by summing the contributions of all the particles and by successively 
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removing the particles' self-disturbance. This step is easily performed with the ERPP 

approach where the self-disturbance velocity can be computed in a closed analytical form.

It is instrumental to introduce the inner Stokes number, St+ = τpl*/u* = St0Re*
2/Reb . In two-

way coupled simulations, a further dimensionless parameter that quantifies the particle 

backreaction on the fluid is the mass loading of the suspension. This is defined as the ratio 

between the total mass of the disperse phase and the fluid mass, 

ϕ = NpρpV p/ρfV f = (ρp/ρf)Npdp
2/(12π), where Vp is the volume of the particle and Vf = πR 3 

Lz (Lz = 2π is the dimensionless axial extension of the domain) is the volume of the fluid in 

the domain D. In the expression for the mass loading, ϕV = NpV p/V f = Npdp
2/(12π), is the 

volume fraction.

In conclusion, the dynamics is controlled by a set of four dimensionless parameters, {Re *; 

St +; ϕ; ρp/ρf}. The physical assumptions behind this description of the particle laden flow 

are: i) the density ratio ρp/ρf is sufficiently large such that only the Stokes drag matters in the 

particle dynamics and ii) the particle diameter dp
+ = dpRe* is small, which means that the 

particles are at most of the same order of magnitude of the viscous length.

The parameters for the different cases are summarised in table 1. The friction Reynolds 

number is fixed (i.e. the pressure drop is constant). The simulations are divided into three 

groups. In the first set, the mass loading ϕ is changed keeping Stokes number and density 

ratio fixed. The second set addresses the effects of the Stokes number at fixed mass loading 

and density ratio. Finally, the density ratio is changed at fixed mass loading and Stokes 

number to explore the effect of the number of particles.

A snapshot of the particle back-reaction intensity on the fluid and the instantaneous particle 

configuration is provided in figure 3 for the reference case at ϕ = 0.4, St + = 10 and ρp/ρf = 

180. Note the particle accumulation in the near-wall region and the strict correlation between 

the particle configuration and the Eulerian structure of the back reaction. Coherent particle 

structures extend from the wall up to the center of the pipe resembling the hairpin-like 

structures typical of wall-bounded flows.

4.2 Skin friction coefficient

The particles in fully developed turbulent pipe flow modify the drag with respect to the 

uncoupled (Newtonian) case. This alteration non-trivially depends on mass loading, Stokes 

number and particle-to-fluid density ratio. Figure 4 shows the friction coefficient

Cf = 2τω

ρfU2 = dp/dz 0

ρfU2 , (4.4)

where U = Q/(πR 2) is the bulk velocity, Q is the flow rate and dp/dz|0 is the pressure 

gradient. In the figure Cf is normalised with the unladen value, C f0, and plotted as a 

function of mass loading (squares), Stokes number (circles) and particle-to-fluid density 

ratio (diamonds). Since the pressure drop is kept constant, an increase in friction coefficient 

corresponds to a decrease in mass flow rate. The figure shows that the drag increases at 
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increasing mass loading and decreases with Stokes number and density ratio. In the present 

range of parameters, the friction coefficient is always grater or at most equal to the 

uncoupled case value.

4.3 Mean momentum balance

The drag modification is attributed to the alteration of the different contributions to the stress 

balance, see e.g. Fukagata et al. (2002),

μ∂Uz
∂r − ρf ur′uz′ + 1

r∫0

r
ηFzdη = 1

2
dp
dz 0

r, (4.5)

where Uz = 〈uz〉 is the mean axial velocity, −ρf ur′uz′  is the turbulent Reynolds shear stress 

and Fz = 〈fz〉 is the mean axial backreaction, with angular brackets denoting ensemble 

average and primed variables representing fluctuations. In absence of particles, the total 

shear stress, which is the sum of viscous stress, τμ = μ∂Uz/∂r, and of turbulent Reynolds 

shear stress, τt = − ρf ur′uz′ , is a linear function of the radial coordinate. This result can be 

derived by integrating once the mean axial momentum balance, see the classical textbook by 

Pope (2001). Following the same procedure, in presence of a disperse phase, the particle-

induced extra stress, τe = 1
r∫0

r
ηFzdη, arises but the sum of the three stresses is still a linear 

function of the radial coordinate as imposed by the global axial momentum balance. This 

should not be taken for granted in a DNS, unless some care is devoted to reach the 

statistically steady state and acquire a well converged statistics. The critical cases correspond 

to large mass loading (large number of particles) and large Stokes number and/or small 

density ratio (small number of particles). The former due to the large computational cost, the 

latter due to the long runs required to have converged statistics.

Figure 5 shows the balance of eq. (4.5) for ϕ = 0 (uncoupled), ϕ = 0.4 and ϕ = 0.6 in panels 

a), b) and c), respectively. The turbulent stress is attenuated almost everywhere and its peak 

shifts towards the wall. Indeed, an extra stress arises that can be interpreted as an additional 

momentum flux towards the wall that modifies the turbulence dynamics and is at the origin 

of the drag increase. Its effect intensifies with increasing mass loading.

Figure 6 shows how the extra stress and the Reynolds shear stress profiles shift away from 

the wall at increasing Stokes number. As a consequence, the drag at St + = 10 is significantly 

higher than the drag at St + = 80 even though the extra stress has comparable values. Figure 

7 goes deeper into the comparison with the uncoupled case, by considering τt + τe at St + = 

10 and St + = 80 and the turbulent Reynolds shear stress. At St + = 10, the profile of τt + τe 

peaks much closer to the wall and is more intense than the uncoupled turbulent Reynolds 

stress profile. On the other hand, the distribution of τt + τe closely reproduces the uncoupled 

Reynolds stress at St + = 80. This combination further explains the difference in the drag 

between St + = 10 and St + = 80.

To complete the discussion about the friction coefficients, the effect of the particle-to-fluid 

density ratio on the stress contributions is shown in figure 8. The drag modification occurs 

since i) the extra stress decreases with increasing density ratio, becoming negligible at ρp/ρf 
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= 560 (the behaviour is similar at ρp/ρf = 900 and is not shown), and ii) the turbulent 

Reynolds stress peak increases and departs from the wall region.

The particles' feedback produces two concurrent effects: the depletion of the turbulent 

Reynolds shear stress and the presence of the particle extra stress. The latter produces an 

increase of momentum flux towards the wall. The extra stress is then mainly balanced by the 

viscous stress since the turbulent Reynolds shear stress approaches zero. The modification of 

the viscous stress results in a modification of the drag as shown in figure 4. To better 

highlight this behaviour, figure 9 reports the normalised mean viscous stress profiles as a 

function of the wall distance, with insets showing a closeup view of the normalised mean 

axial velocity profile. When the particle extra-stress provides a significant momentum flux 

towards the wall, the fluid velocity increases with respect to the uncoupled case. As a 

consequence, the viscous stress increases and the friction follows the same fate. The main 

modification of the stress balance clearly occurs close to the wall. The extended ERPP 

method has been designed to capture the particle/fluid interaction close to a solid boundary 

accounting for the correct rate of vorticity generation which, in turns, results in a physically 

consistent representation of the viscous shear stress and thus of the overall drag. This is a 

distinct characteristic of the present approach which allows the prediction of the increase in 

drag.

4.4 Mean particle concentration

The particle mean distribution is presented in figure 10 as a function of the wall-normal 

distance. The particle concentration is defined as C(r) = (np/ΔVr)/(Np/Vf), where np is the 

number of particles in a cylindrical shell of volume ΔVr = 2π r Δr Lz placed at distance r 

from the axis, Np is the total number of particles in the fluid domain Vf. The normalisation 

of C(r) is chosen such that C = 1 when the particles are homogeneously distributed 

throughout the fluid domain. In the one-way coupling regime, inertial particles tend to 

segregate in the near wall region. The preferential accumulation, i.e. the turbophoresis, see 

Caporaloni et al. (1975); Reeks (1983) and the review by Balachandar & Eaton (2010), is 

controlled by the Stokes number, see Marchioli & Soldati (2002); Sardina et al. (2012a) for 

the channel and the boundary layer respectively. We have checked that the concentration 

profiles for the present simulations operated in the oneway coupling regime, match the data 

reported by Picano et al. (2009) in a spatially developing pipe flow, and by Sardina et al. 
(2011) for a statistically steady pipe flow, by comparing the results when the flow has 

reached fully developed conditions (data not shown, Picano private communication). The 

question is whether the backreaction and the resulting turbulent modification is able to alter 

the particle accumulation across the pipe.

Figure 10 addresses the effect of (a) mass loading, (b) Stokes number and (c) density ratio. 

At low mass loading (ϕ = 0.2) the particle concentration through the pipe decreases and 

particles segregate more at the wall. The opposite occurs when the mass loading increases. 

Concerning the Stokes number, the backreaction is effective in modifying the particle 

concentration with respect to the uncoupled case only for the populations at St + = 10 and St 

+ = 15. Even at high Stokes number (St + = 80), the particles are still unevenly distributed 

across the flow domain. In the previous section, negligible turbulence modification was seen 
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for this Stokes number, therefore, accumulation of particles is not necessarily the only 

precursor for turbulence modification. Panel c) addresses the effect of the density ratio. The 

solid line, representing the concentration in the one-way coupling regime, is the same for all 

cases since it only depends on the Stokes number. The trend of particle concentration in the 

bulk of the flow is not monotonic, the highest being at ρp/ρf = 180. The opposite behaviour 

is observed at the wall. Unlike the uncoupled case, the density ratio is a further crucial 

parameter in the two-way regime that influences the particle concentration.

5 Final remarks

A proper methodology to account for the inter-phase momentum exchange between inertial 

particles and the carrier flow in presence of wall has been developed. The approach extends 

the original ERPP method to account for the additional physics introduced by the wall. The 

disturbance generated by small particles can still be evaluated in a closed form by 

considering the associated unsteady Stokes problem in the half-space where only the 

impermeability boundary condition is enforced at the wall. When the disturbance is 

transferred to the background flow, the no-slip boundary condition is enforced by the 

Navier-Stokes solver of the carrier phase. From a physical point of view, this step 

corresponds to the generation and diffusion of the vorticity generated by the particles close 

to the wall. The approach has been carefully validated, showing how the impulse generated 

by the particles is correctly transferred to the fluid impulse in the bulk and to the viscous 

drag force at the wall. These results highlight the need to consider a set of images for those 

particles that lie close to the wall in order to reproduce the correct physics of the inter-phase 

momentum coupling.

The second part of the paper addresses the extended ERPP approach applied to direct 

numerical simulations of particle-laden fully developed turbulent pipe flow. The physical 

consistency of the inter-phase coupling method allows for a reliable analysis of the stress 

budget. In the near-wall region, the ERPP approach has been proven to capture the vorticity 

generated by the particles and the ensuing viscous shear stress. Results show a modification 

of the turbulent Reynolds shear stress and the important role played by the extra stress 

produced by the particles close to the wall. The physical interpretation corresponds to an 

augmented momentum flux towards the wall that ultimately increases the viscous shear 

stress and consequently the drag.

The approach applies to small particles, i.e. diameter comparable to the smallest 

hydrodynamical length-scale of the flow. The disturbance must be described by the unsteady 

Stokes equations, i.e. the particle Reynolds number is small. The suspension is considered 

diluted since inter-particles collisions and hydrodynamic interactions are neglected. No 

limitations are present on the density ratio, i.e. the approach can be used either for heavy 

particles or light bubbles. Clearly, in the latter case, added-mass and lift effects in the 

expression of the force on the bubble must be considered.
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Figure 1. 
Impulse balance (3.1) for a constant force F = (0,0,F 0) applied at a fixed point x p at 

distance yp = R − rp from the wall. The fluid is initially at rest in the cylindrical domain D 
with periodic boundary condition at z = 0 and z = 2π and no-slip boundary conditions at r = 

R. Exact impulse IE = F 0 t (open circles), Iu(t) (dashed line), If (t) (dash-doted line) and Iu + 

If (solid line). Panel a): plot of the impulse normalised in external variables νI/(F 0 R 2) 

versus dimensionless time νt/R 2. The inset shows the normalised relative error Err% = 100 · 

(IE − Iu − If)/IE. Panels b)-d): plot of the impulse normalised in internal variables I/(F 0 ϵR) 

versus dimensionless time t/ϵR. Panels b) and c): colours label different wall normal 

distances made dimensionless with the regularisation length-scale σR, namely yp/σR = 1 

(orange lines) and yp/σR = 30 (blue lines) at σR/R = 0.02. Panel b): cases with image point-

force. Panel c): same cases as in panel b) without the image point-force. Panel d): the 

colours label the different regularisation length-scale σR made dimensionless with the pipe 

radius R, namely σR/R = 0.02 (orange lines) and σR/R = 0.2 at for a point-force at fixed yp/

σR = 1.
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Figure 2. 
Impulse balance (3.1) for a constant force F = (0, 0, F 0) applied to Np fixed points x p in the 

cylindrical domain D to the fluid initially at rest. The normalised impulse I/(Np F 0 ϵR) is 

plotted versus time t made dimensionless with the regularisation time-scale ϵR. Exact 

impulse IE (open circles), Iu(t) (dashed line), If(t) (dash-doted line) and Iu + If (solid line). 

Np = 100000 point forces applied at points x p randomly distributed in the stripe 0 < yp/σR < 

4 near the wall for σR/R = 0.02. The colours label cases with image point forces (orange 

lines) and without the images (blue line).
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Figure 3. 
Snapshot of the particle back reaction field intensity (color) and particle configuration (black 

dots) for an instantaneous field at ϕ = 0.4, St + = 10 and ρp/ρf = 180. The flow is from left to 

right.
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Figure 4. 
Friction coefficient of the two-way coupled simulations Cf normalised with corresponding 

friction coefficient of the uncoupled case C f0, see eq. (4.4). The dataset is plotted as a 

function of the the mass loading ϕ (red squares) at fixed St + = 10 and ρp/ρf = 180, as a 

function of the Stokes number St + (green circles) at fixed ϕ = 0.4 and ρp/ρf = 180, and as a 

function of the particle to fluid density ratio ρp/ρf (blue diamonds) at fixed ϕ = 0.4 and St + = 

10.
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Figure 5. 
Normalized mean stress balance eq. (4.5) against wall-normal distance y + = (R−r)/y *. 

Viscous stress τμ (□), turbulent stress τt (△), extra stress τe (◯), total stress 

τT = τμ + τt + τe( ◇ ) and dp
dz 0r (dashed line), (see text for definitions). All stresses are 

normalised with the wall shear stress τw. Panel a): uncoupled case; Panel b): case ϕ = 0.4 

and St + = 10; Panel c) case ϕ = 0.6 and St + = 10; d) same as panel c) but in semi-

logarithmic scale.
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Figure 6. 
Normalised mean stress balance eq. (5) against the wall-normal distance y + = (R−r)/y *. 

Viscous stress τμ (□), turbulent stress τt (△), extra stress τe (◯), total stress 

τT = τμ + τt + τe( ◇ ) and dp
dz 0r (dashed line), (see text for definitions). All stresses are 

normalised with the wall shear stress τw. Panel a) ϕ = 0.4, St + = 10; Panel b) ϕ = 0.4, St + = 

15; Panel c) ϕ = 0.4, St + = 20;Panel d) ϕ = 0.4, St + = 80.
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Figure 7. 
Normalised mean stress balance eq. (5) against the wall-normal distance y + = (R − r)/y *. 

Turbulent stress τt (□), turbulent stress τt in the uncoupled case (solid line), extra stress 

τe( △ ), τt + τe( ○ ), and dp
dz 0r (dashed line), see text for definitions. All stresses are 

normalised with the wall shear stress τw. Panel a) ϕ = 0.4, St + = 10, ρp/ρf = 180; Panel b) ρ 
= 0.4, St + = 80, ρp/ρf = 180;
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Figure 8. 
Normalised mean stress balance eq. (5) against the wall-normal distance y + = (R−r)/y *. 

Viscous stress τμ (□), turbulent stress τt (△), extra stress τe (◯), total stress τT = τμ + τt + 

τe and τT = τμ + τt + τe( ◇ ) and dp
dz 0r (dashed line), (see text for definitions). All stresses are 

normalised with the wall shear stress Tw. In all panels ϕ = 0.4, St + = 10. Panel a) ρp/ρf = 90; 

Panel b) ρp/ρf = 180; Panel c) ρp/ρf = 360; Panel d) ρp/ρf = 560.
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Figure 9. 
Normalised mean viscous stress profiles against the wall-normal distance y = (R − r)/R. The 

inset report the mean velocity profile normalised with the bulk velocity, V = Uz/Ub, against 

the wall-normal distance close to the wall.
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Figure 10. 
Mean particle concentration C against the wall normal distance y = (R−r)/y *. The lines refer 

the particle concentration in the uncoupled case whilst the symbols show the concentration 

in the two-way regime. The nominal particle radius is indicated with a horizontal line with 

the same color code of the data in the plots. Panel a): data at St + = 10 and ρp/ρf = 180 and 

different mass load, ϕ = 0.2 (□), ϕ = 0.4 (△) and ϕ = 0.6 (◯). Panel b): effect of Stokes 

number, St + = 10 (black), St + = 15 (red), St + = 20 (blue) and St + = 80 (orange). Panel c): 

effect of the density ratio ρp/ρf = 90 (black), ρp/ρf = 180 (red), ρp/ρf = 360 (blue), ρp/ρf = 

560 (orange).
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Table 1

Simulation matrix. All runs are performed by imposing the same mean pressure gradient corresponding to a 

friction Reynolds number of Re * = 180. The bulk Reynolds number for the reference case where the particles 

do not back-react on the fluid (one-way coupling) is Reb = 2650. The grid resolution is Nθ×Nr×Nz = 

576×129×576 corresponding to Δr +|w = 0.5 at the wall and Δr +|0 = 2 at the centerline. The resolution in the 

azimuthal and axial directions is (RΔθ)+ = 3:2 and Δz + = 3.2, respectively. The mass loading is defined as ϕ = 

ρpNpVp/ρfVf where Np is the number of particles, Vf is the volume of the fluid in the domain D = [0 : R]×[0 : 

2π]×[0 : Lz] and >ρp/<f denotes the particle-to-fluid in density ratio. St + is the Stokes number in internal units 

and St 0 is the Stokes number in external units, namely St 0 = τp/τ 0 with τ 0 = R/Ub Ub being Ub, the bulk 

velocity in the uncoupled case. The column labeled dp
+ shows the particle diameter in wall units. Np denotes 

the number of particles in the domain D.

ϕ ρp/ρf St + St 0 dp
+ Np

0 - - - - -

0.1 180 10 0.82 1 122145

0.2 180 10 0.82 1 244290

0.4 180 10 0.82 1 488580

0.6 180 10 0.82 1 732870

0.4 180 15 1.23 1.23 265950

0.4 180 20 1.64 1.41 172739

0.4 180 80 6.54 2.82 21592

0.4 90 10 0.82 1.41 345479

0.4 360 10 0.82 0.70 690957

0.4 560 10 0.82 0.57 861775

0.4 900 10 0.82 0.45 1092499
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