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Abstract

In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to 

the presence of local non-rigid transformations of organs caused by bending and stretching. The 

existing slice-to-volume registration (SVR) reconstruction methods are widely employed for 

motion correction of fetal brain that undergoes only rigid transformation. However, for 

reconstruction of fetal body and placenta, rigid registration cannot resolve the issue of 

misregistrations due to deformable motion, resulting in degradation of features in the 

reconstructed volume. We propose a Deformable SVR (DSVR), a novel approach for non-rigid 

motion correction of fetal MRI based on a hierarchical deformable SVR scheme to allow high 

resolution reconstruction of the fetal body and placenta. Additionally, a robust scheme for 

structure-based rejection of outliers minimises the impact of registration errors. The improved 

performance of DSVR in comparison to SVR and patch-to-volume registration (PVR) methods is 

quantitatively demonstrated in simulated experiments and 20 fetal MRI datasets from 28-31 weeks 

gestational age (GA) range with varying degree of motion corruption. In addition, we present 

qualitative evaluation of 100 fetal body cases from 20-34 weeks GA range.
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I Introduction

OVER the past two decades development of fast acquisition sequences along with advanced 

motion compensation techniques [1] has gradually allowed incorporation of MRI into 

clinical practice for imaging of fetal pathologies [2].

Single shot fast spin echo (ssFSE) sequences allow acquisition of each slice in less than one 

second, which minimises the impact of fetal motion artefacts on image quality. However, in 

3D stacks, inter-slice motion still exists leading to either minor misalignments (Fig. 1.a) or 

complete loss of volumetric information (Fig. 1.b).
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Slice-to-volume registration in combination with super-resolution (SR) reconstruction is 

considered to be an efficient motion correction approach since it resolves out-of-plane 

motion [3]–[5]. The fact that the volumetric region of interest (ROI) is oversampled at 

different stack orientations ensures consistency of reconstructed volumes. Recent validation 

of SVR for fetal brain reconstruction showed strong correlation between 2D and 3D 

biometry values [6].

Since the SVR is based on rigid registration, its application has primarily focused on the 

brain as it undergoes only rigid motion. In general, fetal body and placenta are affected by 

local non-rigid deformations [7], for example due to bending of fetal abdomen (Fig. 2.a) or 

maternal breathing, and the use of rigid registration leads to deteriorated reconstruction 

quality. Slices that are inconsistent with the most prevalent body position are either rejected 

as outliers [5] or contribute as an error to the reconstructed volume, resulting in blurring of 

local features (e.g., spine) and loss of texture information (Fig. 2.b).

A Related work

The original concept of SVR for reconstruction of fetal brain from motion-corrupted MRI 

stacks was to interleave slice-to-volume registration with scattered data interpolation based 

on weighed sum of Gaussian kernels [8] or multilevel B-splines [9]. The SVR reconstruction 

framework was gradually extended with SR reconstruction [3], [4], edge-preserving 

regularisation [4], outlier rejection [3], [5], intensity matching [5], total variation 

regularisation [10], sinc PSF model and GPU-parallelisation [11]. More recent works 

proposed to employ convolutional neural network (CNN) for fetal brain segmentation from 

MRI slices [12], [13] and prediction of transformations of slices to canonical atlas space 

[14], [15].

Though SVR has been developed primarily to reconstruct the fetal brain MRI, it has also 

been applied to the reconstruction of fetal thorax [16], [17] under the assumption of 

approximately rigid motion, due to the embedding in the rib cage. Given the known cardiac 

phases of each of the slices, SVR can also be employed for 4D fetal cardiac reconstruction 

from dynamic MRI [18]. Rigid SVR has also been applied to reconstruct MRI of placenta 

[19], which undergoes deformation due to the maternal breathing. Here the quality of the 

reconstructed image relies on the robust statistics to exclude the slices which have been 

deformed compared to the most common shape of the placenta present in the data. In [20], 

rigid SVR was further extended to patch-to-volume registration (PVR) which addresses the 

reconstruction of deformable organs by performing motion compensation in piecewise rigid 

fashion, thus allowing the reconstruction of the entire uterus.

With respect to application of deformable SVR for motion correction, the existing solutions 

primarily focus on registration of intra-operative slices with a pre-operative planning volume 

[21], [22] or multimodal registration (e.g., histology to MRI) [23], [24]. The majority of 

monomodal methods are based on rigid SVR for global alignment followed by Free Form 

Deformation (FFD) registration [25] for correction of non-rigid shape changes. Recently, 

[26] formalised deformable graph-based SVR approach validated on a 3D heart MRI 

dataset. However, the existing implementation is limited to in-plane deformations only. 
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Model-based SVR methods integrating biomechanical models for physics-based 

regularisation were proposed in works of [27], [28].

B Contributions

In this paper we present a novel approach for non-rigid motion correction in 3D volumes 

based on an extension of the rigid SVR reconstruction method [5] with hierarchical 

deformable registration scheme and structure-based outlier rejection. The proposed DSVR 

method allows for both in-plane and out-of-plane correction of local non-rigid deformations 

of fetal body and placenta resulting in high quality volumetric reconstruction. The structure-

based outlier rejection ensures that the residual registration errors are not propagated to the 

reconstructed volume.

The performance of DSVR is evaluated in simulated experiments, and using 20 fetal MRI 

datasets from 28-31 weeks GA range with varying degrees of motion corruption, by 

comparison to the rigid SVR and PVR. Furthermore, we present qualitative evaluation of 

DSVR reconstruction quality on 100 iFIND1 cases from 20-34 weeks GA range.

II Background

A typical fetal MRI dataset consists of multiple motion corrupted stacks S = {Sl}l=1,…,L 

covering a specific ROI and acquired under different orientations. In the context of motion 

correction, SVR is used for iterative recovery of a high resolution ’motion-free’ isotropic 

volume X from an array of K low resolution motion-corrupted slices Y = {Yk}k=1,…,K. It is 

formalised as follows [5]:

Y k* = MkX, yjk* = ske−bjkyjk, (1)

where k is a slice index and j is a pixel index within each slice. The matrix Mk describes 

spatial relationship between the acquired slices Yk = {yjk}j=1,…,Nk and the reconstructed 

volume X = {xi}i=1,…,N, where each row {mijk }i = 1, …, N represents the acquisition PSF for 

voxel yjk, transformed according to the estimated motion parameters and sampled on the 

grid of the high resolution volume X. Intensity corrected slices are denoted by 

Y k* = yjk* j = 1, …, Nk, while Bk = {bjk}j=i,…,Nk and sk are the slice-dependent bias fields and 

scaling factors, correspondingly.

The algorithm proceeds by interleaving slice-to-volume registration and super-resolution 

reconstructions for a fixed number of iterations (q = 1,…,Q). At each SVR iteration q, the 

current estimation of X is registered to slices {Yk} and the transformed PSFs 

mij
k(q)

q = 1, …, Q are updated according to the resulting spatial transformations. Next, as 

initialisation of the SR reconstruction loop, the weighted Gaussian interpolation [8] is 

performed for estimation of X (0,q). Then, we perform super-resolution reconstruction [3] of 

the volume X by iterative gradient descent optimisation based on minimisation of the sum of 

1iFIND Project: http://www.ifindproject.com 
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squared errors ∑jkejk
2 + λR(X), where λR(X) is an edge preserving regularisation term [5] 

and ejk are the errors between the original yjk*  and simulated Ȳk = {ȳjk}j=1,…,Nk slices

ejk = yjk* − yjk, yjk = ∑
i

mij
k(q)xi (2)

Each SR reconstruction iteration (n = 1, …, NSR
(q) ) includes expectation-maximization (EM) 

robust statistics scheme for rejection of outliers and estimation of {bjk} and sk

xi
(n + 1, q) = xi

(n, q) + α∑
kj

pjkpk
slicemij

k(q)ejk + αλ ∂
∂xi

R(X), (3)

where pjk and pk
slice are posterior probabilities of a voxel or a slice not being an outlier.

III Method

A Overview of the algorithm

The proposed DSVR method is an extension of the rigid SVR SR reconstruction framework 

[5] described in Sec. II and it is summarised in Fig. 3 with the novel modules highlighted by 

red outline.

Following global rigid and FFD registration of all stacks, the template stack is used for 

initialisation of the registration target for the DSVR loop. At each DSVR iteration (Sec. III-

C), the current estimation of X (n,q) is registered to each of the slices {Yk}. This is followed 

by the Weighted Gaussian reconstruction and iterative SR reconstruction (Sec. III-B) with 

additional structure-based outlier rejection (Sec. III-D) step. The pipeline is performed for a 

predefined number of DSVR (Q) and SR (NSR) iterations. The rest of this section describes 

the novel DSVR modules in detail.

B Incorporating deformations into SR reconstruction

In super-resolution SVR (Sec. II), the forward problem is modelled by applying the 

transformed PSFs mijk i = 1, …, N to high-resolution volume X to simulate (intensity-

corrected) voxel ȳjk of the acquired slice k (2). The underlying PSF in the space of acquired 

data is a continuous function fjk (u) = f(u − ujk) where u is a location in the space of the 

acquired stack, ujk is the position of the voxel yjk and f is the shape of the acquisition PSF, 

which we model by a 3D Gaussian with zero mean and principal axis aligned with the axis 

of coordinate system of the acquired image. The transformation Tk between locations u in 

space of acquired stack and the anatomical locations v is estimated by registration of the 

acquired slice Yk and the volume X, defining the transformed PSFs by mijk = fjk Tk
−1 vi ,

where vi is the location of the voxel xi in the anatomical space. In case of rigid SVR, the 

transformed PSFs are re-oriented Gaussians. To correct for deformation of the fetal body and 

placenta the transformations Tk(u) need to be deformable. Therefore in DSVR the PSFs are 

deformed using non-rigid transformations Tk(u) and their shapes become non-Gaussian. The 
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high resolution volume X is estimated iteratively using (3) for both rigid and deformable 

cases.

C Hierarchical motion correction

SVR of the fetal brain can be well constrained by acquiring several stacks {Sl}l=1,…,L in 

different orientations and assuming rigid motion of the region of interest, to recover 

the ’true’ shape of the fetal brain. The fetal body and placenta, on the other hand, undergoes 

continuous deformation in time and DSVR is under-constrained in comparison to SVR. In 

order to overcome this limitation, a hierarchical scheme for gradual refinement of 

transformation during slice-to-volume registration is proposed.

1 Volumetric registration—At first, one of the stacks is selected as a template 

(Stemplate) for initialisation of the global registration target. In order to eliminate the impact 

of global rotations and translations between stacks, the initial step includes 3D-to-3D rigid 

registration of the input stacks {Sl} to a masked ROI in the template stack. The resulting 

transformations Gl
R are then used for initialisation of 3D-to-3D global deformable 

registration of stacks to Stemplate. The template stack cropped with a bounding box of the 

mask acts as the preliminary initialisation of the reconstructed volume Xinit.

For the purpose of formalisation of DSVR registration steps, we define a deformable 

registration operator as (Itarget, Isource, Tinit, d), where Itarget and Isource are the source and 

target images, d represents the resolution of the deformable transformation and Tinit is the 

input transformation. Then the global deformable stack registration is expressed as:

Gl
D = D(Sl, Xinit, Gl

R, dinit) (4)

In order to avoid over-fitting to the motion corrupted features of stacks, global 

transformation with low resolution dinit is chosen and all stacks are smoothed using 

Gaussian blurring. Therefore, the output transformations Gl
D provide estimation of only 

large range (global) deformations between the trunk positions in the stacks and the template. 

The trunk mask is then transformed to all stacks and they are cropped to large bounding box 

ROIs.

2 Slice-to-volume registration—We refine the motion parameters by iteratively 

aligning the reconstructed volume to each individual slice. The volume is registered to the 

slices (i.e., 3D-to-2D) rather than the slices to the volume to ensure that both in-plane and 

out-of-plane deformable motion is resolved. The first iteration of DSVR is performed by 

deformable registration of the smoothed template stack Xinit to each of the slices with low 

resolution transformations (5).

Tk
(0) = D Y k, Xinit, Gk, l

D , d(0)
(5)

The B-spline control point spacing d (q) is decreased at every DSVR iteration q, thus refining 

the resolution of the transformation Tk
(q) .

Uus et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Tk
(q + 1) = D Y k, X(n, q), Tk

(q), d(q + 1)
(6)

This is coupled with decreasing SR regularisation parameter λ (3) to prevent overfitting to 

the residual motion in the early stages and progressively allowing more localised 

deformations as the features in X (n,q) become better defined. Fig. 4 illustrates an example of 

the refinement of 3D transformation (in our case implemented by a B-spline control point 

grid) of Tk
(q) with respect to DSVR iteration q and reconstructed volume X (n,q) used as a 

template. It was identified experimentally that rigid registration should not be used during 

slice-to-volume registration steps since it disrupts the local deformation fields obtained 

during hierarchical refinement. The spatial relationship coefficients Mk
(q) are computed 

during each iteration q after slice-to-volume registrations were completed, by transforming 

3D Gaussian PSFs fjk using Tk
(q) .

D Structure-based outlier rejection

1 Global structure-based outlier rejection—During each iteration q, after the 

registration and prior to the Gaussian reconstruction step (see Fig. 3), misregistered slices 

are removed to ensure that global registration errors are not propagated into the initial 

estimation and further SR reconstruction loop. The quality of registration is assessed as 

global normalised cross correlation (NCC) between the original slice Y k* and the current 

estimation of the output volume X (n,q) transformed with Tk
(q) within the masked slice ROI. 

The slices with transformations resulting in correlation lower than a threshold value TNCC 

are excluded. The corresponding slice outlier criteria are computed as:

wk
G = 1, if 1

Nk ∑j = 1
Nk (yjk* − μy*)(xjk

T − μxn)
σy*σx

> T NCC

0, otherwise,
(7)

where xjk
T = X(n, q)(Tk

(q)(ujk)) j = 1, …, Nk is the transformed high resolution volume 

resampled on the grid of the slice Yk. The values μ y*, μx, σ y* and σx are the corresponding 

intensity means and standard deviation of xjk
T  and Y k* .

2 Local structure-based outlier rejection—DSVR of deformable objects can be 

prone to regional misregistrations and overfitting. Therefore, an additional step for regional 

outlier rejection is introduced. At each SR iteration n (see Fig. 3), the regions of simulated 

slices with low structural similarity are excluded from contribution to the reconstructed 

volume. It is based on local structural similarity (SSIM) maps {smjk} between the simulated 

and original slices:

smjk = 2μr*μr + c1 2σr*r + c2
μr*

2 + μr
2 + c1 σr*

2 + σr
2 + c2

, (8)
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where r* and r are the regions in the original Y k* and simulated Ȳk (n) slices centered around 

voxel j with circular window and μr*, μr, σr*
2  and σr

2 are the corresponding average and 

variance intensity values and σr*r is the covariance of r* and r. As defined in [29], values c 1 

and c 2 used in order to balance the division with weak denominator are computed as (k 1 

L)2 and (k 2 L)2, where L is the dynamic range of intensities in r* and k 1 and k 2 are equal 

to 0.001 and 0.003, correspondingly. The outlier criteria of slice voxels with similarity < 

TSSIM are set to zero:

wjk
L = 1, if smjk > T SSIM

0, otherwise
(9)

3 Incorporating structure-based outlier rejection into SR reconstruction—
Outlier rejection is incorporated into SR reconstruction (3) by scaling the contribution of the 

reconstruction error ejk by a weight wjk:

xi
(n + 1, q) = xi

(n, q) + α∑
kj

wjkmij
k(q)ejk + αλ ∂

∂xi
R(X) (10)

In our previous work [5] this weight was set based on EM robust statistics on voxel and slice 

intensities to pjkpk
slice . The proposed total structural outlier criteria for a voxel defining its 

contribution to the reconstructed volume is computed as:

wjk
S = wk

Gwjk
L (11)

In Section V-D we will show that the combination of the two schemes by setting 

wjk = pjkpk
slicewjk

S  outperforms the individual outlier rejection schemes.

IV Implementation

A Input data requirements

The input dataset includes stacks of different orientations, an approximate mask covering the 

ROI (i.e., fetal body or placenta) and a selected template, which can be either one of the 

stacks or a scout scan. The global structure of the target object needs to be preserved in the 

template stacks, as it is used for initialisation of the registration target. Minor to average 

degree of motion corruption of the template is acceptable and is resolved by Gaussian 

blurring. The severity of motion is visually assessed with respect to the degree of loss of 

volumetric structural information (see Fig. 1).

Rigid SVR requires masking of the ROI in the template stack in order to eliminate the 

impact of the independent motion of the mother and the fetus. On the other hand, FFD 

registration does not require precise masking and in our experience preforms better for larger 

ROIs.
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Variable orientations of input stacks help to prevent over-fitting to a particular motion-

corrupted stack. The minimal requirement for SR reconstruction of an isotropic volume from 

multiple stacks is two sufficiently different orientations. It was identified experimentally that 

using 5 to 8 stacks is sufficient for good quality reconstruction depending on the amount of 

motion corruption, resolution and SNR level of the original volumes. Similarly to the 

capture range limitation of SVR [11], gradient-descent based deformable registration 

methods are not capable of resolving motion involving large degree rotations or excessive 

bending, which should be taken into account with respect to selection of input stacks.

B Deformable registration

The B-spline FFD registration [25] with NMI similarity measure was chosen for both 

deformable SVR and global registration steps due to the lower computational requirements 

compared to the diffeomorphic registration such as FFD parameterised by stationary velocity 

(SV) fields [30]. Although SV FFD ensures invertibility of transformations, it did not lead to 

an indicative improvement of reconstruction results while significantly increasing processing 

time, which made it not feasible for our application.

Typically, the reconstruction pipeline requires 3 SVR iterations (Q = 3) each of which is 

followed by 10 to 30 SR NSR
(q)  iterations with gradually refined regularisation parameters. 

The resolution of B-spline FFD transformation is controlled by changing the resolution of 

the B-spline control point (CP) spacing d. We choose resolution scheme with B-spline 

control point spacings d (0) = dinit, d (1) = 2/3 · dinit, d (2) = 1/3 · dinit. As we show in Sec. V-

C, it was identified experimentally that 15mm → 10mm → 5mm CP refinement (dinit = 

15mm) produces the optimal reconstruction quality for our fetal test cases and 0.85mm 
output resolution. The corresponding optimal regularisation λ (q) values were chosen as 0.1 

→ 0.05 → 0.02 similarly to the SVR settings in [5].

C Structure based outlier rejection parameters

Analysis of the choice of the structural similarity thresholds showed that the optimal values 

corresponding to adequate registration quality are TNCC = 0.75 for global and TSSIM = 0.6 

for local regions. Using lower values might lead to inclusion of regions that were 

erroneously overfitted.

The 20 mm diameter for SSIM kernel was experimentally identified as optimal for the 

feature sizes in 28-31 weeks GA range subjects, e.g., the transverse diameter of fetal kidneys 

for this GA range varies within 15 – 25mm [31].

D Software packages and hardware requirements

DSVR framework was implemented based on MIRTK2 library with multi-CPU 

parallelisation of registration and reconstruction steps. The structure and functionality of the 

core reconstruction steps follow the IRTK-based3 implementation of the original SVR 

reconstruction method [5]. The code is available online as a part of SVRTK4 package.

2MIRTK: https://github.com/BioMedIA/MIRTK 
3IRTK: https://github.com/BioMedIA/IRTK 
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The major advantage of MIRTK registration library is the use of conjugate gradient descent 

optimisation [32] that significantly increases computational efficiency of FFD registration 

that constitutes the most time-consuming part of DSVR pipeline. Depending on the ROI size 

(related to GA of the subjects), number of stacks, output resolution and the system 

configuration, the reconstruction time can typically vary between 15 to 60 minutes.

V Experiments and Results

We evaluate DSVR based on the comparison to the rigid SVR method [5] that was recently 

reported to produce the best results for placenta reconstruction [19] and its GPU version [11] 

was employed for 3D fetal cardiac reconstruction in [17]. Furthermore, DSVR is compared 

to the recently introduced PVR method designed for motion correction in large FoV regions 

[20]. The reconstruction quality is evaluated using intensity and structural similarity metrics.

A Fetal MRI data

The fetal MRI data used for evaluation contains 20 iFIND T2-weighted datasets of fetuses 

from 28-31 weeks GA range. This particular GA range was selected due to the lower 

amplitude of movement and higher prevalence of bending and stretching [7], since this study 

focuses on correction of local non-rigid deformations of organs rather than global change of 

fetal body position.

The iFIND acquisitions were performed on a 1.5T MRI using ssFSE sequence with TR = 

15000 ms, TE = 80 ms, voxel size = 1.25 x 1.25 x 2.5 mm, slice thickness 2.5 mm and slice 

spacing 1.25 mm. The stacks were acquired under different orientations, with 100-160 slices 

per stack, depending on GA and orientation. Each of the datasets contains 6 stacks with 

minimum 3 different orientations without major SNR loss.

The datasets were divided into 2 groups with respect to severity of motion. The minor 

motion group contains 10 cases that include stacks only with minimal loss of structural 

information. In 10 cases from the severe motion group, the majority of stacks have severe 

misalignment of slices. The severity of motion corruption was visually estimated by an 

operator with respect to the consistency of volumetric information in all three planes (Fig. 1) 

as well as the changes of the global fetal body position between the stacks. Template stack 

selection was performed manually based on the degree of motion corruption and the position 

of the fetal body similar to the other stacks.

The amount of motion in each stack was also assessed as the average NCC between 

sequential slices for a masked ROI. Tab. I demonstrates that the severe motion datasets have 

lower average NCC range than the minor motion datasets.

B Simulated experiment

In order to assess the general capability of DSVR to recover consistent volumetric 

information and local anatomy features, we perform a phantom experiment with simulated 

non-rigid motion. At first, a high quality volume reconstructed from a minimal motion 

4SVRTK: https://github.com/SVRTK/SVRTK 
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dataset is selected as a reference. Next, five sets of slice transformations (incorporating both 

local non-rigid and global rigid and non-rigid components) extracted from other existing 

reconstruction cases are used to generate motion-corrupted stacks from the reference 

volume.

In this experiment, each of the five simulated datasets contains six generated stacks that have 

different orientations and a mask defining trunk ROI in the template stack. The default 

DSVR reconstruction pipeline is executed for all datasets. In addition, rigid SVR [5] and 

PVR [20] reconstructions are performed for comparison to the state-of-the-art methods.

Fig. 5 shows coronal plane view of the original reference volume (X), one of the stacks with 

simulated deformable motion (S′), DSVR reconstructed volume (XDSV R) along with its 

difference with the reference (XDSV R — X) and SVR (XSV R) and PVR (XPV R) results. 

Prior to the analysis of the results, in order to avoid possible impact of the global change of 

the body position, the reconstructed volumes were aligned to the reference using FFD 

registration with large CP spacing (15 mm). All three methods successfully reconstructed 

the major anatomy structures including topology of kidneys and spine. However, in SVR and 

PVR outputs, misregistrations due to non-rigid deformations led to blurring of texture of 

local features and higher errors.

The corresponding quantitative comparison of the motion-free reference volume and five 

DSVR, SVR and PVR reconstructions in terms of normalised root mean square error 

(NRMSE), peak signal-to-noise ratio (PSNR) and NCC computed for the same masked ROI 

covering fetal trunk is given in Tab. II. All results are statistically significant with p < 0.001. 

There is a strong correlation between the original and DSVR volumes. The worse results for 

the SVR outputs indicate that the impact of non-rigid deformations on texture cannot be 

resolved by rigid registration even with rejection of outliers. The reconstructed PVR 

volumes also have lower similarity to the reference volumes.

We also calculated target registration error (TRE) to evaluate average displacement error of 

the estimated non-rigid transformations compared to the the original ones used for 

generation of motion-corrupted stacks. Comparison of TRE for DSVR and SVR 

reconstruction is presented in Tab. III. DSVR TRE values are significantly lower in 

comparison to SVR and statistically significant with p < 0.001.

C Reconstruction of fetal body

In fetal body reconstruction, due to the absence of the ground truth as well as the constantly 

changing shape of the trunk organs, assessment of the quality of reconstructed volumes is 

challenging. In [5], leave-one-out analysis was proposed for evaluation of SVR results. It is 

based on the comparison of the original Y k*  to simulated {Ȳk} slices for a stack that was 

registered in SVR step but excluded from SR reconstruction thus not contributing to the 

output volume.

Tab. IV presents quantitative comparison of SVR, PVR, DSVR and DSVR with structural 

outlier rejection (DSVR+S) results for the same masked ROI of the excluded stack for 20 

datasets. The values for PVR results are given primarily for a reference, since, due to the 
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differences in implementation, comparison is performed for simulated and original patches 

with overlapping regions rather than for slices. Furthermore, PVR employs different SR 

reconstruction pipeline and does not provide an option for stack exclusion.

The results for both minor and severe motion datasets show that DSVR surpasses SVR and 

PVR for both intensity and structural characteristics. Additional structural outlier rejection 

(DSVR+S) produces a significant improvement only for the severe motion datasets. This is 

expected since minor motion assumes high NCC values of registration output and DSVR+S 

should produce only minimal impact. All results apart for comparison of DSVR and DSVR

+S for minor motion cases are statistically significant with p < 0.005.

For one of the minor motion cases shown in Fig. 6 (sagittal plane view) when the trunk 

positions in all stacks are approximately aligned and there are no severe non-rigid 

deformations, SVR successfully reconstructs the global trunk topology. However, due to 

bending motion, there is a noticeable loss of structure in the spine region as well as the 

general degradation of texture. PVR allows reconstruction of the large ROI and partially 

resolves these artefacts improving definition of the spine. However, the introduced 

smoothing lowers image quality in terms of interpretation and resolution of small features. 

On the other hand, DSVR results are characterised by high definition of the local anatomy 

structures. It also has to be noted that there is a noticeable change in the position of the trunk 

between different reconstruction methods caused by the different approaches for 

initialisation of the registration target (Xinit). SVR and PVR use the average of all stacks 

after global rigid stack registration and DSVR uses the selected template stack. Therefore, 

the SVR and PVR solutions converge to an intermediate averaged state, whereas DSVR 

converges to the trunk shape in the template stack.

A typical example of failed rigid SVR due to non-rigid motion is given in Fig. 7 where one 

of the original slices Yk is compared to the corresponding simulated slices Ȳk from SVR and 

DSVR reconstructions. The kidney and bladder regions are segmented in order to assess the 

registration accuracy. In this case, SVR could not correct the impact of spine bending thus 

converging to an average position with displaced kidney and resulting in large errors {ejk}. 

On the other hand, FFD registration improves the mapping (Tk) between Yk and X (n,q). The 

deformation of ROI boundaries in DSVR output indicates the high degree of non-rigid 

deformation.

For one of the severe motion dataset results shown in Fig. 8 (coronal plane view), large slice 

misregistration errors lead to a severe degradation of local features in SVR. PVR resolves 

this producing a clear trunk structure, however, similarly to the previous example, the 

smoothed texture lowers the quality of definition of abdominal organs. Although there is an 

improvement in DSVR vs. SVR output, a significant amount of artefacts due to 

misregistrations still remains. As mentioned in Sec. III, the employed gradient-descent FFD 

method is not capable of resolving large bending and rotations therefore leading to 

misregistrations.

Structural outlier removal (DSVR+S) improves the output by minimising the contribution of 

registration errors to reconstruction. It also increases the proportion of rejected slices, which, 
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for severe motion datasets, can vary between 20 - 50 % of the total slice number. In 

comparison, the original EM robust statistics [5] results in only 10 - 15 % slices being 

rejected, which seems to be insufficient in major motion cases.

D Parametric study

Regularisation parameters that control the smoothness of the transformations in DSVR have 

significant impact on the quality of reconstruction. Transformations with large CP spacings 

allow for correction of the global body shape, but are not efficient for recovery of local 

features. On the other had, too small CP spacing will lead to overfitting and unrealistic 

deformations. We experimentally determined that the optimal multi-resolution scheme for 

fetal body dimensions is 15mm → 10mm → 5mm for 3 iterations.

We evaluated the regularisation schemes with the CP spacings d (0), d (1) = 2/3 · d (0) and d 
(2) = 1/3 · d (0) for the subsequent DSVR iterations. The d (0) value was varied from 30mm to 

5mm for five severe motion datasets. We calculated NCC between simulated {Ȳk} and 

original Y k*  slices for the masked fetal body ROI in all stacks. Fig. 9 shows the average 

NCC values over the five subjects for different initial transformation resolutions d (0). The 

average SVR output value is provided for the reference. We can observe that d (0)=15mm 
results in optimal performance and further refinement does not improve the results due to 

overfitting to the motion artifacts.

In addition, we performed quantitative assessment of the impact of the structural outlier 

rejection steps on the reconstruction quality and number of excluded slices. Tab. V presents 

the results for 5 severe motion datasets with the default processing pipeline and different 

combinations of outlier rejection methods: EM-based method proposed in [5], global 

structural slice-level rejection based on global NCC (G-STR), and local region rejection 

method based on SSIM maps (L-STR). We report NCC between original Yk and simulated 

slices Ȳk of the excluded stack within the masked fetal body ROI, and the average 

proportion of the excluded slices. It can be observed that combination of all three outlier 

rejection steps results in best performance in severe motion cases.

E Reconstruction of placenta

Furthermore, the performance of SVR, PVR and DSVR for reconstruction of placenta was 

compared for 10 iFIND fetal MRI cases. Each of the datasets contains 5 orthogonal stacks 

covering the entire uterus and reconstructions are performed for the masked uterus ROI 

similarly to [19]. The corresponding results of the leave-one-out analysis are presented in 

Tab. VI in terms of NCC between the original Yk and simulated Ȳk slices of the same 

masked ROI of an excluded stack. The proposed DSVR method outperforms both other 

methods. All results are statistically significant with p < 0.005. Fig. 10 shows an example of 

motion-corrected outputs of SVR, PVR and DSVR of placenta. Placenta is primarily 

affected by respiratory motion, and is subject to stretching and bending. As a result, DSVR 

provides better reconstruction quality compared to the alternative methods.
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F Qualitative analysis

To assess the applicability of DSVR across gestational ages, we performed qualitative 

evaluation for 100 iFIND fetal body cases randomly selected from 20-34 weeks GA range. 

The reconstructed volumes were graded by trained clinicians with respect to the image 

quality in [0; 4] range (4 corresponding to high quality). Volumes with grades ≥ 2 were 

considered to have sufficient quality for further analysis and interpretation. The distribution 

of grades for each week of GA is presented in Fig. 11. Average grades per week of GA 

varied within 2.5 - 3.5 range (3.09 ± 0.78). The primary causes of lower grades were motion 

for younger subjects and low SNR for older subjects. Only 6% of all cases failed (grades < 

2) due to severe motion which could not be resolved by gradient descent based FFD 

registration. Further details of the analysis are presented in Supplementary material.

VI Discussion and Conclusions

We proposed and implemented a novel DSVR method for compensation of non-rigid motion 

in fetal MRI. It allows reconstruction of high resolution 3D volumes from multiple stacks of 

slices affected by non-rigid motion. Therefore, DSVR extends application of slice-to-volume 

reconstruction to fetal body and placenta.

Unlike the conventional rigid SVR methods, DSVR is capable of correction of local 

deformations of organs caused by bending and stretching. Correction of both in- and out-of-

plane non-rigid motion is ensured by registration of the volume to slices rather than slices to 

volume. The challenge of the absence of a ’stable’ shape is addressed by hierarchical FFD 

SVR scheme initialised by one of the stacks that gradually converges to a stable state. The 

fact that the stacks have different orientations helps to prevent overfitting to motion artefacts. 

In addition, structure-based outlier rejection step is introduced to minimise the impact of 

misregistration errors on the reconstructed volume.

The method was quantitatively evaluated on 20 fetal MRI datasets from 28-31 weeks GA 

range. This age range was chosen due to high incidence of stretching and bending, whereas 

large rotation and translation motion is less prevalent compared to younger subjects [7]. 

Comparison to the state-of-the-art solutions showed that DSVR surpasses both SVR and 

PVR methods for minor and severe motion datasets. This was further confirmed by an 

additional experiment with simulated non-rigid motion. DSVR reconstructed 3D fetal body 

volumes are characterised by well defined features and texture of the spine, heart and 

abdominal organs.

The current implementation of DSVR is not designed for correction of large amplitude 

motion, including, large rotations and bending, due to the limited capture range of the 

employed gradient descent based optimisation methods, and therefore relies on outlier 

rejection in such cases. The qualitative study of DSVR reconstruction of fetal body for 100 

iFIND cases from 20-34 weeks GA range showed that large amplitude motion primarily 

affects datasets of subjects under 25 weeks GA. In future, this limitation can be addressed by 

application of CNN-based methods, as already proposed for rigid SVR fetal brain 

reconstruction [14], [15].
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We further demonstrated that DSVR outperforms both SVR and PVR for 3D placenta 

reconstruction. In future, introducing additional decoupling of maternal motion would 

potentially improve correction of large amplitude motion.

Although DSVR reconstructed volumes can be used for qualitative analysis, the question of 

volume-preservation for DSVR reconstruction still remains open. Quantitative 

measurements performed on DSVR reconstructed volumes can be influenced by various 

factors such as the position and shape of the fetal body in the template, number of stacks or 

CP spacing. This limitation should be addressed in future by introducing further model-

based constrains on deformation fields along with automation of template selection and 

masking steps.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Fetal MRI: examples of stacks with minor (a) and severe (b) motion corruption acquired 

during the same fetal exam and under the same orientation at different time points.

Uus et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. 
Example of a sequence of slices (a) acquired during the change of fetal trunk position and 

the corresponding SVR reconstructed volume (b). Note that bending deforms the shape of 

the spine and internal organs in both in-plane and through-plane directions.
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Fig. 3. 
Proposed DSVR reconstruction algorithm. The novel elements are highlighted by red 

outline.
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Fig. 4. 
An example of refinement of B-spline control point grid (d (q)) at each DSVR iteration 

(sagittal plane with respect to uterus).
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Fig. 5. 
Simulated experiment: original reference volume (X), one of the generated motion-corrupted 

stacks (S′), SVR (XSV R), PVR (XPV R) and DSVR (XDSV R) reconstruction results and 

their difference with the reference (coronal plane).
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Fig. 6. 
Example of motion correction for a minor motion dataset: motion corrupted stack, SVR, 

PVR and DSVR reconstructions (sagittal plane).
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Fig. 7. 
Comparison of SVR and DSVR in presence of non-rigid motion: original acquired slice (Yk) 

vs. slices simulated from SVR and DSVR (Ȳk). The yellow isolines delineate the structure in 

the original slice, and show misalignment with SVR reconstruction due to limitation of rigid 

motion correction. The problem is resolved by non-rigid motion correction in DSVR.
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Fig. 8. 
Example of motion correction for a severe motion dataset: motion corrupted stack, SVR, 

PVR and DSVR reconstructions (coronal plane).
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Fig. 9. 
CP spacing analysis: NCC between the original Y k*  vs. simulated (Ȳk) slices.
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Fig. 10. 
Example of motion correction for placenta: motion-corrupted stack, SVR, PVR and DSVR

+S reconstructed volumes (coronal plane).
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Fig. 11. 
Quality of DSVR reconstructions of fetal body region for 100 reconstructed iFIND cases vs. 

GA. Squares represent the average grade per week of GA, and bars represent the range of 

values.
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Table I
Stack Motion Corruption Assessment: Sequential Slice NCC.

Minor motion datasets Severe motion datasets

0.688 ± 0.071 0.475 ± 0.130
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Table II
Simulated Experiment: SVR, PVR and DSVR vs. Reference.

Method NRMSE PSNR NCC

SVR 0.119 ± 0.002 28.916 ± 0.479 0.938 ± 0.003

PVR 0.182 ± 0.009 25.602 ± 0.383 0.882 ± 0.009

DSVR 0.078 ± 0.008 32.560 ± 0.859 0.973 ± 0.006
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Table III
Simulated Experiment: SVR vs. DSVR TRE [mm].

SVR TRE [mm] DSVR TRE [mm]

2.279 ± 0.509 0.797 ± 0.158
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Table IV
Fetal Body Reconstruction. Leave-one-out Analysis: SVR, PVR, DSVR and DSVR+S.

Method NRMSE PSNR NCC

Minor motion group (10 datasets):

SVR 0.229 ± 0.023 24.328 ± 0.920 0.780 ± 0.084

PVR* 0.264 ± 0.050 22.438 ± 1.371 0.712 ± 0.120

DSVR 0.177 ± 0.021 26.764 ± 1.139 0.863 ± 0.038

DSVR+S 0.174 ± 0.025 26.764 ± 1.249 0.867 ± 0.043

Severe motion group (10 datasets):

SVR 0.275 ± 0.025 23.219 ± 0.861 0.646 ± 0.068

PVR* 0.280 ± 0.046 21.873 ± 1.436 0.633 ± 0.107

DSVR 0.222 ± 0.032 25.422 ± 0.619 0.831 ± 0.043

DSVR+S 0.214 ± 0.033 25.746 ± 0.597 0.844 ± 0.040

*
PVR comparison was performed on the patch level.
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Table V
Outlier Rejection Scheme Assessment: NCC Between (Yk) and (Ȳk) and Proportion of 

Excluded Slices.

Method NCC % of excluded slices

EM 0.828 ± 0.028 13.41 ± 2.88 %

EM + G-STR 0.839 ± 0.037 38.51 ± 15.28 %

EM + L-STR 0.834 ± 0.031 18.85 ± 5.17 %

EM + L-STR + G-STR 0.841 ± 0.036 35.59 ± 12.29 %

L-STR + G-STR 0.837 ± 0.039 30.19 ± 11.06 %
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Table VI
Placenta Reconstruction. Leave-one-out Analysis: SVR, PVR and DSVR (NCC).

SVR PVR* DSVR+S

0.639 ± 0.085 0.726 ± 0.045 0.792 ± 0.072

*
PVR comparison was performed on the patch level.
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