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Abstract

A key mechanism controlling cardiac function is the electrical activation sequence of the heart’s 

main pumping chambers termed the ventricles. As such, personalization of the ventricular 

activation sequences is of pivotal importance for the clinical utility of computational models of 

cardiac electrophysiology. However, a direct observation of the activation sequence throughout the 

ventricular volume is virtually impossible.

In this study, we report on a novel method for identification of activation sequences from 

activation maps measured at the outer surface of the heart termed the epicardium. Conceptually, 

the method attempts to identify the key factors governing the ventricular activation sequence – the 

timing of earliest activation sites (EAS) and the velocity tensor field within the ventricular walls – 

from sparse and noisy activation maps sampled from the epicardial surface and fits an Eikonal 

model to the observations.

Regularization methods are first investigated to overcome the severe ill-posedness of the inverse 

problem in a simplified 2D example. These methods are then employed in an anatomically 

accurate biventricular model with two realistic activation models of varying complexity – a 

simplified trifascicular model (3F) and a topologically realistic model of the His-Purkinje system 

(HPS). Using epicardial activation maps at full resolution, we first demonstrate that reconstructing 

the volumetric activation sequence is, in principle, feasible under the assumption of known 

location of EAS and later evaluate robustness of the method against noise and reduced spatial 

resolution of observations.

Our results suggest that the FIMIN algorithm is able to robustly recover the full 3D activation 

sequence using epicardial activation maps at a spatial resolution achievable with current mapping 

systems and in the presence of noise. Comparing the accuracy achieved in the reconstructed 

activation maps with clinical data uncertainties suggests that the FIMIN method may be suitable 

for the patient- specific parameterization of activation models.
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1 Introduction

Computational models of cardiac electrophysiology already show high promise not only as 

clinical research tools, but also as a modality for assisting in diagnosis [1] and treatment 

planning [52]. To gain further clinical utility, however, personalization of the models to a 

given patient’s electrophysiology is required based ideally on non- or minimally invasive 

acquired routine clinical data. Personalization procedures must also be sufficiently fast and 

automated to be compatible with clinical workflows and time scales.

As the key driver controlling cardiac function, personalization of the ventricular electrical 

activation sequence is of pivotal importance. It is known that initiation of the ventricular 

activation sequences begins at subendocardial coupling sites between the His-Purkinje 

system (HPS) and the ventricular muscle [30] typically referred to as Purkinje-Ventricular 

junctions (PVJs). Furthermore, the conduction velocity (CV) of electrical depolarization 

wavefronts within the ventricular wall is characterized by a spatially varying orthotropic 

tensor field [23, 34]. Thus, to determine the ventricular activation sequence the locations and 

relative timings of earliest activation sites (EAS), representing initiation sites mediated by 

PVJs, as well as the orthotropic velocity tensor field must be identified.

Currently, however, 3D mapping of the activation sequence through the entire myocardial 

volume of the ventricles is infeasible due to limitations in spatial resolution of 3D mapping 

systems [15] and ambiguities in the interpretation of extracellularly-recorded electrograms 

[13]. Even with advanced massively invasive experimental mapping techniques [33], only a 

relatively coarse panoramic view of the complete, volumetric activation sequence can 

currently be obtained. Therefore, minimally invasive mapping procedures are routinely 

performed that record activation maps for both the interior and exterior surfaces of the heart, 

termed endo- and epicardium respectively, at increasingly higher spatio-temporal resolutions 

[70]. Non-invasive inverse methods that indirectly infer epicardial activation maps from 

measurements taken at the body surface [54] have also been developed, but have not yet 

gained significant clinical relevance.

In general, such techniques, referred to as non-invasive electrocardiographic imaging 

(ECGi), attempt to reconstruct the spatio-temporal behavior of the electrical sources of the 

heart from electrocardiograms (ECGs) recorded from the body surface by solving the 

inverse problem of electrocardiography [29]. Solving this inverse problem is complicated by 

the non-uniqueness of the relation between myocardial sources and their signature outside 

the heart, recorded in the form of extracellular electrograms. The vast body of research 

found in the literature can be broadly categorized based on the regularization techniques 

used to rule out solutions that are unlikely on physiological grounds [66] and the model used 

for representing the cardiac sources, with the predominant source models being 

transmembrane voltage-based [32, 71], extracellular-potential based [61, 7] and activation/

recovery-based [68, 24, 31, 35]. Such models have pros and cons in terms of verifiability 
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with experimental data, the domains in which sources can be reconstructed (i.e. on endo- 

and epicardial surfaces or transmurally throughout the myocardial wall), and their accuracy 

in pathological scenarios such as the presence of infarcts [72] or more complex non-

physiological activation patterns such as arrhyhthmias [60]. For a comprehensive overview 

of these aspects of ECG imaging we refer to the recent review of Cluitmans et al [17].

Biophysically-detailed forward models based on mono- or bidomain reaction-diffusion 

equations are able to capture all known electrophysiological details of depolarization 

wavefront propagation. While these models are routinely used in electrophysiological organ-

scale models representing anatomy at a high degree of geometric fidelity [50, 10], they are, 

in general, computationally too demanding to be feasible in higher dimensional parameter 

exploration studies [45, 56]. In such applications, techniques based on the Eikonal equation 

[18] have been preferred as these models are substantially less costly to evaluate and their 

solution directly yields activation maps. Owing to the superior computational efficiency, the 

anisotropic Eikonal model appears a suitable choice for exploring the high-dimensional 

parameter space governing the ventricular activation sequence. Eikonal models have been 

successfully used to recreate activation maps from clinical surface recordings by 

constructing feasible HPS networks[20, 47] and assuming global constant conduction 

velocity.

In this study we develop methodology for identifying the ventricular activation sequence 

from limited sparse and noisy data sampled from the epicardial surface. We investigate the 

feasibility of the method using a ground truth forward model representing the ventricular 

activation by the anisotropic Eikonal equation. For evaluation, we rely on the computed, 

synthetic data rather than clinical data which are not yet available and may not be suitable at 

this point in terms of resolution for evaluation of the algorithm’s performance. A Fast 

Iterative Method (FIM) solver [27] was employed for solving the forward problem and a 

novel Fast Iterative Method Minimization (FIMIN) algorithm for solving the corresponding 

inverse problem was developed for identifying the governing input parameters of the 

forward model – the initiation timings of EAS’s and the velocity tensor field – which 

optimally fit the epicardial mapping data. An anatomically accurate human biventricular 

(BiV) model was used, either with a simplified trifascicular HPS representing only the main 

fascicles of a HPS or a topologically realistic HPS network, to generate high fidelity 

reference activation sequences. Using epicardial surface data extracted from the forward 

model at full resolution, we first demonstrate that a reconstruction of the 3D activation 

sequence is, in principle, feasible. The robustness of the method is then evaluated by 

reducing spatial resolution and adding noise. Our study results demonstrate that the FIMIN 

algorithm is able to fully recover 3D activation sequences from sparse epicardial activation 

maps within the margins of error of clinical data uncertainty. Considering the uncertainties 

in clinical data, the accuracy achieved suggests that the method may be suitable for the 

patient-specific parameterization of in silico models of ventricular activation in future 

clinical applications.
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2 Methods

2.1 Preliminaries/Definitions

The anisotropic Eikonal equation is given by the non-linear Partial Differential Equation:

∥ ∇ϕ x ∥2, D x = ∇ϕ x TD x ∇ϕ x = 1 ∀x ∈ Ω
ϕ x0 = g x0 ∀x0 ∈ S ⊂ Ω

(1)

on a domain Ω, where ||·||2,D(x) is the norm in the metric D(x), ϕ is the first arrival time for 

each point in space, and S are the initiation sites or EAS, from where wavefronts emanate at 

a time prescribed by g ∈ ℝk for k being the number of initiation sites. For the tensor field D, 

we need D ∈  for well-posedness, where  the set of symmetric positive definite tensors 

fields over the whole domain Ω. The special case D(x) = c(x)I for c ∈ ℝ with I being the 

identity matrix, is called the isotropic Eikonal equation. Throughout the paper, the 12-norm 

will be defined as ||·||2 = ||·||2,I. The The metric D(x) ∈ ℝn×n makes the anisotropic Eikonal 

equation not only dependent on the location of the wave, but also on its direction. In the case 

of electrical propagation in the heart, D(x) ∈ ℝ3×3 is commonly referred to as the 3D 

conductivity metric or diffusion tensor. It is given by

D(x) := υf
2(x)f(x) ⊗ f(x) + υs2(x)s(x) ⊗ s(x) + υn2(x)n(x) ⊗ n(x), (2)

and encodes the squared conduction velocities along the tissue’s eigenaxes where f(x), s(x) 

and n(x) are the fiber, sheet and normal vectors respectively and νf(x), νs(x) and νn(x) 

encode their respective propagation velocities.

Computing ϕ(x) given g(x) and D(x) is called the forward anisotropic Eikonal problem. In 

contrast, computing g(x) and or D(x) from data ϕ(x) observed on a subdomain ΩO is called 

the inverse anisotropic Eikonal problem. As conduction velocities in the ventricular 

myocardium are known to be orthotropic with velocity ratios of υf : υs : υn ≈ 0.6 : 0.4 : 0.2 

m/s, the focus of this study will be solely on the anisotropic inverse Eikonal problem. Except 

for very restricted cases, the general inverse Eikonal problem is considered ill-posed.

To find D or g, we start with a common optimization approach

min
D, g∫Ωo

ϕ(x) − ϕ(x) 2dx

s . t . : D(x) ∈ S+ +
n , ∇ϕ(x) 2, D(x) = 1 ∀x ∈ Ω

ϕ(x0) = g(x0) ∀x0 ∈ S

(3)

where ΩO refers to the observation domain and ϕ x  are the observed arrival times in ΩO. Eq. 

(3) states that we want to minimize the squared distance of computed arrival times 

ϕ x − ϕ x  over the observable domain ΩO, assuming that activation times ϕ(x) are 

compatible with the anisotropic Eikonal condition in (1) and that D(x) is in the set of 

symmetric positive definite matrices on the whole domain Ω:
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S+ +
n = D x ∣ ∀z ∈ ℝn\0:zTD x z > 0 (4)

2.2 Forward Problem - The Fast Iterative Method

For finding the solution to the anisotropic Eikonal forward problem, ϕ(x), the FIM algorithm 

of Fu et al. proposed in [27], was implemented as an efficient method for computing an 

approximate solution of the anisotropic Eikonal equation from Eq. (1). As details of the FIM 

implementation matter with regard to the inverse FIMIN method, we briefly summarize the 

underlying key concepts here. At the heart of the FIM is the local update rule, computing a 

vertex value given the three other vertex values inside a tetrahedron.

For this purpose, the 3D-domain Ω is approximated by a Mesh M = {V, T}, consisting of a 

discrete set of vertices V = ∪i v i ∈ ℝ3, combined with a discrete set of tetrahedra T = ∪j Tj, 

consisting of four vertices each Tj = (v j1, v j2, v j3, v j4). As basis functions, we assume 

Lagrangian p 1 elements, i.e. ϕ is linear inside each element, values are defined at the 

vertices spanning the tetrahedra, the gradient ∇ϕ and the Diffusion tensors are piecewise 

constant over the whole domain Ω. There is exactly one constant diffusion Tensor Dj 

associated with each Tj. For convenience the minimum arrival time associated to a vertex v i 
is written as ϕ(v i) = ϕi.

Barycentric coordinates are then used to define an arbitrary point inside the simplex 

Δk(triangle k = 3, or tetrahedron k = 4 in our case):

Δk = λ1, …, λk
T ∑i = 1

k λi = 1 ∧ λi ≥ 0 (5)

Using λ ∈ Δ4, the parametric definition of ϕ(x) inside an assumed linear tetrahedron Tj = (v 

1, v 2, v 3, v 4) is therefore:

x = ∑i = 1
4 λivi, ϕ(x) = ∑i = 1

4 λiϕi

This way, we can compute at any point f 1,2,3, its associated value ϕ 1,2,3 on the triangle 

spanned by v 1, v 2, v 3 and the vector e Δ from this point to v4 as:

f1, 2, 3 = ∑i = 1
3 λivi, ϕ1, 2, 3 = ∑i = 1

3 λiϕi, e∆ = v4 − ∑i = 1
3 λivi

The local update rule inside one tetrahedron, which defines the travel time from any point on 

the face f 1,2,3 to the vertex v 4, is given by

ϕ4 − ϕ5 = v4 − ∑
i = 1

3
λivi 2, Di

= eΔ
T DjeΔ > 0
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In order to update a single node v 4, given all other vertex values inside a single tetrahedron 

ϕ 1, ϕ 2, ϕ 3, we want to find the point f 1,2,3that minimizes the travel time from the face, to 

the vertex v 4 in the metric Dj. This can be formulated as the minimization problem:

ϕ4
I ϕ1, ϕ2, ϕ3 = minλ ∑i = 1

3 λiϕi + eΔ
T DjeΔ, s . t .: λ ∈ Δ3 (6)

The computation is visualized in Fig. 1. If we set λ3 = 1 − λ1 − λ2 and solve Eq. (6) w.r.t. 

one λi, while the other barycentric coordinate is called λk, then the optimal solution to the 

unconstrained problem is the solution to the quadratic problem

λi1, 2 =
−p1, 2 ± c

p1, 1p2, 2 − p1, 2
2

p1, 1 − c2
p1, 1

(7)

with

w1 = v3 − v1; w2 = v3 − v2; w3 = v4 − v3

z1 = wi −
w2

TD w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1
wjTD w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1

wj

z2 = w3 −
w3

TD w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1
wjTD w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1

wj

c = ϕi − ϕ3 −
wiTDj w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1
wjTDj w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1

pa, b = zaTDjzb

(8)

Once we found λi, computing λk for k ≠ i becomes:

λk = − w3 + λiwi
TDj w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1

wjTDj w2 ϕ1 − ϕ3 − ϕ2 − ϕ3 w1
(9)

The derivation that arrives at this conclusion is given in the Appendix in Sec. A.2. The actual 

minimal solution of λ1 and λ2 in Eq. (6) is a constrained quadratic minimization problem, 

for which special cases may arise when solving it unconstrained according to Eq. (7) as Fu 

et al. already stated:

If no root exists, or if λ1 or λ2 falls outside the range of [0,1] (that is, the 
characteristic direction does not reside within the tetrahedron), we then apply the 
2D local solver used in [26] to the faces Δ1,2,4, Δ1,3,4 and Δ2,3,4 and select the 
minimal solution from among the three.

([27])

where the mentioned root refers to the root term in Eq. (7). The referenced solution for the 

2D-case over all faces can be defined as
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ϕ4
II ϕ1, ϕ2, ϕ3 = mini, k ∈ 1, 2 , 2, 3 , 3, 1 minλ λiϕi + λkϕk

+ ∥ v4 − λivi + λkvk ∥ 2, Dj, s . t .: λ ∈ Δ2
(10)

We can distinguish between all possible cases therefore:

ϕ4
∗ =

ϕ4
I ϕ1, ϕ2, ϕ3 if λ ∈ Δ3 according to Eq ⋅ 7 and 9

ϕ4
II ϕ1, ϕ2, ϕ3 if λ ∈ Δ2

mini ∈ 1, 2, 3 ϕi + ∥ v4 − vi ∥ 2, Dj else

(11)

v 4 is in most cases part of multiple tetrahedra and the minimum arrival time ϕ 4 is therefore 

the minimum arrival time over all tetrahedra Tj that v 4 is a vertex of (v 4 ∈ Tj):

ϕ4 = minj ϕ4
∗ ϕ1, ϕ2, ϕ3  s . t .: v1, v2, v3, v4 ∈ T j (12)

To globally compute the Eikonal solution, FIM initializes all vertices with starting times to 

their value and adds their neighbors to the active list (AL), while all other arrival times are 

set to ∞. The active list (AL) keeps track of all points to be updated according to Eq. (12) in 

the next iteration. Converged points are removed from the active list, while points are added 

that received an update. If one or more of ϕ 1, ϕ 2 and ϕ 3 are not yet computed (meaning 

their value is still ∞ from the initialization), Eq. (6) and (12) still work if we define 0 ·∞ = 0 

for this sake. Once the value ϕ4 has been updated, all points sharing a tetrahedron with υ4 

are recomputed using Eq. (12) and are added to the AL if their activation time decreased. 

The convergence property of the FIM alg. removes a point from the AL if the change 

between two subsequent iterations, k and k + 1, is smaller than ε: FIM can be efficiently 

computed on single instruction, multiple data (SIMD) architectures, such as GPUs, thanks to 

the easy parallelization of the updates of all points in the AL. However, the values needed 

for the update of each vertex need to be buffered to avoid race conditions. This can lead to 

multiple necessary subsequent updates of the same nodes until convergence is reached, 

resulting in a sublinear speedup of the algorithm.

ϕ4
k x − ϕ4

k + 1 x < ϵ (13)

Relaxing constraints on ϵ can be used to reduce computational costs at the expense of 

precision, or to avoid small rounding errors due to limited floating point precision. However, 

with regard to the inverse FIMIN algorithm we introduce in Sec. 2.3, the choice of e is 

crucial. An outline of the computations done by the FIM are given in Alg. 1. We define the 
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computed solution of the FIM algorithm, given a mesh M, starting points S, their respective 

initiation timings g(x) and diffusion tensors D(x) as:

ϕ x = FIM D, g, M, S x (14)

Since we are using these local Eikonal updates in each finite element, the final solution 

converges to the true Eikonal solution and thus the Eikonal condition in Eq. (1) holds up to a 

finite error once the FIM algorithm has converged.

2.3 Inverse Problem - Gradient Computation

For the inverse solution of the Eikonal equation, where the unknown values for g(x) and S 
are solved from a known solution ϕ(x), the gradient of FIM is required. Additionally, the 

local update rules Eq. (6) and Eq. (7) for each point must be further considered. In order to 

derive the gradient w.r.t. an optimizable variable y, we define all nodal values ϕi(y) and 

diffusion tensors Dj (y) as functions of y Given the optimal choice of λ1 and λ2, the 

derivative of (6) w.r.t. y and a diffusion tensor function D(x, y) = Dj of the tetrahedron x ∈ Tj 

becomes:

∂ϕ4
∂y ϕ1, ϕ2, ϕ3 =

∑i = 1
3 ∂λi

∂y ϕi + λi
∂ϕi
∂y + 1

2 eΔ
T DjeΔ

2
∂eΔ

T

∂y DjeΔ + eΔ
T ∂Dj

∂y eΔ if λ ∈ Δ3

∑i = 1
2 ∂λi

∂y ϕi + λi
∂ϕi
∂y + 1

2 eΔ
T DjeΔ

2
∂eΔ

T

∂y DjeΔ + eΔ
T ∂Dj

∂y eΔ if λ ∈ Δ2

∂λi
∂y ϕi + 1

2 eΔ
T DjeΔ

2
∂eΔ

T

∂y DjeΔ + eΔ
T ∂Dj

∂y eΔ else

(15)

with 
∂e∆
∂y = v4 − ∑i = 1

3 ∂λi
∂y vi. In order to derive Eq. (7), we may need to derive each variable 

of the quadratic problem, assuming dependency of each variable on y. The exact derivations 

of each of the variables can be found in Sec. A.3.

The derivation (∂ϕi)/(∂y) is recursively acquired by applying the chain rule (i.e. 

backpropagation) along the path of updates we computed in the forward FIM solution, until 

we computed all necessary updates. For the case that the solution of Eq. (12) of several 

tetrahedra share the same arrival time, there is no single unique solution for 
∂λi
∂y  Our 

optimization uses the superdifferential in these cases, which is the supporting hyperplane 

above the minimum functions in (12). The superdifferential is the inverse of the 
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subdifferential as defined in [57] (p. 300 ff), which is needed since we are using the 

minimum function:

Algorithm 1: Fast Iterative Method (FIM) [36]

Input : Diffusion Tensors D, Starting Points S, Mesh M with Neighborhood Operator 

Initiation Timings Function g(v)

Output: First arrival times ϕ, FIM Updates FIMU

∀v 0 ∈ V(S): ϕ(v 0) := g(v 0)

∀v ∈ V(M) \ S : ϕ(v) := ∞

AL = ∪
∀v0 ∈ V S

N v0

FIMU = ϕ

while AL ≠ ϕ do

      for v i ∈ AL do

          v j, v k, v l ∈  (v i)

          ϕ new,i := ϕ 4 (ϕj, ϕk, ϕl) // Compute local eikonal solution (Eq. (12))

          ϕ old,i := ϕ(v i)

          ϕ(v i) := ϕ new,i

          FIMU = FIMU ∪ (ϕ new,i, v 4, λ)

          //If point has converged

          if |ϕ new,i − ϕ old| < ε then

              AL = AL \ v 4 // Remove converged from AL

              // Check if neighboring points are converged

              for ∀v n ∈  (v i) do

                  v j, v k, v l ∈  (v i)

                  ϕ new,n := ϕ 4 (ϕj, ϕk, ϕl) // Eq. (12)

                  if |ϕ new,n − ϕ(v n)| ≥ ε Λ ϕ new < ϕ(v n) then

                      AL = AL ∪ v n // Add to AL if not converged

                  end

              end

          end

      end

end

Grandits et al. Page 9

J Comput Phys. Author manuscript; available in PMC 2020 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



∂ϕ x = v ∈ ℝN ∣ ϕ z ≤ ϕ x + ⟨v, z − x⟩ ∀z ∈ domϕ (16)

Fig. 2 demonstrates how the superdifferential looks like for an 1D-minimum function, where 

the function is not continuously differentiable. Any choice of superdifferential ∂ϕ ∈ ∂ϕ is 

feasible for the optimization. These superdifferentials become relevant inside elements 

where multiple wavefronts arrive at the same time.

The FIM Alg. is a Gauss-Seidel method, meaning that nodes will be updated multiple times 

until the final, minimum arrival time is calculated. Up until now, we only considered this 

final value, which is sufficient for the forward problem. However, for the differentiation of ϕ 
4 in Eq. (15), non-trivial cases may occur that might require the results of previous updates 

of ϕ 4. Consider a simple example 2D-mesh with 3 triangles and 4 nodes υ 1 through υ 4 and 

their respective arrival times ϕ 1 through ϕ 4, visualized in Fig. 3. In Fig. 3a, the update 

directions (similar to e Δ in Eq. (6), but in 2D) are marked as arrows for the first update of 

each node. In Fig. 3b, we now assume that ϕ 2 receives an update from ϕ 4, which can 

happen for very non-smooth and anisotropic Ds. This update of ϕ 2 will result in possibly 

additional updates of ϕ3, ϕ 4 and subsequently ϕ 2, until convergence according to Eq. (13) is 

reached. If we assume D ∈ S+ +
2  for all triangles, then the update directions can never form 

a full circle, since for any update direction it holds that ∀e i,j ≠ 0: ||e i,j||2,D > 0. To derive 
∂ϕ2
∂y  properly, we need to distinguish between different updates of ϕ 2. Let ϕi

k denote the k-th 

update of ϕi and f(ϕi, ϕj) = Eq. (6) (FIM Update). Then (assuming ϕ0
1 = 0):

ϕ2
2 = f ϕ3

1, ϕ4
1 = f f ϕ1

1, ϕ2
1 , f ϕ2

1, ϕ3
1 = f f ϕ1

1, f 0, ϕ1
1 , f f 0, ϕ1

1 , ϕ3
1

(17)

To this end, we use a forward method of differentiation, beginning from the starting points x 

0 ∈ S and applying the gradient in the same update order as the original computation of ϕj to 

compute 
∂ϕj
∂y . This way, all ϕj-values reflect the exact values and differentials at any given 

iteration of the algorithm. Instead of computing the forward solution a second time, we 

remember 250 Gauss-Seidel iterations for this purpose by using ring-buffers, which was 

sufficient for all experiments conducted. To avoid duplicate evaluation, we remember the 

values of λi from Eq.(6) for each point and the vertices υ j as well as their values ϕ j at the 

time of the minimal evaluation. The backpropagation starts at the starting points v 0 and 

applies the chain rule along the path of updates we computed in the forward FIM solution. 

Remembering the Gauss-Seidel updates increases the required memory, but in return speeds 

up the computation. This however may lead to very high memory consumption for large 

meshes, in which case an implementation that computes the forward solution and all 

derivatives jointly would be preferrable.
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2.4 Optimization

Moving from the continuous optimization problem in Eq.(3) to the discrete domain, we 

define our main optimization problem using an arbitrary given function ϕ on a measurable 

discrete surface ΩO:

minD, g
1
2 ∑

v ∈ Ωo
(ϕ(v) − ϕ(v))2 + γ R (D, g)

s . t .: D(x) ∈ S+ +
n , ϕ(x) = FIM D, g, M, S)(x)

(18)

where ϕ(y) and ϕ are the vector of nodal vertex values ϕ i from the current model and 

reference respectively and R is a regularizing function, penalizing unlikely solutions. We 

refer to the sum as the sum of squared errors (SSE).

To properly derive all final points 
∂ϕi
∂y , we apply all saved updates FIMU in their original 

order and derive each updated value using Eq. (15). The computation takes only a fraction of 

the original time of the FIM algorithm, since a lot of computations in the original FIM 

algorithm are dedicated to checking if the values of vertices have converged. An outline of 

the procedure is given in Alg. 2.

All that is left for our optimization in Eq. (18) to work, is to define a proper regularization 

function R. The proper choice of R has been a long debated topic in multiple fields for 

inverse problems, but we used an arguably very popular choice for regularzing the diffusion 

tensors D, that has been successfully used in many inverse problems, such as image 

denoising: The Huber regularization [59], a smoothed Total-Variation function, 

R D, g = ∇D H, α , where ||·||H,α denotes the Huber norm defined as:

∥ x ∥H, α =

1
2 ∥ x ∥2 if ∥ x ∥ ≤ α

α ∥ x ∥ − 1
2α else

To compute ∇D we use Gauss’ theorem since D is defined as a piecewise constant function. 

Details how we approximated this gradient are given in the Appendix Sec. A.4.

Several algorithms are suitable to optimize our objective function in (18), but the number of 

iteration steps within a given amount of time is severely limited by the size of the mesh and 

the number of parameters. The original problem in Eq. (18) can be reformulated as the non-

linear least squares problem, given the parameter set y ∈ C, where C is a convex constraint 

set:

min
y∈C

1
2 ∥ ϕ(y) − ϕ ∥2, Ω0

2 + γ
2 ∑j = 1

T ∥ ∇ D y j ∥ H, α = min
y ∈ C

1
2 ∥ r(y) ∥2, Ω0

2

+ γ
2 ∑j = 1

T ∥ ∇ D y j ∥ H, α
(19)
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with γ being the regularization weight. Only errors on the measurement domain Ω0 

contribute to the norm · 2, ΩO
2 = ∑v ∈ ΩO · 2 · D is our linear diffusion tensor assembly 

operator, creating the tensors D from the elements in the parameter vector y. We define the 

gradients on the diffusion tensors as the sum of variation of the tensor’s elements:

D y j =
a d e
d b f
e f c

∇ D y = ∑
ξ ∈ a, …, f

∇ξ

where j denotes the diffusion tensor Dj of Tj and each element is a function of y.

We use a constrained Gauss-Newton method to optimize Eq. (19), by linearizing the 

function around the current value y k using a first-order Taylor series expansion and 

discarding higher order terms:

min
y∈C

1
2 ∥ r(y) ∥2 + γ

2 ∑j = 1
T ∥ ∇ D y j ∥ H, α

≈ min
y∈C

1
2 ∥ r yk + J yk y − yk ∥ 2 + γ

2 ∑j = 1
T ∥ ∇ D y j ∥ H, α

(20)

where J(y k) denotes the Jacobian matrix of r at the point yk.

The size of the Jacobian easily exceeds the available memory, but since only few of the 

activation times are dependant on single variables and diffusion tensors, the Jacobian matrix 

can be represented in a memory-efficient sparse matrix format.

Algorithm 2: Compute FIM Gradients

Input : Diffusion Tensor Operator (y), Starting Points S, Mesh M

            Activation Times ϕ

            Differential Operator ∂

            FIM Updates (Eq. (12)) FIMU

Output: Activation Times Derivation ∂ϕ
∂ D

∀v j ∈ M \ S : ϕj := ∞

∀v j ∈ M : 
∂ϕj
∂yi

:= 0

for ϕu, v n, λ ∈ FIMU do

    ϕn :=ϕu // Reapply Update

    
∂ϕn
∂ D : = f ∂D

∂yi
, D y , ϕ, ∂ϕ

∂yi
, λ  // Calculate f = Eq. (15)

end
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Alg. 2 is also applicable to optimize the activation timings g if the operator D(y) is swapped 

with g(y). The constrained Gauss-Newton optimization problem in Eq. (20) is a convex 

problem, which we solve by using a bounded limited-memory BFGS (L-BFGS) method 

[12]. In Alg. 3, the activation times derivation and the constrained Gauss-Newton method 

are combined to iteratively adapt the parameter set to the minimize Eq. (18). The step-size 

parameter β is found by using the Armijo backtracking line search [2].

Algorithm 3: FIMIN

Input : Initial Parameter set y 0 ∈ ℝK

            Diffusion Tensor Operator (y)

            Convex Constraint Set C

            Differential Operator ∂ D
∂y

            Desired Activation Map ϕ

Output: Optimized Parameter Set y n

while not converged do

    r(yk) = ϕ ( (y k)) − ϕ // Compute Residuals

    i ∈ V(M) : J i,j(y k) = 
∂ϕi
∂yj

 // Build Jacobian using Alg. 2

    yk + 1 = min
y ∈ C

1
2 r yk + J yk y − yk 2, ΩO

2 + γ
2 ∑j = 1

T ∇Dy j H, α // Constr. Gauss-

Newton

    y k+1 = y k − β (y k − yk + 1)

end

The L-BFGS method is limited to box constraint sets C b, but the problem can also be solved 

for any convex constraint C with an unconstrained optimization algorithm by defining the 

Moreau- enveloped problem of Eq. (20) as:

f(y) := miny
1
2 ∥ Ky − b ∥2, ΩO

2 + δC y + 1
2 ∥ y − y ∥2, M

2 + γ
2 ∥ Ay ∥2

2
(21)

where δ C(x) is the indicator function on C and M = 1
τ I − KTK − γATA. The Huber 

regularization can not be used for the regularization term γ
2 Ay 2

2 without any modifications. 

For this purpose, we approximate the Huber H function locally around the current point y k 

by defining
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∥ x ∥Hk, α =

1
2 ∥ x ∥2 if ∥ xk ∥ ≤ α

α ∥ x ∥2
∥ xk ∥ − 1

2α else

Our total regularization operator is therefore A = Hk∇D. Since we require M ∈ S+ +
n  (see 

Eq. (4)), τ needs to be chosen depending on A and J. To ensure positive definiteness of M, 

we chose τ = (||KTK|| + γ||ATA||)-1. The optimal choice of y in Eq. (21), yields a proximal 

point algorithm returning a feasible point:

y = projτC y − τKT Ky − b Ωo − τγATAy

where projτC is the projection operator on the convex set C. The gradient direction of this 

Moreau-envelope is:

∇f y = y − y

By setting K = J(y k) and b = J(y k)y k − r(y k), we can use Eq. (21) together with a proper 

step-size backtracking to optimize the original problem in Eq. (20) for convex constraints C. 
More details about the Moreau-enveloped problem can be found in [14] (p. 29 ff).

2.5 Benchmarks

Performance of the proposed optimization method was evaluated by solving a series of 

benchmark problems of increasing complexity. Fully characterized reference solutions ϕ for 

ventricular activation sequences for a given domain Ω were generated by defining an 

orthotropic diffusion tensor D and initial activation Ŝ with initial timings g. Data observed at 

the outer surface of the domain (ΩO ⊂Ω) were used then as inputs for the inverse FIMIN-

based optimization. Starting from various default assumptions we attempted to identify 

either the eigenvalues υ f, υ s and υ n of the velocity tensor D, as well as initiation timings 

ϕ(v 0) on S, or both.

Two setups were considered. First, a simple computationally inexpensive 2D tissue sheet 

was generated that allowed for sufficiently short simulation cycles useful in identifying 

fundamental algorithmic issues and devising strategies of how to address these. Secondly, an 

anatomically accurate human biventricular (BiV) model with physiologically realistic 

activation sequences was utilized to evaluate the method’s ability to identify the parameters 

governing the ventricular activation sequence from limited observations recorded from the 

epicardial surface.

2.5.1 2D tissue sheet—A simple 2D sheet of size 2 × 2cm2 was discretized at 1mm 

resolution, yielding a small grid, which was triangulated using Delaunay triangulation into 

722 triangles (see Fig. 4 A)). In [25] it was shown that, using an Eikonal model, a spatial 

resolution of 1mm is capable of capturing the most important features of wavefronts for 
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anisotropy ratios found in cardiac applications. An arbitrary, but smooth, diffusion tensor 

field D with EAS at the tissue’s center was used for generating a reference activation 

sequence ϕ by solving Eq. (18) using FIM for triangular domains. Data along the boundary 

of the domain ΩO were used to identify D(x) by optimizing according to Eq. (18).

2.5.2 Human biventricular model—A human biventricular (BiV) anatomy model was 

reconstructed from an end diastolic 3D balanced steady state free precession (SSFP) cardiac 

magnetic resonance imaging acquisition in a sagittal orientation with whole-heart coverage 

and an isotropic resolution of 1.3 mm. Details on the model building process have been 

reported previously elsewhere [3, 19],but are briefly summarized here. A tetrahedral finite 

element mesh was generated [53] from a segmented image stack at an average resolution of 

880μm (Fig. 5 A, top panel). Fiber architecture was incorporated assuming a linear rotation 

of fiber angles from — 60° at the epicardium to -60° at the endocardium using a rule-based 

method[4] (Fig. 5 A, bottom panel). This resulted in a BiV model consisting of ~ 5 · 105 

nodes and ~ 2.6 · 106 tetrahedral elements. To ease computational load, the original model 

was downsampled to an approximate resolution of about 1.3mm with ~ 1.1 · 105 nodes and ~ 

5.8 · 105 tetrahedral elements.

Reference Solutions: The forward model for generating the ventricular activation sequence 

was based on the following considerations. Both anatomical [21, 46] and experimental [23] 

mapping studies that utilize ex vivo human hearts provide evidence that the electrical 

activation of the ventricles is initiated by the HPS [30] with EAS occuring at PVJs. PVJs 

within a healthy human LV can be approximated by a tri-fascicular conduction system [58] 

consisting of three major fascicles located high on the anterior paraseptal wall, x LV,a, in a 

central area at the septal endocardium, x LV,s, and in a posterior paraseptal area at about one 

third of the LV long axis above the apex, x LV,p. Similarly, in the RV fascicles were assumed 

to be located low on the the septal endocardium, x RV,s, at the base of the pulmonary trunk, x 

LV,p, and at area high on the anterior wall near the junction of the right atrium, x RV,a. Spread 

of activation from EAS occurs at much higher CVs within the subendocardial layer than in 

the bulk myocardial wall due to the fast-conducting properties of the Purkinje network [22] 

or by a more abundant expression of sodium channels in subendocardial myocytes [55]. 

Tissue patches surrounding EAS are asumme to activate instantaneously.

Size, location, and timings of the EAS determining S and g are therefore key determinants 

shaping the activation sequence of the LV, as well as the prescribed orthotropic CVs within 

the domain. Thus, two different activation sequence models were used that both 

approximated the HPS with different degrees of fidelity: a topologically realistic model of 

the HPS with a larger number of PVJs (BiV- HPS), and a simpler trifascicular model 

(BiV-3F) comprising of only the three main fascicles in LV and RV. The BiV-HPS topolgy 

was obtained by starting with a manually delimited, scanner-based rabbit HPS and 

transferring it to the human mesh with universal ventricular coordinates[6]. Sizes and 

locations of EAS in S are indicated in Fig. 5 B-C. The six distinct EAS, x LV,a, x LV,s, x LV,p, 

x RV,a, x RV,s, x RV,p, consisted of ~ 230 discrete nodes.
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Reference solutions for BiV-HPS and BiV-3F model were generated using a set of default 

parameters that produce physiological activation patterns in line with measurements in 

humans [23]. In both cases, CVs were chosen homogeneously with υ f = 0.6 m/s, υ s = 0.4 

m/s,υ n = 0.2 m/s, respectively, except for a subendocardial layer where a higher isotropic 

CV was prescribed with υ f = υ s = υ n = 1.5 m/s. In the BiV-HPS model, endocardial 

activation is governed by the topology of the HPS network, subendocardial and myocardial 

definitions of CV within the orthotropic diffusion tensor D, and transduction delays across 

PVJs when thin essentially 1D fibers of the HPS network initiate propagation in the large 

mass of the ventricular myocardium [11]. Initiation timings of PVJs therefore ranged from 

0.58 ms up to 38.76 ms. Activation of the BiV-3F model was initiated by prescribing EAS 

timings, in the LV at t 0 = 0 ms, 7 ms and 3 ms to x LV,s, x LV,a and x LV,p fascicle, 

respectively, and in the RV at t 0 = 1 ms 9 ms and 15 ms to x RV,s, x RV,a and x RV,p fascicle, 

respectively.

Optimization: Unlike for the 2D sheet, no attempts were made to identify eigenvectors and 

eigenvalues of D for all elements in the mesh as the high dimensionality of this problem 

would render the optimization prohibitively expensive. Rather, we subdivided the mesh into 

N partitions and identified in each partition i a set of CVs υfi, υsi, υni. That is, the 

eigenvectors f j, s j, n j of all Dj were considered given in each tetrahedral element j and 

optimization was performed only w.r.t. to the CVs in one partition i, i.e. the optimized CVs 

in a tetrahedron j υj,fi, υj,si, υj,ni were identical for all tetrahedra in partition i. The velocity 

tensor D in tetrahedra j of partition i is given then as

Di, j = υfi
2 fj ⊗ fj + υsi

2 sj ⊗ sj + υni
2 nj ⊗ nj

where Dj belongs exactly to one partition i. In addition, to limit the amount of anisotropy 

introduced during optimization, constraints were imposed on the admissible minimum and 

maximum CVs chosen as υmin = 0.10m/s and υmax= 1.75m/s. This limited the maximum 

possible ansiotropy ratio 
υmax
υmin

 to < 17.5. Additionally, the Huber regularization for this 

example is calculated on the conduction velocities, i.e. we regularize ∇υ f/s/ni The 

optimization problem for the BiV model is therefore

minυfi, υsi, υni, g
1
2 ∥ ϕ υfi, υsi, υni, g − ϕ ∥ 2, ΩO

2 + γ
2 ∑j = 1

T ∥ ∇ Dj υfi, υsi, υni ∥ H

s . t .: D ∈ S+ +
n , ϕ(x) = FIM D υfi, υsi, υni , M, S g (x),

υmin < υi < υmax

(22)

The epicardial surface ΩO of the BiV model was spanned by ≈ 1.4 · 104 discrete nodes. 

Optimization of the initiation timings ϕ(x 0) of PVJs in the BiV-3F was performed for each 

discrete node separately.

The partitioning between BiV-3F and BiV-HPS models differed. In the BiV-3F model only 

N = 2 partitions were used, the endocardium and the remainder of the heart, whereas in the 

BiV-HPS model N = 100 partitions of equal size were used that were randomly located 
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throughout the domain Ω. Partitioning in the BiV-HPS case was performed by converting the 

tetrahedral mesh into an unweighted dual-graph, where an edge is equal to a face connecting 

two tetrahedra, and applying then the min-edge-cut algorithm as implemented in the METIS 

library [37].

2.5.3 Robustness—Real world measurements are limited in terms of spatio-temporal 

resolution and afflicted by uncertainties. With regard to measuring epicardial activation 

patterns, spatial location of recording sites, electrogram fractionation and associated 

difficulties in reliably deriving a marker representing the instant of local activation, and 

noise are the main sources of error. To probe the robustness of the FIMIN algorithm against 

these errors, the BiV benchmarks were repeated in presence of measurement errors and with 

undersampled data. Original reference data ϕ were perturbed in two different ways:

1. Undersampled data were generated by selecting a subset of observed points on 

ΩO, ΩO ⊂ ΩO. The remainder of points on Ω0 were generated from ΩO by inverse 

distance weighting.

2. Measurement errors were introduced by perturbing observed data by adding a 

normal distributed random noise with zero mean and σ standard deviation:

∀v ∈ Ω0 :ϕ(v) = ϕ(v) + N (0, σ) . (23)

where σ was chosen at the order of typically used temporal sampling intervals up to 8 ms.

3 Results

3.1 2D-Sheet

To demonstrate the general applicability of the FIMIN algorithm, we allowed the maximum 

degree of freedom by optimizing each element of every D seperately with no constraints 

other than D being required to be a metric (see Eq. (18)). Data at the observation domain 

were generated by initiating a wavefront at the tissue center with D defined by the 

eigenvectors illustrated in Fig. 4 A and a homogeneous set of CVs υf and υs given as 0.6 and 

0.34 m/s. To provide a more realistic and continuous scenario, D was slightly smoothed to 

ease optimization. Additionally, the 2D experiments also considered the eigenaxes of D to 

be unknown and optimizable. We optimized D by using the FIMIN Alg. 3 and completely 

random initial CVs within the range υf,0, υs,0, ∈[0.15, 0.98]m/s. The initial random D and 

the corresponding initial activation sequence without optimization is shown in Fig. 4 B. 

Optimization with the FIMIN, without any regularization (γ = 0) yielded an optimal, zero 

energy solution, but with a highly anisotropic and non-smooth D (Fig. 4 C). This can be 

attributed to the fact that FIM gradients track the wavefront and compute the influence of 

changing D on each vertex of the domain along the geodasic paths from an initial starting 

point. Since the gradient is propagated along the geodesic paths and there is no cost 

associated with errors outside ΩO, many geodesic paths collapsed into a single path. 

Diffusion tensors that did not fall on any geodesic path were not updated as no gradients 

were propagated across them. Such highly anisotropic and non-smooth D s are a rather 
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unlikely solution to the problem, even though they may perfectly approximate the target 

function ϕ on ΩO.

As shown in Fig. 4 D, already with a low value of γ = 5 · 10-3 the resulting D provides a 

much smoother solution closer to the original diffusion tensor field (compare Fig. 4 C and 

D).

The 2D toy example demonstrated that the ill-posedness of the problem could not be 

overcome without a good regularization of the objective function. While still not perfect, the 

regularized solution in Fig. 4D provides a less complex and much more likely D than the 

unregularized optimal solution in Fig. 4C and demonstrates the viability of our approach. 

We tried two other, probably more physiological plausible, 2D experiments that can be seen 

in the Appendix, Sec. A.1, Fig. A1 and Fig. A2.

3.2 Biventricular Models

In the BiV anatomy model with a given fiber and sheet architecture (Fig. 5A) reference 

activation sequences were generated with the BiV-3F and BiV-HPS configuration (see Fig. 

5B-C), respectively. Using FIMIN we attempted to identify the timings ϕ(x 0) and velocities 

υ f, υ s and υ n in each of the N partitions of the myocardium from measurements of ϕ, taken 

at the epicardial surface Ω0 only. Eigenvectors of the D, f (x), s(x) and n(x), were considered 

given.

FIMIN was initialized assuming that activation is initiated at all EAS at the same time, i.e. 

ϕ(x 0) = 0 ms was chosen. The initial velocities for all partitions were set to 0.93 m/s, 0.66 

m/s and 0.54 m/s for υ f,i, υ s,i andυ n,i respectively. Note that these initial velocities differed 

significantly from those used for computing the reference solution in terms of both 

magnitudes as well as the ratios between them. Further, no distinction was made between the 

orthotropic myocardium (0.6, 0.4 and 0.2 m/s for υ f, υ s and υ n, respectively) and the much 

faster conducting isotropic subendocardial layer (1.5 m/s).

Optimizing Eq. (22) w.r.t. velocities υ f,i, υ s,i and υ n,i and EAS timings ϕ(x 0) proved to 

successfully reduce the error on both epicardium Ω0 and myocardium Ω. A comparison of 

activation isochrones of initial and optimized model to the reference model is shown in Fig. 

6 for both 3F and HPS model. The activation sequence ϕ HPS(x) is significantly more 

complex than ϕ 3F(x). Owing to the larger number and the smaller sizes of EAS’s in the HPS 

model wave fronts amalgamated inside the myocardial wall well before breaking through at 

the epicardium. Thus, the number of epicardial breakthrough sites was much smaller than 

the number of endocardial initiation sites, as evident by comparing endocardial and 

epicardial isochrone patterns in the HPS case (see Fig. 6). This rendered the estimation of 

timings ϕ(x 0) and velocities υ f,i, υ s,i and υ n,i a challenging task. Similar to the 2D 

example in Sec. 3.1, the proper choice of γ in Eq. (18) played an equally important role in 

keeping the optimization from overfitting onto the epicardial data ΩO.

In Fig. 7, the comparison of the isochrones of our optimized model (black), versus the 

reference model (white) at a fixed time is shown, for both the 3F and HPS model and the 

epi-, as well as the endocardium. The overlap of both isochrones on the epicardium show 
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that FIMIN is able to effectively adjust the conduction velocity parameters to minimize the 

distance of the activation times of the model and reference on the epicardium to a high - and 

on the endocardium to a lesser, but still significant - degree.

The effect of optimization on reducing the variation of errors ∆ϕ = ϕ − ϕ(y) is shown in Fig. 

8, considering only Δϕ in the range [—20, 20] ms. After optimization, errors on ΩO were 

significantly reduced, following a normal distribution with μ Δ= —1.3ms, σΔ = ±2.6 ms and 

μ Δ = 0.7ms, σΔ = ±3.7ms for 3F and HPS, respectively. Over the domain Ω, hidden to the 

optimization function, the overall behavior was comparable, with errors also converging 

close to a zero mean, albeit with a slightly skewed distribution. These results suggest that the 

hidden SSE function can be optimized over the whole ventricular domain Ω using data 

observed on the epicardium ΩO only.

Optimization results with regard to conduction velocities are shown in Fig. 8. For the less 

complex activation sequence ϕ 3F where Ω was partitioned into two velocity domains only - 

myocardium and subendocardial layer the optimized CV triplets of 0.68/0.29/0.18 m/s and 

1.69/1.68/1.25 m/s were close to the true values of 0.6/0.4/0.2 m/s and 1.5/1.5/1.5 m/s 

(compare Sec. 3.2). In contrast, for the more complex activation sequence ϕ HPS, where 100 

partitions were used, a higher variability in optimized conduction velocities was witnessed, 

as shown in Fig. 9. The optimized velocity distributions were centered around the reference 

velocities, but outliers existed, particularly in the distribution of υ f.

A comparison between true and optimized EAS timings ϕ(x 0) is given in Fig. 10. For both 

sequences ϕ 3F and ϕ HPS true and optimized EAS timings largely overlap, but the 

distribution of optimized timings is more spread out which is a consequence of optimizing 

each discrete node of the EAS regions independently. Moreover, an apparent bias towards 

later timings is observed which was particularly pronounced for the ϕ 3F sequence.

The observed spread in both CVs and EAS timings could be mitigated by increasing the 

value of γ in Eq. (22), leading to a more narrow velocity distribution. However, errors in ϕ at 

the epicardium ΩO were compensated by the optimization by shifting the initiation timings 

ϕ(x 0) which were not subjected to regularization (data not shown).

3.3 Robustness

To gauge the potential of the FIMIN algorithm under real world conditions, input data on ΩO 

were perturbed by reducing spatial sampling and adding noise, as detailed in Sec. 2.5.3. A 

qualitative comparison in terms of activation isochrones between BiV-3F and BiV-HPS 

models with maximum perturbation 
Ωo
Ω

= 0.7%, σ = 8ms  relative to the reference and 

unperturbed optimization is also shown in Fig. 6. While minor deviations were visible in the 

BiV-3F case, there was a high level of agreement in isochronal patterns suggesting that the 

overall structure of the BiV-3F model was captured despite coarse spatial sampling and high 

noise levels.

In the BiV-HPS case, discrepancies were more pronounced as details of the fine-grained 

HPS- mediated break-through patterns were lost. Nonetheless, even under these severely 
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perturbed conditions the model approximated the overall epicardial activation patterns with 

sufficient accuracy for real world applications.

As shown in Fig. 8 for the noise-free model, the optimization reduces the errors of activation 

times and usually converges to a normal distribution with near-zero mean. Noisy and 

undersampled input data followed a sirniliar normal distribution of error (data not shown) as 

shown in the noise-free model Fig. 8. Deterioration due to noise and undersampling, can 

therefore be characterized by computing mean and standard deviation of total errors relative 

to the known reference solution. Results for all scenarios considered are summarized in Tab. 

1. As evident from inspection of data in Tab. 1, relative to the optimal case in absence of 

noise and undersampling (upper left corner in Tab. 1 with ΩO = ΩO and σ = 0 ms), errors 

increased with increasing noise and decreasing spatial sampling, but the chosen 

regularization kept the FIMIN algorithm from overfitting to the epicardial activation times.

4 Discussion

This study reports on the development of a novel FIMIN algorithm for solving an inverse 

Eikonal problem. Conceptually, the method attempts to identify the key factors governing 

the ventricular activation sequence - location and timing of EAS and the velocity tensor field 

D - from sparse and noisy activation data ϕ sampled from the epicardial surface.

The overall feasibility and limitations of the method were investigated in silico. An 

anatomically accurate human BiV model was used to generate high fidelity reference 

activation sequences ϕ(x) as ground truth solutions - either the simplified ϕ 3F sequence 

initatiated by a trifascicular HPS, or, the ϕ HPS sequence driven by a topologically more 

realistic HPS network - by solving the anisotropic Eikonal equation. Using activation times 

sampled from the forward solution over the epicardial surface and assuming the location of 

EAS’s were known, the corresponding inverse problem was solved using the FIMIN 

algorithm to identify the governing input parameters of the forward model that optimally fit 

the epicardial activation map.

Using the epicardial activation map at full resolution we first demonstrated that a 

reconstruction of activation sequence in 3D is, in principle, feasible under the assumption of 

known location of EAS. The robustness of the method under closer to real world conditions 

was evaluated by reducing the spatial resolution of the observed epicardial activation map 

and by adding noise. Our results suggest that the FIMIN algorithm is able to recover the full 

3D activation sequence even under these more realistic conditions with spatial resolutions 

that are achievable with currently used clinical mapping systems. Contrasting the 

uncertainties in clinical data with the accuracy achieved in reconstructing ϕ(x) suggests that 

the FIMIN method may be suitable for the patient-specific parameterization of activation 

models in future clinical applications.

4.1 Identifying the ventricular activation sequence

The identification of the ventricular activation sequence ϕ(x) from measurements taken from 

the body surface - as in a standard inverse electrocardiographic imaging problem - or from 

the outer epicardial surface of the ventricles - as suggested in this study - constitutes a 
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severely ill-posed problem. Any attempt to address this kind of problem depends therefore 

critically on the use of a-priori knowledge to constrain the problem and appropriate 

regularization techniques to enforce the constraints. Conceptually, the ventricular activation 

sequence ϕ(x) is governed by three factors only, the location of EAS, their timings, ϕ(x 0), 

and the conduction properties of the tissue as encoded in the velocity tensor field D(x). This 

problem, in its most general interpretation, can be considered extremely high dimensional. 

In this study, three simplifying assumptions were made to reduce the dimensionality of the 

problem and to keep the FIMIN-based optimization tractable: i) the location of EAS’s were 

assumed to be known; ii) the eigenaxes of D(x) were prescribed on a per-rule basis [5] 

informed by anatomical studies [23], only the tensor eigenvalues representing anisotropic 

velocities were considered unknown; and, iii) the spatial variation of the eigenvalues of D(x) 

was regularized by partitioning the ventricles into N domains and enforcing velocity triplets 

υf,i,υs,i and υn,i to be constant throughout a partition i.

Under these assumptions FIMIN was able to find parameter sets comprising ϕ(x 0) and 

υf,i,υs,i and υn,i which approximated ϕ(x) quite well at the epicardial surface ΩO where 

activation maps predicted by the FIMIN model ϕ were compared to observations ϕ, but also 

over the entire myocardial volume Ω where data on ϕ were hidden to the optimization.

In general, results tended to be more accurate for the ϕ 3F than for the ϕ HPS sequence due to 

the more direct relationship between EAS and epicardial breakthrough sites, as well as the 

lower complexity of the optimization model. In the ϕ HPS case there was a larger number of 

EAS’s in each ventricle. These initiated numerous wavefronts at the endocardium which 

merged within the ventricular myocardium, thus yielding a reduced number of epicardial 

breakthrough sites.

A notable deviation of optimized CVs from the reference CVs was wittnessed in the BiV-

HPS case which can be attibuted to a number of factors. First, the high number of EAS’s is 

likely to lead to a multimodal problem where the errors Δϕ can be compensated by both 

changes in initiation timings as well as changes of the CVs. Second, the gradient of 

velocities is not uniformly distributed over the domain, favoring optimization of the 

partitions closer to the epicardium as their gradient tends to have a higher magnitude. The 

Huber regularization mitigates this behavior up to a certain degree, but increasing γ 
amplifies the first mentioned problem, favoring the optimization of initiation timings over 

conduction velocities. Partitioning the mesh into regions of constant conduction velocities 

significantly reduced the computation load, but the regularity of conduction velocities across 

the whole domain is more effectively driven by our choice of γ.

This activation time which was earlier relative to the actual PVJ activation times in the 

reference model (see Fig. 10). Thus the initial activation sequence leads the reference 

sequence throughout the entire domain Ω, i.e. Δϕ < 0. Both optimized BiV-3F and BiV-HPS 

models yielded a normal distribution of errors on ΩO, which is a common effect when 

optimizing using the SSE function. In the case of not perfectly optimizable functions, the 

SSE function will lead to a normal distribution of errors with zero mean, as can be seen in 

Fig. 8.
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Finding the correct velocities by optimization was complicated by the fact that initiation 

timings ϕ(x 0) were also assumed to be unknown. This biased the optimized solution towards 

later initiation timings ϕ(x 0) (see Fig. 10) which were compensated by higher conduction 

velocities (see Fig. 9).

4.2 Robustness

In view of potential applications of FIMIN in an experimental or clinical context, the 

robustness with regard to spatial resolution and distortions due to noise is of pivotal 

importance as current modalities for measuring ϕ(x) suffer from a number of limitations. 

With regard to spatial undersampling and noise FIMIN-based reconstructions of ϕ(x) were 

shown to be surprisingly robust. Reconstructed isochronal patterns appeared low-pass 

filtered when compared to unperturbed reconstructions, but the overall structure of the 

solution was retained, even under the most severe conditions where only 100 epicardial data 

points were used and the noise added to arrival times was normally distributed with a 

standard deviation of 8ms. The undersampling corresponded to approximately 0.7% of the 

available epicardial points, with an average spacing of 14.2 mm between the measurement 

points.

In general, it can be observed from Tab. 1 that the final error after the optimization is mostly 

dependant on the undersampling (vertical) rather than the noise added to the observed data 

(horizontal). This can be attributed mainly to our cost function: We chose a mean-squared-

error function in our problem formulation (see Eq. (18)), which is an appropiate assumption 

to mitigate the effects of Gaussian noise. Although mean and standard deviation vary 

between most of the experiments in horizontal direction of Tab. 1, the final mean-squared 

error is very similar for all of these experiments.

Robustness of FIMIN-based reconstructions of the activation sequence must be viewed in 

the context of data uncertainty of measured activation maps. In general, a highly accurate 

observation of ϕ(x) at the organ scale throughout Ω is not feasible with currently available 

technology. Owing to the physics of propagating depolarization wavefronts which is 

governed by fast transients (< 1ms) that translate into steep wavefronts (< 1mm), mapping 

technologies for an accurate registration of ϕ(x) would be required that offered the ability to 

measure wavefront arrival times with sub-millimeter and sub-millisecond resolution 

throughout the entire ventricular myocardium. Such measurements are massively invasive 

and only applicable in an experimental setting, but even the most advanced mapping 

techniques do not meet these requirements. Optical mapping techniques provide better 

spatial resolution, at least in theory, but are affected by a number of significant artifacts 

related to signal distortion due to integration effects mediated by photon scattering [9]. 

Further, optical measurements are confined to superficial tissue layers as they are not able to 

record, in a reliable fashion, any information from the depth of the tissue. While panoramic 

imaging systems exist, the typical field of view of mapping systems is limited and cannot 

cover the entire epicardial surface ΩO. Finally, while cardiac tissue is often considered a 

functional syncytium, it is a discrete structure which inevitably results in wavefront 

fractionation, even in perfectly healthy tissue. These deviations from a continuum are 
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reflected in signal fractionation which often renders the determination of arrival times 

ambiguous.

4.3 Related Algorithmic Work

The Eikonal equation is a widely used method to approximate wave propagation through 

different media. The approximation is useful if one is interested in determining the first 

instant in time when a wavefront passes a given point in space. A special case is the isotropic 

Eikonal equation, i.e. D(x) = cI for c ∈ ℝ with I being the identity matrix. The isotropic 

Eikonal equation can be efficiently solved as has been shown in both [65] and [67]. Both 

papers propose concepts which can solve this problem with a runtime complexity of O(n log 

n) for a grid of size n. We will refer to these concepts as Fast Marching Methods (FMM).

The anisotropic Eikonal equation (see Eq. (1)) represents a more general form where the 

wave speed is not only dependent on the location of the wave, but also on its direction of 

propagation. This renders anisotropic Eikonal problems harder to solve than isotropic ones 

since anisotropies may change the characteristic directions needed for solving, as stated in 

[64]. In cardiac tissue anisotropies play a fundamental role. Due to the discrete structure and 

the organization of tissue in fibers and laminar layers three distinct eigendirections exist 

[39]. The conduction velocities along the eigendirections vary, being about three times faster 

along the fiber direction than along the slowest eigendirection normal to the laminar sheets. 

Therefore, these properties of cardiac conduction prompted for the use of the anisotropic 

Eikonal equation.

In [64] the concept of the FMM was extended to cover the exact amount of neighbors that 

need to be considered to compute anisotropic Eikonal solutions. The runtime complexity for 

this method referred to as Ordered Upwind Method (OUM) is O(k 2 n log n) where κ is the 

maximum anisotropy. Similar to the FMM, it is a one-pass algorithm that fixes the value of 

one vertex per each iteration.

In contrast, in the FIM [36] as used in this study a Gauss-Seidel method was proposed to 

solve the anisotropic Eikonal equation on the whole domain by iteratively computing the 

minimum arrival time locally for each grid point. Unconverged points on the active list are 

updated in each iteration until the local solution converges. Their neighbors are then added 

to the active list if their value changed in the last iteration. The runtime-complexity of the 

FIM is worse, but due to the high parallelization capacity, its performance is comparable or 

the FIM may even outperform similar algorithms, as has been shown in various examples 

[36]. In our study the FIM was preferred over OUM since, in practice in our implementation, 

the FIM appeared to be computationally more efficient.

The extension of Eikonal solvers to compute inverse Eikonal problems is a non-trivial 

roblem. The study [8] analyzed the inverse isotropic Eikonal problem of a solution obtained 

by FMM. It was shown that the inverse problem is non-convex, but can be solved in many 

practical applications such as landscape design, traffic congestion equilibria and travel time 

tomography. The resulting runtime of O(n 2 log n) holds only for isotropic media. This 

approach is not applicable to anisotropic media without modifications, since larger 

neighborhoods would need to be considered, depending on the maximum anisotropy which 
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is again dependent on the optimizable parameters. The required number of iterations of the 

FIM is likewise dependent on the anisotropy of the model, but implicitly encoded in Alg. 1 

and therefore also taken into account in the FIMIN optimization (compare Alg. 3).

Inverse Eikonal problems emerge in a variety of fields, including optimal trajectory 

optimization under constraints in two player games [43], estimating reaction-based tumor 

growth [38], transient elastography [41], [42], or inverse seismic problems [40]. In these 

problems the same parameters have to be estimated, but the constraints on estimated 

parameter sets, as well as the problem setups differ markedly. Most of these mentioned 

problems are usually inverse isotropic Eikonal problems, but could also be optimized using 

the FIMIN approach presented in here.

4.4 Relation to inverse ECG imaging problems

The FIMIN method for relating epicardial arrival times to the ventricular activation sequence 

is a non-standard ECGi problem. Instandard ECGi problems electrical potentials in the form 

of electrocardiograms or body surface potential maps are used as observations to infer 

different aspects of the ventricular activation sequence. In physical terms, inverse ECGi 

yields information on transmembrane voltages [32, 71], extracellular potentials [61, 7] or 

local activation/recovery times [68, 24, 31, 35]. which are, typically, reconstructed on the 

epicardial surface, but methods for endocardial or transmural reconstructions also exist. That 

is, the observations used as input in this study are often considered the solution in ECGi 

problems. As such the FIMIN is not directly applicable to ECGi problems without further 

extensions as the FIMIN, in its current form, accepts activation times from the epicardial 

surface as inputs, but not electrical potentials. However, coupling of FIM-based activation 

models with forward predictions of electrical potentials at the body surface can be done very 

efficiently, as has been shown by us [44] and others [73, 49]. In particular, Eikonal solvers in 

combination with appropriate source models and a lead-field approach [28, 51] as used in 

[49] can be solved in a computationally highly efficient manner. Such methods yield body 

surface potentials which are essentially equivalent to ground truth solutions computed with 

an expensive fullblown bidomain formulation [51]. To construct an ECGi method based on 

the FIMIN one could use a FIM-based forward model [44] to compute transmembrane 

voltage maps throughout the myocardium, Vm(x, t). In the simplest case a fixed action 

potential shape U(t) may be used and shifted by the computed activation times ϕ(x) to 

compute the source term Vm(x, t) = U(t - ϕ(x)). Using precomputed lead fields Z(x) for each 

electrode pair at the body surface, body surface potentials can be recovered by solving

V (t) = ∫ΩO∇Z(x) ⋅ σ(x)∇V m(x, t) .

where σ is the intracellular conductivity tensor. Thus, the cost function given in (3) could be 

replaced by

minD, g ∫ΩO(V (ϕ(x)) − V (x))2dx (24)

to relate computed and measured body surface potentials V and V , respectively, to the 

parameters D and g which govern the activation sequence in the FIM.
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4.5 Related Cardiac Eikonal Application

A related problem was addressed in [16] and [63] where potentials measured at the 

endocardium during radio-frequency ablation procedures were used to generate endocardial 

activation maps, where either anisotropic [16] or isotropic propagation[63] was assumed. 

These were then used to estimate endocardial velocity parameters using an Eikonal-diffusion 

or Eikonal-curvature equation. Endocardial fiber directions were assumed to be known and 

were fixed to +60° [16]. The method was validated on patients with a Left Bundle Branch 

Block pathology, as well as on patients with scarred tissue. For the latter, regions of low 

propagation velocity were linked to scarred tissue. The solution of the inverse problem using 

only measurement data was shown to be able to locate the scar tissue by comparing 

computed solution to magnetic resonance images.

Another successful use of the Eikonal approach in activation time determination has been to 

construct feasible Purkinje networks that recreate measured surface activation times using a 

minimal set of PVJs[20, 48, 69, 47]. These approaches rely on optimiziation, and, hence, 

profited from the reduced computation. They have generally considered propagation 

velocities to be global, unlike our approach.

4.6 Importance of ϵ

Initial experiments with the 2D sheet model demonstrated that appropriately choosing ϵ for 

Eq. (13) in the FIM algorithm is of pivotal importance. This can be exemplified in a simple 

perturbation experiment with the BiV model from Sec. 2.5.2, with a single CV triplet (υf,υs 

and υn) for the whole domain. Increasing ϵ decreased the runtime to compute the FIM 

solution, but the resulting surfaces of the inverse optimization problem and the obtained 

gradients were significantly less smooth as compared to using a smaller ϵ (see Fig. 11). In 

this example, only a weakly anisotropic D was used with the optimal choice of CVs being υf 

- υ 1 = 1 and υs = υ 2 = 1.5. It is worth noting that this effect was amplified by increasing 

anisotropy ratio 
υ1
υ2

 (not shown).

4.7 Computational Costs

Computational costs of the FIMIN algorithm were significant. For instance, finding the 

optimal parameters in the BiV-HPS model last for ≈ 12 hours using 30 cores of an Intel(R) 

Xeon(R) CPU E5-2640 v4 CPU running a clock rate of 2.40 Ghz. The BiV models consisted 

of ~ 1.1·105 nodes and ~ 5.7· 105 tetrahedral elements. The FIM and the computation of the 

Jacobian in Alg. 2 were implemented in C++, while the remainder of the optimization used 

Python/Numpy. As a stopping criterion for the FIMIN a maximum number of iterations of 

1000 or a slowdown in the rate of convergence was used. Prolonged execution times could 

be attributed to the increasing anisotropy of the optimized model as well as to the small 

value of e that was needed for the FIM algorithm to efficiently optimize the FIM function. 

The two major contributors to overall execution time were the FIM algorithm and the 

Jacobian computation.

Increasing ∈, lowering the maximum number of iterations or further decreasing spatial 

resolution are viable ways to achieve shorter execution cycles. However, these measures are 
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likely to increase errors due to lower precision or premature convergence. Constraining the 

maximum permissible anisotropy by regularization could also be beneficial, but this has not 

been investigated in this study. Finally, further speedups may be gained from optimized 

implementations. For instance, the computationally expensive parts of the FIM algorithm are 

well suited for a SIMD-architectures such as a GPU, albeit the size of the model and, 

consequently, its Jacobian would require a GPU with a large memory or a multi-GPU 

implementation.

4.8 Limitations

Owing to the severe degree of ill-posedness of the problem, a number of simplifying 

modeling assumptions were made that may restrict the applicability of FIMIN to real world 

clinical problems. First and most importantly, epicardial activation maps were used as 

inputs. While the acquisition of such maps is clinically feasible with minimally invasive 

techniques, such procedures are non-standard. To be of wider utility, non-invasive input data 

such potential maps from the body surface should be considered within a more standard 

inverse ECG imaging setting [17]. Secondly, the location of the various EAS were assumed 

to be known. There is currently no straight-forward way, in which the location of the EAS 

could be integrated as an optimizable parameter into the optimization problem in Eq. (18), 

using only epicardial data. While endocardial mapping studies to reveal EAS are performed 

routinely in the clinic, the acquisition of endocardial maps relies on an invasive procedure. 

From an applied point of view, the location of EAS should therefore be considered unknown 

and must be identified with FIMIN as part of the optimization procedure. Clinically acquired 

endocardial activation maps are valuable for validation, but should not be used for inferring 

location of EAS a priori.

Another potential drawback is the choice of the number of partitions in which the 

conduction velocity is kept constant for the 3D-cases. This reduces complexity and therefore 

expressibility of the model. To model local heterogeneity of conduction velocities, like 

found in scarred regions, current methods utilize technologies relying on image-based 

modalities, e.g. [1]. If these are available, the partitions could be adapted to include the 

scarred regions in single partitions.

In the absence of this data, the partition size would need to be chosen smaller than the region 

of interest, to have a chance of finding the regions by the model alone. Excessively chosen 

partitions will not be able to express the desired local heterogeneity of conduction velocities, 

but rather average the found conduction velocity over the area/volume. In contrast, small 

partition sizes will lead to longer computational times, more needed optimization iterations 

and prohibitively large Jacobian-matrices for the Gauss-Newton updates. While the latter, 

memory drawback can be mitigated by using sparse matrix formats, the two former 

problems can only be addressed by by efficient parallelization, either on a cluster, or an 

efficient GPU implementation.

5 Conclusion & Future Work

This study reports on the development of a novel FIMIN algorithm for solving an inverse 

Eikonal problem. We demonstrated that FIMIN is able to identify the key factors governing 
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the ventricular activation sequence - the timing of EAS and the velocity tensor field D - 

throughout the myocardial volume from sparse and noisy activation data sampled from the 

epicardial surface. The accuracy achieved in reconstructing ϕ(x) relative to uncertainties in 

clinical data suggests that the FIMIN method may be suitable for the patient-specific 

parameterization of activation models in future clinical applications.

Future work will address the various limitations of this first implementation of FIMIN. 

Specifically, these are the assumption of known EAS’s, the prescription of fiber and sheet 

architecture and the use of epicardial activation data instead of potential recordings from the 

body surface. FIMIN will be extended to also optimize parameters of rules for describing 

fiber architecture [5] and embedded in an inverse ECG imaging setting which defines the 

cost as difference between computed and observed body surface potential recordings.

Further algorithmic improvements will be attempted to better deal with the high 

computational complexity and to further improve the reconstruction accuracy. Possible 

efforts include the use of proper regularization of EAS timings which takes into account 

spatio-temporal relations between EAS’s or the use of subgradient methods which may 

prove beneficial in complex models like the HPS model where the multitude of colliding 

wavefronts renders the problem hard to optimize globally.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Local update of the FIM solver within one tetrahedron. The update is computed using the 

linear distance formulation e Δ from the point f1,2,3 on the face between nodes v 1, v 2, v 3 to 

the point v 4 to be computed.
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Figure 2. 
Exemplary depiction of a superdifferential of a 1D minimum function. The superdifferential 

is uniquely defined at points x ≠ 0, whereas the superdifferential at x = 0 is the set ∂ϕ(x = 0) 

= [∂ϕ2, ∂ϕ 1].
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Figure 3. 
Visualization of an exemplary update sequence of the FIM algorithm that demonstrates the 

necessity to distinguish between nodal values of different iterations. The arrows visualize the 

update directions similar to e Δ in Eq. (6). the High anisotropies may lead to multiple 

updates of nodes with an update direction that is dependant on itself. For such cases, we 

need to remember the earlier computations of the same node. Note that the update directions 

can never form a full circle if all diffusion tensors are symmetric and positive definite.
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Figure 4. 
A) 2D benchmark setup showing domain Ω, EAS x 0 in the sheet’s center, the reference 

activation map ϕ diffusion tensor field D x  and the measurement domain Ω0. Note that the 

velocity colormap is slightly different for each of the diffusion tensor field due to high 

variation of fiber velocities between experiments. B) Initial solution before optimization. C) 

Solution for optimizing Eq. (18) with no regularization (γ = 0). The SSE of activation times 

is practically 0, but the resulting D is highly anisotropic and non-smooth. Many geodesic 

paths (grey lines) collapse into one. D) Solution for optimizing Eq. (18) with γ = 5 · 10-3. 

The energy is still very low, but the regularization yields a smoother D and avoids high 

anisotropies. Geodesic paths are spread over more points and the contour lines are very close 

to the desired solution.
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Figure 5. 
Biventricular benchmark setups showing domains Ω, earliest activation sites x 0 (EAS), 

diffusion tensor field D x  and the domain boundary Ω0 from which observed data are 

recorded. A) Biventricular anatomy highlighting endocardial and epicardial surface (top 

panel) and fiber arrangement (bottom panel). B) and C) show trifascicular (3F) and HPS 

initiated activation sequence, driven by EAS activating at prescribed ϕ(x 0) (top panels).
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Figure 6. 
Top panels: Shown are endocardial and epicardial activation isochrones of ϕ 3F from a 

posterior and anterior viewpoint for the reference ϕ3F  (A), the solution ϕ 3F using initial (B) 

and optimized (C) parameters. Additionally we show the result when optimizing against ϕ3F
from Eq. (23) with the strongest tested perturbation (D) (see Sec. 3.3, Tab. 1, bottom right 

cell). Bottom panels: The same comparison is shown for ϕ HPS.
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Figure 7. 
Comparison of the isochrones at a certain time for the optimized model (black), versus the 

reference model (white).

Grandits et al. Page 39

J Comput Phys. Author manuscript; available in PMC 2020 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 8. 
Effect of optimization on the distributions of errors Δϕ in (a) 3F and (b) HPS model. Blue 

traces show Δϕ on the epicardium ΩO only, whereas red traces consider the whole domain Ω. 

The error distributions on Ω can be very well approximated by a normal distribution, albeit 

slightly skewed. Means and standard deviations were (a) μ Δ = -1.3ms, σ Δ = ±2.6ms and 

(b)μ Δ = 0.7ms σ Δ = ±3.7ms for 3F and HPS model, respectively.
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Figure 9. 
Distribution of optimized velocities υf, υs and υn of the HPS model. The bars represent the 

actual, narrow distributions, which can be attributed to splitting the mesh into 100 partitions. 

The lines show the envelope of the corresponding bars with the same color. Reference 

velocities were 0.6/0.4/0.2m
s  for υf, υs and υn, respectively.
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Figure 10. 
Distribution of reference ϕ x0  in blue versus opimized ϕ(x0) EAS timings in red.
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Figure 11. 
Energy landscapes for different values of ∈ in the FIM Algorithm. Contour lines visualize 

the cost function from Eq. (18) we seek to minimize, with the global minimum being located 

at υ 1 = 1 and υ 2 = 1.5. Arrows indicate the normalized gradient descent direction obtained 

by using Alg. 2. Smaller ∈ yields a smoother energy landscape which benefits optimization.
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Table 1

Shown are the means and standard deviations of total errors ∆ϕ in ms over the whole do main Ω between 

reference and optimized solutions for varying degrees of noise σ and spatial undersampling ΩO. Initial errors 

of 3F and HPS model were μ Δ = −1.4ms, σΔ = ±11.3ms and μ Δ = −23.0ms, σΔ = ±8.3ms for 3F and HPS 

model, respectively.

3F-Model HPS-Model

ΩO σ 0 ms 4 ms 8 ms 0 ms 4 ms 8 ms

ΩO = ΩO −0.1 ± 2.8 1.7 ± 3.0 0.4 ± 4.2 1.0 ± 3.5 1.5 ± 3.6 0.5 ± 3.6

1 · 103 − 1.2 ± 3.7 −0.3 ± 2.8 −0.9 ± 3.8 4.0 ± 5.4 3.5 ± 5.4 1.8 ± 6.4

1 · 102 1.2 ± 3.9 − 1.6 ± 4.4 − 1.2 ± 3.5 5.3 ± 6.9 4.8 ± 6.5 2.1 ± 7.2
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