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Abstract

Neural codes have been postulated to build efficient representations of the external world. The 

hippocampus, an encoding system, employs neuronal firing rates and spike phases to encode 

external space. Although the biophysical origin of such codes is at a single neuronal level, the role 

of neural components in efficient coding is not understood. The complexity of this problem lies in 

the dimensionality of the parametric space encompassing neural components, and is amplified by 

the enormous biological heterogeneity observed in each parameter. A central question that spans 

encoding systems therefore is how neurons arrive at efficient codes in the face of widespread 

biological heterogeneities. To answer this, we developed a conductance-based spiking model for 

phase precession, a phase code of external space exhibited by hippocampal place cells. Our model 

accounted for several experimental observations on place cell firing and electrophysiology: the 

emergence of phase precession from exact spike timings of conductance-based models with 

neuron-specific ion channels and receptors; biological heterogeneities in neural components and 

excitability; the emergence of subthreshold voltage ramp, increased firing rate, enhanced theta 

power within the place field; a signature reduction in extracellular theta frequency compared to its 

intracellular counterpart; and experience-dependent asymmetry in firing-rate profile. We 

formulated phase-coding efficiency, using Shannon's information theory, as an information 

maximization problem with spike phase as the response and external space within a single place 

field as the stimulus. We employed an unbiased stochastic search spanning an 11-dimensional 

neural space, involving thousands of iterations that accounted for the biophysical richness and 

neuron-to-neuron heterogeneities. We found a small subset of models that exhibited efficient 

spatial information transfer through the phase code, and investigated the distinguishing features of 

this subpopulation at the parametric and functional scales. At the parametric scale, which spans 

the molecular components that defined the neuron, several nonunique parametric combinations 

with weak pairwise correlations yielded models with similar high phase-coding efficiency. 

Importantly, placing additional constraints on these models in terms of matching other aspects of 

hippocampal neural responses did not hamper parametric degeneracy. We provide quantitative 

evidence demonstrating this parametric degeneracy to be a consequence of a many-to-one 

relationship between the different parameters and phase-coding efficiency. At the functional scale, 

involving the cellular-scale neural properties, our analyses revealed an important higher-order 

constraint that was exclusive to models exhibiting efficient phase coding. Specifically, we found a 

counterbalancing negative correlation between neuronal gain and the strength of external synaptic 
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inputs as a critical functional constraint for the emergence of efficient phase coding. These 

observations implicate intrinsic neural properties as important contributors in effectuating such 

counterbalance, which can be achieved by recruiting nonunique parametric combinations. Finally, 

we show that a change in afferent statistics, manifesting as input asymmetry onto these neuronal 

models, induced an adaptive shift in the phase code that preserved its efficiency. Together, our 

analyses unveil parametric degeneracy as a mechanism to harness widespread neuron-to-neuron 

heterogeneity towards accomplishing stable and efficient encoding, provided specific higher-order 

functional constraints on the relationship of neural gain to external inputs are satisfied.

I Introduction

Biological neural systems encode environmental stimuli in the process of eliciting 

behavioral responses. From the standpoint of efficient information encoding, these coded 

representations are required to maximize the information conveyed by the external stimulus. 

Within an information-theoretic framework, efficient encoding translates to the requirement 

that the distribution of stimulus attributes match the encoding strategy [1–12]. Efficient 

information transfer and associated strategies involving stimulus distributions have been 

effectively employed to assess biological systems from the sensory coding perspective [2–

6,8,10–12], from a single neuron perspective [7,13–15] and in understanding biochemical 

signaling cascades [16–22].

In biological systems, such efficient representations emerge despite two critical constraints. 

The first involves the ubiquitous expression of biological heterogeneities, manifesting as 

pronounced neuron-to-neuron differences in response properties and underlying molecular 

components, even between adjacent neurons of the same subtype in the same brain region. 

These differences imply that the precision in encoding should account for this 

nonhomogeneous nature of neural parameters and responses. The second constraint 

corresponds to the limited ranges of the encoding space, placing a requirement that neurons 

and their circuits employ this range judiciously so as to enhance coding capacity. For 

instance, if neurons employed their firing rate as the code for a specific attribute of the 

environmental stimulus, there is a limit on the range of this firing rate based on the cellular 

and molecular constraints on the neuron. How do biological systems ensure maximal 

information encoding of environmental stimuli in the face of ubiquitous biological 

heterogeneity, while constrained by limited coding spaces?

The hippocampus encodes space using rate and phase codes [23–27] through environment-

specific firing in a dynamic subset of its population that are called place cells [Fig. 1(a)]. 

Whereas a rate code is defined by an increase in the firing rate of a neuron within its 

receptive field, the associated precession of neuronal spike phase relative to the extracellular 

rhythmic activity (~8 Hz; theta frequency) characterizes a phase code. The phase code, 

unlike the nonmonotonic rate code where the firing rate peaks around the place field center, 

manifests as a relatively monotonic dependence of the neuronal firing phase on the animal's 

spatial location [Fig. 1(a)] within a single place field [23–27]. Such monotonicity confers 

upon the phase code an enhanced potential for information transfer, with the ability to act as 

a fine-grained spatial code within a single place field. The motivation for this study on the 
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phase code within a single place field [23–33] arises from the perspective of defining phase-

coding efficiency and exploring the impact of biophysical heterogeneities on efficient phase 

coding.

In this study, we address questions on the cellular and molecular constraints behind how 

hippocampal neurons utilize the finite phase span (0 – 360°) available for efficiently 

encoding space during single place field traversals. In doing this, we first defined an efficient 

phase code as one that maximizes spatial information transfer. Specifically, we adapted 

Shannon’s entropy formulation and defined the maximization of mutual information 

between spatial stimulus and phase response to characterize high efficiency. This 

formulation allowed us to quantitatively assess information transfer efficiency of the phase 

code in hippocampal pyramidal neurons, in response to the afferent inputs that are dependent 

on the spatial location of the animal within a single place field.

Our questions involving cellular and molecular properties and inherent heterogeneities in 

these biological components demanded biophysically rich neural models that explicitly 

incorporate these components. While synaptic and intrinsic properties are predominant 

functional aspects at the cellular level, ion channels and their properties constitute the 

molecular level parameters. Therefore, we developed a conductance-based spiking model, 

designed specifically to match ion channel and intrinsic properties of hippocampal CA1 

pyramidal neurons, for phase precession. This model was developed from a rate-based 

model for the emergence of phase precession [30], and differs in several aspects including 

the evaluation of exact spike timings, efficiency of the phase code, subthreshold voltage 

responses and experience dependence of place cell profiles and the incorporation of specific 

ion channels, intrinsic properties, and associated biological heterogeneities. We demonstrate 

that our model accounted for several signature electrophysiological characteristics of place 

cells within their respective place fields, including phase precession, the emergence of 

subthreshold voltage ramp, increased firing rate, enhanced theta power, and a signature 

reduction in extracellular theta frequency compared to its intracellular counterpart.

We employed our model for phase precession to then build a heterogeneous population of 

conductance-based models generated through an unbiased stochastic search. We defined the 

search space to span 11 neuronal parameters and assessed phase coding efficiency in 

thousands of models that sampled this space. At a molecular level, we found that the 

subspace of models that showed high-efficiency phase coding was scattered across the 

parametric space. Importantly, our results showed that the ion channel combinations 

required for achieving efficient phase coding neurons are nonunique. Specifically, a neuron 

could employ disparate parametric combinations of components at the molecular level to 

drive a well-defined synergistic balance between components at a cellular level to achieve 

efficient phase coding. We demonstrate that this parametric degeneracy [34,35] was intact 

even when we placed additional constraints on neural response properties and was a 

consequence of a many-to-one mapping between the parametric and functional spaces.

On the contrary, at a higher-order functional scale, we found an intricate counterbalance 

between neuronal gain (intrinsic excitability) and strength of external inputs (synaptic 

strength) to be a critical constraint for achieving phase-coding efficiency. Specifically, 
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despite the vastness of a neuron’s parametric and measurement spaces, a confined negatively 

correlated regime in the synaptic-intrinsic plane characterized the subspace for efficient 

phase coding. These observations imply that the 11-dimensional parametric space collapses 

to a negative slope manifold on the intrinsic-synaptic plane for models that exhibit efficient 

phase coding, and that several nonunique parametric combinations could satisfy this tight 

functional constraint. Finally, through a change in the statistics of presynaptic input 

structure, we demonstrate that experience-dependent asymmetry in place field afferent 

inputs introduces predictive temporal shifts to rate and phase codes, with the change in the 

phase code constituting an adaptive shift to preserve efficiency.

In summary, our study builds a conductance-based model for phase precession that satisfies 

several key cellular signatures of place cells in hippocampal CA1 pyramidal neurons. 

Employing an information-theoretic approach, we derive a quantitative definition of 

efficiency in phase coding within a single place field. We show that phase-coding efficiency 

is tightly intercoupled to higher-order constraints involving a counterbalancing relationship 

between neural gain and the strength of synaptic inputs. Despite the expression of several 

biological heterogeneities and despite the requirement of such strong cellular-scale 

constraints, our analyses demonstrate that efficiency in phase coding could be achieved 

through disparate parametric combinations at the molecular scale. These conclusions unveil 

parametric degeneracy as a potent mechanism that enables several nonunique routes to 

achieve efficient coding while concomitantly maintaining homeostasis in neural excitability.

II Defining Phase-Coding Efficiency

The fundamental objective of this study was to understand what constitutes the efficiency of 

phase coding in the functional space of a single neuron within its receptive field. Phase 

precession is a temporal encoding strategy exhibited by hippocampal neurons wherein the 

spike phases, within the neuron’s place field, progressively advance with respect to the 

extracellular activity. This results in a phase code, with phase being a monotonic function of 

the external space that is being encoded. Exploring the neuronal constraints that underlie the 

efficiency of spatial information transfer demonstrated by such a phase code demands a 

concise definition of encoding efficiency. To do this, we extended the concept of efficient 

coding from sensory systems [2–5,8] and single neurons [7] to phase coding within single 

place fields. Motivated by the efficient coding literature that recruits maximization of 

information transfer as a quantitative metric, we defined the efficiency of this phase code 

based on maximal mutual information between the spatial stimulus and phase response. This 

representation, which did not place any parametric constraints on the nature of phase 

precession, allowed for a generalized definition of encoding efficiency.

Mathematically, mutual information (MI) was defined as the difference between the 

response entropy and noise entropy [9]. With space and phase response constituting our 

variables, mutual information was given by

I ϕ; S = H ϕ − H ϕ ∣ S , (1)
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where I(ϕ; S) represented mutual information between stimulus (S; segregated into 20 

distinct bins, where each bin constituted a different spatial stimulus) and neuronal phase 

response (ϕ) and H(ϕ|S) referred to the total noise entropy [9]. H(ϕ), the response entropy, 

was calculated as

H ϕ = − ∑j p ϕj log2p ϕj , (2)

where p(ϕj), the probability of occurrence of the jth phase bin (the 0–360° phase space was 

segregated into 360 bins; 0 ≼ j ≼ 359), was defined as

p ϕj = ∑i p ϕj ∣ si p si , (3)

wherein the probability distribution of phases was derived by summing the conditional 

probability distributions of phases for various stimuli weighted by the probability of the 

stimulus. The total noise entropy was computed as

H ϕ ∣ S = ∑i p si H ϕ ∣ si , (4)

where H(ϕ|Si,) represented the conditional noise entropy for stimulus Si, and was computed 

as

H ϕ ∣ si = − ∑j p ϕj ∣ si log2p ϕj ∣ si , (5)

where p(ϕj|si) defined the conditional probability of the jth phase given the ith stimulus. 

Intuitively, response entropy captures the uncertainty in phase and noise entropy captures the 

uncertainty in phase despite the knowledge of the stimulus identity. Thus, noise entropy is 

that part of uncertainty that does not contribute any information about the stimulus and 

thereby is detrimental to information transfer. This explains mutual information as the 

difference between response and noise entropies [9].

More generally, the quantification proposed here to assess phase precession and the 

associated phase code alleviates problems associated with existing parametrized 

quantifications of phase precession (e.g., slope of the phase-space profile). In addition, the 

information-theoretic approach employed here provides a direct metric for the amount of 

spatial information (an environmental attribute) contained in the phase code (an attribute of 

neuronal firing) within a single place field.

A Model description

Hippocampal pyramidal neurons exhibit significant neuron-to-neuron heterogeneities in 

terms of their intrinsic response properties and synaptic strengths, even within the same 
subregion of the hippocampus. The focus of our study is this subregion-specific (CA1) 

heterogeneity, which is distinct from the systematic location-dependent gradients in neuronal 

properties. A principal goal of this study is to understand the cellular and molecular 

constraints that are essential for highly efficient phase coding, especially in the presence of 
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neuron-to-neuron heterogeneities. Finding these constraints demanded a neuronal model that 

was dictated by electrophysiologically measured properties at cellular and molecular scales, 

also including the statistics of neuron-to-neuron differences in these properties.

We constructed a single compartmental cylinder of 110-μm diameter (d) and 97-μm length 

(L) of CA1 pyramidal neurons. The passive properties of the cylinder were specific 

membrane resistance, R m = 40 kΩcm2 and specific membrane capacitance, C m = 1 μF/cm2. 

The geometric characteristics and the R m were chosen such that the passive input resistance 

of the model [=R m /(πdL) = 119.3 MΩ] matched the electrophysiological values of ~120 

MΩ, and the passive charging time constant (=R m C m = 40 ms) was ~40 ms [36,37]. The 

active properties included eight active ion channels (a total of nine channels, including the 

passive leak channel): fast Na+ (NaF), delayed rectifier K+ (KDR), A-type K+ (KA), L-type 

Ca2+ (CaL), calcium gated K+ (SK), hyperpolarization activated cyclic nucleotide gated 

(HCN), M-type K+ (KM) and T-type Ca2+ (CaT) channels. The kinetic schemes for these 

channels were derived from electrophysiological recordings from CA1 pyramidal neurons: 

fast Na+, CaL, KDR, and KA [38–40], HCN [41,42], CaT [43], SK [44,45], and KM [46], 

and the overall voltage dynamics evolved as [Fig. 1(b)]:

Cm
dV
dt = Ileak + INa + ICaL + ICaT + IHCN + IKDR + IKA + ISK + IKM . (6)

All channels except the SK channel were modeled using the Hodgkin-Huxley formulation, 

each involving one or more voltage (V) dependent differential equations to define the 

dynamics. SK channels were modeled using a six-state kinetic model [44,45]. Currents 

through the sodium channel, the HCN channel, and all potassium channels were modeled 

using the Ohmic formulation, but calcium channels were modeled using the Goldman-

Hodgkin-Katz (GHK) formulation [47,48], to account for the large concentration gradient 

observed in the calcium ion. The model neuron was built within an 11-dimensional 

parametric space comprised of ten intrinsic parameters and synaptic strength. The maximal 

conductances associated with the individual ionic currents 

gleak = 1/Rm, gNa, gCaL, gCaT, gHCN, gKDR, gKA, gSK, gKM , along with the decay time 

constant of calcium (τca; see below), were parameters that defined the intrinsic properties 

and P max (the maximal synaptic permeability) represented synaptic strength. The reversal 

potentials for Na+, K+, and HCN channels were set at 55, –90, and –30 mV respectively.

The evolution of intracellular calcium as a function of calcium current (through voltage-

gated calcium channels) and its buffering was modeled as in [49,50]

d Ca i
dt = − 10000ICa

36dptF + Ca ∞ − Ca i
τCa

(7)

where F is Faraday’s constant, I Ca is the calcium current, the default value of the calcium 

decay time constant τCa = 30 ms, dpt = 0.1 μm represented the depth of the shell, and [Ca]∞ 
= 100 nM defines the steady-state value of cytosolic calcium concentration [Ca]i.
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The current through the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptor (AMPAR) was modeled as the sum of currents carried by sodium and potassium 

ions [50]:

IAMPA v, t = IAMPA
Na v, t + IAMPA

K v, t , (8)

where

IAMPA
Na v, t = PmaxPNas t vF2

RT ×
Na i − Na oexp − vF

RT

1 − exp − vF
RT

(9)

IAMPA
K v, t = PmaxPKs t vF2

RT ×
K i − K oexp − vF

RT

1 − exp − vF
RT

, (10)

where P max represented the maximum permeability of the AMPA receptor. The relative 

permeability ratios P Na and PK were equal and set to 1. s(t) was set as

s t = a exp − t
τd

− exp − t
τr

, (11)

where a is a normalization constant, making sure that 0 ≼ s(t) ≼ 1, τr, the parameter 

governing rise time, was set to 2 ms, and τd, the decay time constant, was 10 ms [50].

All simulations were performed using the NEURON programming environment [51] at 34 

°C with the simulation step size set at 25 μs. Data analyses and graph plotting were 

performed using MATLAB and custom written software in the IGOR Pro environment.

B Synaptically driven inputs and population activity of place cells

Place cell inputs to the model neuron were fed as probabilistic afferent activity impinging on 

100 independently driven AMPAR synapses. Independent presynaptic trains of action 

potentials stochastically activated these synapses based on an overall firing rate pattern, 

modeled as a Gaussian-modulated cosinusoidal distribution, with the frequency of the 

sinusoid set at 8 Hz. This presynaptic activation profile of our conductance-based synapses 

was derived from the simplified rate model, where place-cell inputs were modeled as 

Gaussian-modulated cosinusoidal currents [30]. This modification was essential because a 

current-based input would not account for the driving-force dependence of synaptic currents 

or the kinetics of receptors [Eqs. (8)–(11)]. Therefore, the total afferent current to the model 

neuron arrives from n different place fields through multiple conductance-based synapses 

whose presynaptic firing rates were stochastically driven. Specifically, with reference to the 

nth place field within a linear arena, each synapse in a neuron received inputs with 

probability of occurrence at time t defined by [Fig. 1(c)]

Seenivasan and Narayanan Page 7

Phys Rev Res. Author manuscript; available in PMC 2020 September 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fpre
n t = Fpre

max 1 + cos 2πf0 t − nτ exp − t − nT 2

2σ2 , (12)

where f 0 represents the cosine wave frequency (8 Hz) that translates to the intracellular theta 

frequency, Fpre
max regulates the maximal input firing rate, and σ defines the width of the 

Gaussian that controls the extent of the place field [30]. In this formulation [Fig. 1(e)], T 
signifies the longer time scale that corresponds to the temporal distance (the travel time) 

between adjacent place fields (modeled as a Gaussian) while τ characterizes a shorter theta 

time scale temporal difference between adjacent place fields (modeled as a phase shift in 

adjacent sinusoids at theta frequency). The standard deviation of the Gaussian distribution σ 
that governs the extent of single place fields was set as [30]

σ = T
2 2τf0

. (13)

This formulation [Eq. (12)] involving a single Gaussian defining the probability of 

presynaptic activation does not account for the different presynaptic neurons, each endowed 

with heterogeneous place field locations and differential synaptic weights in connecting the 

postsynaptic neuron [52–54]. However, the summation of the probabilities of the firing of 

each presynaptic neuron, weighted by their respective synaptic strengths (which mimics a 

Gaussian centered at the place field center of the postsynaptic neuron), would result in a 

probability distribution that is approximated by a Gaussian with appropriate scaling factor 

and standard deviation. Thus, the probability of presynaptic firing should be interpreted as 

that of a population of presynaptic neurons, each with differential synaptic strengths and 

heterogeneous place field locations, converging on a postsynaptic structure.

The interference pattern between inputs from nearby place fields results in a reduction in the 

frequency of the extracellular theta or the population firing rate [30]. To construct the 

population firing rate (f POP) within our conductance-based model framework, we presented 

inputs from 50 distinct place field locations to synapses of a given model neuron (defined 

with specific intrinsic properties and synaptic strength). Specifically, with reference to Eq. 

(12) representing a linear arena traversal, n ∈{1 … 50} reflects both a progressive shift in 

the center of the place field as well as a progressive phase shift in the theta time scale of 

individual place field inputs. The default values of T and τ were 180 and 10 ms, respectively.

For each value of n (∈{1 … 50}), the synapses in the model neuron were stimulated 

stochastically with the stimulation probability of each synapse sampled from the distribution 

in Eq. (12). The firing patterns of the model neuron to each of these 50 spatially distinct 

place field traversals were computed [Fig. 1(d)]. The spike times corresponding to each of 

these traversals were derived from these firing patterns, and converted to a binary time series 

(bin size 1 ms) indicating the presence or absence of a spike at a given time point. These 

binary time series were then summed across all 50 spatially distinct place field traversals to 

obtain the ensemble binary spike train that was then convolved with a Gaussian kernel to 

derive a smooth population firing rate profile [f POP; Fig. 1(f)]. The Fourier transform of this 
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population activity was computed and the peak in the Fourier magnitude spectrum [Fig. 1(f), 

inset] was characterized as the population theta frequency (fθ), which represented the 

extracellular theta frequency [30].

C Assignment of spike phases

In assigning neuronal spike phases with reference to the theta oscillation in the population 

firing rate (f POP), we first detected the troughs by determining the minima within each theta 

cycle [Fig. 1(f)]. These detected troughs of the population theta were all assigned a phase of 

0°. We used these troughs to assign phase values to each spike corresponding to every place 

field input, with reference to the temporally aligned population theta oscillation (derived in 

the previous section). Specifically, let t spike correspond to the timing of a spike in response 

to an arbitrary place field input. The population theta waveform was constructed from the 

ensemble output corresponding to all the 50 spatially distinct place field traversals, and 

encompasses the entire span of the linear arena [Fig. 1(f)]. The spike patterns corresponding 

to each of these 50 distinct place field traversals expectedly span a much-restricted spatial 

(and temporal) extent, implying that each spike would have a temporally aligned stretch of 

the population firing rate waveform [Figs. 1(f) and 1(g)]. Given this, for each t spike, we 

found two troughs of the population firing rate oscillation, one that immediately preceded t 

spike (at time t 0) another that immediately followed t spike (at time t 1). This implies that the 

neuronal spike (at t spike) occurred between two consecutive troughs (separated by a phase of 

360°), at times t 0 and t 1, of the population firing waveform. Therefore the phase response ϕ 
spike (in degrees) of the spike occurring at time t spike with reference to f POP was assigned as

ϕspike = 360 tspike − t0
t1 − t0

. (14)

This assignment procedure was repeated for each spike elicited by the model neuron in 

response to all the 50 spatially distinct place field traversals with temporally aligned f pop. 

Given the cyclical nature of phase precession, these phases were warped (by shifting phase 

values by a constant number) such that the representation has actual phase values around 

360° at spatial locations closer to the beginning of the place field.

D Computing phase-coding efficiency of a model neuron

In assessing the efficiency of phase responses corresponding to the 50 spatially distinct place 

field traversals [Eq. (14)] obtained from our conductance-based model, we mapped the spike 

timings (and the corresponding spike phases) elicited for each place field traversal to a 

normalized place field space spanning 0 to 1. Specifically, with spike phase defined as the 

response and one-dimensional space constituting the stimulus, the construction of p(ϕj |si) 

[Eq. (5)] requires phase responses to multiple spatial traversals. In our formulation, the 50 

spatially distinct place field inputs correspond to distinct spatial traversals, and the 

corresponding spike phase responses are those of the same model to stochastic presynaptic 

inputs [Eq. (12)] arriving onto the synapses from each of these 50 inputs. These 50 spatially 

distinct place field traversals are different only in terms of the place field center shifting by T 
ms for every consecutive place field input, along with a τ ms phase shift on the theta scale 

[Eq. (12)]. Therefore, to construct p(ϕ j |sj), we superimposed the spike phase responses to 
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multiple place field traversals by normalizing them with reference to their respective place 

field centers (Fig. 2).

Such normalization of spatial locations to 0–1 for each place field input, by accounting for 

their field center required an estimation of the spatial extent of each place field (so that no 

spike phases that belonged to the place field were omitted). The standard deviation (σ) of the 

place field Gaussian [Eq. (13)] offered an ideal metric for determining this, and we 

employed 2σ on either side of the respective place field center as the extent of each place 

field. With the center and extent of each place field known, the space normalization of each 

spike phase was defined by mapping the left and right extremes of each place field to 0 and 

1, respectively. Specifically, for the nth (0 ≼ n ≼ 49) place field traversal, the field center (T 

cell) and the left (T L) and right (T R) extremes were (see Supplemental Material Fig. S1 

[55])

Tcell = nT, (15)

TL = Tcell − 2σ, (16)

TR = Tcell + 2σ . (17)

Therefore, the normalized spatial location (0 ≼ S ≼ 1) for a spike occurring at t spike for a 

specific traversal was given as

S = tspike − TL
TR − TL

(18)

with T L and T R calculated for the specific traversal as in Eqs. (16) and (17). As all spike 

phases [Eq. (14)] corresponding to each of the place field traversals were now mapped onto 

a normalized spatial coordinate, all spike phases were superimposed to obtain a response 

(spike phase ϕ) vs stimulus (normalized space S) plot which was employed for computing 

p(ϕ|S) [e.g., Figs. 2(a) and 2(b)].

We computed p(ϕ|S) from this superimposed response-stimulus plot by binning the 

normalized stimulus axis S into 20 bins (see Supplemental Material Fig. S1 [55]), with each 

bin representing a spatial stimulus (s i, 0 ≼ i ≼ 19, in Eqs. (3)–(5). In computing the 

conditional probability distribution p(ϕ|si) [Eqs. (3)–(5)], we pooled all the spike phases that 

belonged to the bin s i [bin i spanned i/20 to (i + 1)/20 of the normalized stimulus axis S]. 

We computed the mean and variance of the phases within each stimulus bin s i and 

constructed a normal distribution with these statistics to yield p(ϕ|si) [e.g., Figs. 2(a) and 

2(b)]. Finally, the mutual information between stimulus (S) and neuronal phase response (ϕ), 

I(ϕ; S), was computed employing the conditional distribution p(ϕ|s i) and the probability of 

occurrence of each stimulus bin p(si), which was considered to be a uniform distribution 

(implying uniform traversal of space), using Eqs. (1)–(5).
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In summary, the computation of I(ϕ; S) for a given conductance-based model neuron with a 

specified set of intrinsic properties [defined by parameters inherent to Eq. (6)] entailed the 

computation of the spike phase responses for each of the 50 spatially distinct place field 

traversals [Eqs. (12) and (14)], and computation of the response and noise entropies [Eqs. 

(2)–(5)] preceded by computation of p(ϕ|S) after normalization of the spatial coordinates 

[Eqs. (15)–(18)].

E Model population replicating neuron-to-neuron differences in cellular and molecular 
properties

Functional measurements and ion channel properties of hippocampal neurons manifest 

neuron-to-neuron differences in the same subregion of the hippocampus. As a principal 

question addressed here was to understand the ability of neurons to act as efficient phase 

coders in the face of such neuron-to-neuron heterogeneity, our next step was to incorporate 

this in neuronal ion channel properties. We employed a multiparametric multiobjective 

stochastic search (MPMOSS) technique that involves assigning a broad search space for 

every parameter in the model, followed by construction of individual models through 

uniform random sampling of all the parameters for several thousands of times. Each model 

picked as a sample through such an unbiased stochastic search of a broad parametric space 

was evaluated for its ability to match with functional constraints to assess their validity [56–

63].

We performed MPMOSS on 11 parameters that are critical to our model. The 11 model 

parameters that we included in the stochastic search were the nine maximal channel 

conductances gleak = 1/Rm, gNa, gCaL,gCaT,gHCN,gKDR,gKA,gSK,gKM ,, the decay time 

constant of calcium (τCa), and the synaptic permeability (P max). The exhaustive search 

space for each of these parameters is given in Table I. Each of the 11 parameters in this 

multiparametric space (Table I) was uniformly sampled 11 000 times to generate as many 

unique models, and I(ϕ; S) was computed for each of these 11 000 conductance-based 

models (each with distinct intrinsic properties) employing the procedure outlined in the 

sections above.

In summary, we constructed 11 000 models that were heterogeneous across all parameters, 

with each model constituted by 100 stochastically activated synapses whose afferent inputs 

from 50 place fields were used to derive population activity.

III Parametric Degeneracy in the Expression of Efficient Phase Coding

What constraints are essential on the 11-dimensional parametric space involving ion channel 

conductances to achieve efficient phase coding? To address this, we compared the phase 

coding efficiencies across all 11 000 models that received identical inputs during place field 

traversals, but were heterogeneous in terms of the cellular and molecular properties that 

defined them. Constructing and comparing the spike-phase profiles of such models provided 

us the first clue on the strong dependence of spike phase precession on neuronal properties. 

Two extreme examples elucidating this point are shown in Figs. 2(a) and 2(b), with the 

model in Fig. 2(a) eliciting bursts of spikes throughout the entire place field, resulting in a 

code where the phases assigned to individual spatial bins within the place field [Fig. 2(a), 
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left] were not delineated [Fig. 2(a), right]. These overlaps in phase responses to spatial 

stimuli implied that this phase profile carried little information about the spatial location of 

the animal (MI = 0.04 bits).

Although both models received identical afferent inputs and had their phase codes computed 

with precisely the same procedure, only the model in Fig. 2(b) manifested a phase code that 

exhibited phase precession, with a clear monotonic relationship to spatial location. This 

translated to a broadly well-delineated range of phases being assigned to specific spatial bins 

[Fig. 2(b), right], implying that the spatial information contained in this phase code was 

higher [Fig. 2(b); MI = 2.1 bits] than the model in Fig. 2(a). The differences between these 

two models were limited to intrinsic properties, and not in the temporal structure of afferent 

network inputs or associated T/τ interactions [Fig. 1(e)] that define phase precession within 

our framework. Therefore, these observations pointed to a pivotal role for neuronal 

properties in the emergence of phase precession and in regulating the efficiency of the 

associated phase code.

What characteristics of the model parameters enable some of them to act as efficient phase 

encoders? To address this question, we assessed the cellular and molecular constraints that 

maximize the efficiency of a phase code by analyzing the properties of models that were 

highly efficient. We picked models that were endowed with a high value (>1.5 bits; Fig. S2 

[55]) of mutual information I(ϕ; S) and considered them to be “MI-valid models“ or 

“efficient phase coders.“ Of the 11 000 models that were constructed, 284 models were 

classified as MI-valid models (~2.6%). The functional properties exhibited by this subset of 

284 efficient encoders, both at the synaptic and intrinsic levels, would reflect the neural 

constraints that govern phase coding efficiency.

To understand the quantitative nature of this parametric subspace of efficient phase coding 

models, we first picked five (of the 284) models that were endowed with very similar phase 

precession profiles with high efficiency in spatial information transfer [Fig. 2(c)]. When we 

plotted the parameters associated with these five models [Fig. 2(d)], we found a lack of any 

clustering in the parametric combinations that resulted in these highly efficient models with 

very similar phase precession. This suggested the expression of degeneracy [34,35] in the 

manifestation of efficient phase codes, where disparate parametric combinations 

(representing distinct ion channels) yielded a similar function (phase-coding efficiency). To 

further validate our observations, we explored potential clustering in parameters by plotting 

the histogram for each of the 11 parameters associated with these 284 efficient models with 

MI ≥ 1.5 bits [Fig. 2(e), bottom row]. The broad distribution of parametric values that 

yielded these efficient models provided clear evidence for the expression of degeneracy in 

the emergence of efficient phase coding. To assess the presence of correlated expression of 

channel conductances underlying the efficient models, we plotted pairwise scatters of the 11 

parameters from all the 284 models [Fig. 2(e)], and computed the associated correlation 

coefficients [Fig. 2(g)]. We found the pairwise correlations among model parameters to be 

weak, with the Pearson’s correlation coefficient spanning the range of –0.5 ≼ R ≼ 0.5 [Figs. 

2(g) and 2(h)].
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A Ion-channel degeneracy in the concomitant emergence of efficient phase coding and 
neuronal excitability

The analyses thus far did not account for the characteristic intrinsic excitability of CA1 

pyramidal neurons. While the MPMOSS picked out models based on their efficiency, there 

was no scrutiny on their electrophysiological equivalence to CA1 pyramidal neurons. We 

asked if imposing electrophysiological equivalence would alter the ability of disparate 

parametric combinations to yield efficient models that satisfy these constraints as well. We 

thus imposed a second layer of validation criteria on the 284 efficient models using the five 

measurements that were computed to characterize neuronal gain (intrinsic excitability)—

resting membrane potential (RMP), standard deviation of RMP (σRMP) to avoid fluctuations 

(consequent to channel interactions) in the emergence of a resting state, input resistance (R 

in), firing rate at 50 pA (f 50), and firing rate at 250 pA (f 250).

To measure RMP, the model neuron was allowed to achieve steady state (without injection 

of any current and without activation of any of the afferent synapses) for a period of 6 s [Fig. 

3(a), second column]. The distribution of membrane potential values over the last 1 s (i.e., 

5–6-s period) was employed to compute its mean and standard deviation, which were then 

defined as RMP and σRMP respectively. We injected the model neuron with pulse currents 

(each for 500 ms after steady-state RMP was achieved as above) of amplitudes ranging from 

–50 to 50 pA (with incremental steps of 10 pA each) and the resulting steady-state voltage 

response was recorded for each amplitude of current [Fig. 3(a), third column]. The steady-

state voltage deflection from RMP was plotted as a function of injected current amplitude. 

The slope of the linear fit to this V-I plot was defined as the input resistance of the model 

neuron (R in). Finally, the firing rates at 50 and 250 pA were measured by injecting constant 

pulse currents of the respective magnitudes and computed as the number of action potentials 

elicited during a 1-s period. All these intrinsic measurements were made after allowing the 

RMP to stabilize for 6 s. For a model to be considered intrinsically valid, these 

measurements from the model ought to be within an experimentally valid range expressed 

by hippocampal CA1 neurons (Table II). This additional validation process resulted in 132 

models that were efficient, and concomitantly satisfied multiple constraints on signature 

intrinsic excitability characteristics.

We assessed the parametric space underlying the 132 models that were efficient, and 

concomitantly satisfied multiple constraints on signature intrinsic excitability characteristics. 

To address ion channel degeneracy in this subpopulation, we first picked five example 

models that satisfied both sets of constraints. These models had similar or identical values 

not only for the mutual information measure [Fig. 3(a), first column] but also for each of the 

five intrinsic measurements [Fig. 3(a): columns 2–4; Table II]. Despite similarities in phase-

coding efficiency and in the five intrinsic measurements, the underlying parametric values 

that defined these five models exhibited a broad distribution [Fig. 3(b)]. In assessing all the 

132 valid models with high phase coding efficiency [Fig. 3(c)], we found intrinsic 

excitability measurements to exhibit heterogeneity [Figs. 3(d)-3(f)] within respective 

electrophysiological bounds (Table II). The parametric distributions of all 11 parameters 

defining these 132 models spanned a broad range rather than showing specific clusters [Fig. 
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3(g); last row histograms], with weak pairwise correlations across all parametric 

combinations [Figs. 3(g)-3(i)].

Together, these results unveiled ion channel degeneracy in the concomitant emergence of 

efficient phase coding and signature electrophysiological properties of hippocampal 

pyramidal neurons. As the 11-dimensional parametric space represents ion channel 

conductances, calcium decay, and receptor permeabilities, these constitute the molecular 
components that define our neuronal model. Our analyses of models exhibiting efficient 

phase coding clearly demonstrate the absence of strong constraints at the molecular scale, 

whereby disparate combinations of these parameters with weak pairwise correlations result 

in similar coding efficiency.

B Ion channel degeneracy is mediated by differential and variable impact of individual 
ion channels on efficient phase coding

What aspect of the model mediated ion channel degeneracy? What roles do individual ion 

channels play in regulating efficient phase coding? To explore neural constraints on efficient 

phase coding at the molecular level, we assessed the relative contributions of ion channels to 

phase coding efficiency by using the virtual knockout strategy. Specifically, we virtually 

knocked out individual ion channels by setting the corresponding conductance to zero, with 

no changes to any other parameter or inputs to the selected model. We did not perform 

virtual knockout analyses on the NaF and KDR channels, because these virtual knockout 

models (VKMs) ceased spiking upon knocking out either of these channels, implying that 

spike phases could not be computed. Following knockout, we computed the phase 

precession and efficiency of each VKM and compared it with that of the same model when 

the channel conductance was intact and calculated the percentage change in mutual 

information. We repeated this procedure for all 132 valid models, and individually for the six 

active channel subtypes (Fig. 4; 132 × 6 = 792 VKMs, each subjected to 50 traversals).

The distribution of percentage changes in the mutual information in the population of 

models after virtual knockout of each of the six individual channels [Figs. 4(b) and 4(c)] 

unveiled the heterogeneity of the impact of these channels on efficient phase coding. 

Specifically, the impact of knocking out each of these channels was variable, whereby there 

was a strong effect on MI in some models with others showing no significant effect upon 

knockout of the same channel subtype. From the cellular perspective, the impact of knocking 

out different channels had differential effects on MI, with considerable cross-cellular 

heterogeneity in the relative contributions of individual channels to MI [Figs. 4(b) and 4(c)]. 

We asked if the impact of one channel subtype on efficient phase coding could predict the 

impact of another channel by comparing percentage changes in MI after individual channel 

knockouts in a pairwise manner [Fig. 4(d)]. Consistent with the correlation analyses on 

channel conductances [Figs. 3(g)–3(i)], we found that the pairwise correlations between 

percentage changes in MI after channel knockouts were very weak [Figs. 4(d)–4(f)]. The 

many-to-one relationship between different parameters (channel conductances) and coding 

efficiency, derived from variability in and weak correlations among the effects of individual 

channels, forms the substrate for ion channel degeneracy in the emergence of efficient phase 

codes (Figs. 2–4).
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Although individual channels had differential and variable impact on phase coding 

efficiency, we noted that the phase code was heavily distorted upon knockout of SK channels 

and the T-type calcium channels in a large subset of models. These analyses offer a testable 

prediction on a critical role of SK and T-type calcium channels in determining the efficiency 

of the phase code. Together, our analyses unveil the expression of parametric degeneracy as 

a potential substrate for efficient coding in CA1 pyramidal neurons despite neuron-to-neuron 

heterogeneity in expression profiles. Ion-channel degeneracy ensures that efficient phase 

coding and intrinsic excitability characteristics are concomitantly maintained without the 

requirement of having individual ion channels at specific densities. These imply that 

different ion channel combinations contribute to similar functional outcomes, and manifest 

as variable and differential impacts of different ion channels on phase coding efficiency.

IV Synergistic Balance Between Neural Gain and External Synaptic Inputs 

Defines Efficient Phase Coding

The analyses thus far demonstrated the absence of strong molecular scale constraints in the 

emergence of efficient phase coding, where disparate combinations of these molecular scale 

parameters elicited similar phase coding efficiency. Are there strong cellular scale 
constraints that are essential for the emergence of efficient phase coding models? What are 

the differences between models that showed efficient phase coding and those that did not, 

with specific reference to cellular-scale functional measurements? Is efficient phase coding 

simply a reflection of the firing rate of the model neuron during the place field traversal? Are 

there strong relationships between synaptic strength and intrinsic excitability in models that 

exhibited efficient phase coding? Are there correlations at the functional level between the 

efficiency of the phase code and the characteristics of the rate code (firing rate properties 

through the place field)?

To address these questions, we analyzed the dependence of phase-coding efficiency (mutual 

information) independently on the properties of place field firing [F max, full width at half 

maximum (FWHM)], synaptic strength [P max in Eqs. (9) and (10)], and each of the 

excitability measurements (RMP, f 250, R in) for the 284 efficient phase coders and found 

very weak correlations (Fig. 5). We found that neurons with high phase coding MI were 

typically obtained when the peak firing rate was around 5 Hz [Fig. 5(a)] and when the 

FWHM was around 1 s [Fig. 5(b)], and there was no strong relationship between rate code 

properties and phase coding efficiency. We computed correlations between the phase-coding 

efficiency of the models (i.e., MI values) and each of the three excitability measurements, 

separately for the 284 efficient models and the 132 efficient and excitability-validated 

models [Figs. 5(c)–5(e)]. We found these correlations to be extremely weak [Figs. 5(c)–5(e)] 

thereby ruling out a direct well-defined relationship between intrinsic excitability and the 

model’s ability to efficiently encode space through phase. In addition, we found the 

correlation between model efficiency and synaptic strength for the two groups of valid 

models to be weak [Fig. 5(f)]. Together, these analyses ruled out strong relationships 

between phase coding efficiency and intrinsic excitability, synaptic strength, and place field 

firing properties.
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Although there was no strong correlation at the functional level between the efficiency of the 

model and its intrinsic/synaptic properties, we found strong negative correlations between 

neuronal intrinsic properties and synaptic permeability for both valid model populations 

[Figs. 5(g)–5(i)]. This negative correlation was particularly strong between the neuronal 

firing rate and the synaptic permeability [Fig. 5(i)]. These observations suggest that neurons 

that occupy a negative slope manifold on the two-dimensional synaptic-intrinsic functional 

plane are capable of efficiently encoding spike phases. Importantly, these results show that 

efficient phase coding models can emerge despite heterogeneities in intrinsic properties 

[Figs. 3(d)–3(f) and 5(c)–5(e)] and in synaptic strength [Fig. 5(f)], as long as the synaptic 

drive counterbalances intrinsic excitability. Thus, the ability of intrinsic excitability and 

synaptic drive to counterbalance each other constitutes a critical cellular constraint in 

defining models with high-efficiency phase codes. Ion channel degeneracy described in the 

previous section demonstrates that this counterbalance could be achieved through distinct 

parametric combinations, thereby contributing to degeneracy in efficient phase coding. 

Although our search space for efficient models spanned an 11-dimensional parametric space, 

these analyses show that the search yielded models that occupied a negative-slope manifold 

on the synaptic-intrinsic functional space.

Thus far in our analyses, we first sorted models on the basis of their efficiency (Fig. 2) and 

among highly efficient models found a subset that was also endowed with signature 

excitability characteristics (Fig. 3). Instead, if models were initially sorted by whether they 

were endowed with signature excitability characteristics irrespective of what their MI values 

were, would these intrinsically valid models also be efficient phase coders? Would there be 

significant correlations between intrinsic properties and MI in this intrinsically valid model 

population? To address these, we identified models (Fig. S3A [55]; 1754 out of 11 000) that 

were intrinsically valid (Table II) irrespective of what their MI values were (Fig. 5). We 

found the MI values of these intrinsically valid models to span the 0–2-bit range (Fig. S3B), 

implying that they were not necessarily efficient and providing further evidence that 

efficiency in models was not a simple reflection of signature neuronal excitability properties. 

Additionally, we confirmed that our earlier (Fig. 5) conclusions on weak correlations 

between MI and intrinsic/synaptic properties extended to these intrinsically valid models as 

well (Figs. S3B-S3E). Importantly, we found that the synergy between synaptic and intrinsic 

properties, manifesting as high correlations between intrinsic measurements and synaptic 

permeability, was observed only in model populations that were endowed with high-

efficiency phase codes [Figs. 5(g)–5(i)], but was notably absent in these models that were 

just intrinsically valid (Figs. S3F–S3H). These observations demonstrated that the synergy 

between intrinsic and synaptic properties was not a reflection of the stochastic search 

process, but manifested as an essential constraint in the emergence of efficient models and 

associated degeneracy.

Together, these results show that the tight counterbalance mediated by synergistic 

interactions between synaptic and intrinsic properties constitutes an important cellular 

constraint underlying the emergence of efficient phase coding. Our results also reveal 

degeneracy as a mechanism that recruits nonunique solutions from the parametric space 

(various parametric combinations that define model compositions) to achieve similar 

functional outputs (coding efficiency and neural excitability), mediated through tight 
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constraints in the functional space (negative correlations in the synaptic-intrinsic plane, 

between neuronal gain and strength of external inputs). Importantly, while the structure of 

the synaptic inputs and synaptic weights plays a critical role in defining phase-coding 

efficiency, neuronal intrinsic properties need to be tightly coupled to these to maintain the 

counterbalance in achieving phase-coding efficiency.

V Exploring Structure in the Parametric and the Measurement Spaces

The parametric solution subspace for models satisfying both constraints (models valid based 

on only efficiency and the ones valid based on both efficiency and intrinsic excitability) 

revealed significant expression of degeneracy. This was based on a considerable spread of all 

11 parametric values across their respective entire ranges across valid models indicating that 

there was no noticeable clustering of these values that was reflective of efficiency or intrinsic 

validation. To further explore the prevalence of any hidden structure in the solution space, 

we applied dimensionality reduction techniques on the parametric and measurement spaces. 

Specifically, our dataset contains 11 000 models that contain three classes of models: (a) 

only intrinsically valid models (1622), (b) only efficient models (152), (c) both efficient and 

intrinsically valid models (132). Models that did not fire were excluded from these analyses, 

giving a total of 8579 model neurons for these analyses.

A Parametric space

We performed linear (principal component analysis, PCA) and nonlinear (t-distributed 

stochastic neighbor embedding, t-SNE) dimensionality reduction techniques on the 11-

dimensional parametric space (Table II) of the model population (Fig. S4 [55]). Specifically, 

we looked at the coefficients associated with the first three principal dimensions, with 

reference to the three classes of models mentioned above. We analyzed the distribution of 

class-specific coefficients in the reduced dimensional space obtained with PCA (Fig. S4A) 

or t-SNE (Fig. S4B), and found these distributions to be overlapping with each other. There 

were no clusters that distinguished between efficient models and models that were 

intrinsically valid. Together, these observations revealed the absence of any structure in the 

solution space that distinguished efficient models from others.

B Measurement space

Motivated by our observations on the manifestation of strong correlation between synaptic 

strength and intrinsic excitability in highly efficient models (Fig. S5 [55]), we asked if there 

was structure in the measurements space that distinguished between efficient and 

intrinsically valid models. The measurement space is five-dimensional comprising resting 

membrane potential (RMP), input resistance (R in), firing rate at 250 pA (f 250), the maximal 

synaptic permeability (P max), and the efficiency of a model’s phase code measured as 

mutual information between phase and space (MI). P max was considered as a measurement 

dimension also in order to account for a synaptic measurement apart from intrinsic (RMP,R 

in, and f 250) and efficiency (MI) measures. We performed PCA and t-SNE on the five-

dimensional measurements space of the model population and plotted the class-specific 

coefficients along the first three principal dimensions (Fig. S5). We analyzed the class-

specific distribution of these coefficients in the reduced dimensional space obtained with 
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PCA (Fig. S5A) or t-SNE (Fig. S5B), and found these distributions to be overlapping with 

each other. There were no clusters that distinguished between efficient models and models 

that were intrinsically valid. These observations revealed the absence of any structure in the 

measurement space that distinguished efficient models from others.

Together, these analyses emphasized that complex nonlinear interactions among several 

parameters governed phase coding efficiency and intrinsic validity of the model population, 

thereby strengthening our conclusions on degeneracy in the parametric space. Specifially, 

these observations emphasize that several disparate combinations could yield similar 

functional outcomes without requirements of specific relationships between the parametric 

distributions [35,59,60,62,64]. In other words, changes in one parameter are not 

compensated for by changes in another specific parameter, but by changes in several other 

parameters and nonlinear interactions among them. These conclusions are also consistent 

with our prior conclusions from weak pairwise correlations between different parameters 

[Figs. 2(e)–2(h) and 3(g)–3(i)] and conclusions from our virtual knockout simulations 

showing differential dependence of phase-coding efficiency on individual ion channels (Fig. 

4).

VI Impact of Changes in Synaptic Input Structure on the Phase Code

There are theoretical and experimental lines of evidence for an experience-dependent 

asymmetric expansion of hippocampal place fields in the direction opposite the movement 

of the animal [31,33,65,66]. However, the place field model employed here involves a 

Gaussian that is symmetric with reference to the place cell center [Fig. 1(c)]. What is the 

impact of a change in the input structure such as an asymmetric afferent input activation on 

the place-cell rate and phase codes? How does such a change in the statistics of place field-

driven afferent inputs onto a single neuron alter the efficiency of the phase code in the 

model? To address these questions, we replaced the symmetric Gaussian profile of afferent 

synaptic activation [Fig. 1(c)] by a horizontally reflected Erlang distribution to construct the 

asymmetric envelope while matching the area under the curve of these profiles [Fig. 6(a)]. 

With this formulation, each synapse in the model neuron received inputs whose probability 

of occurrence as a function of time was defined by an Erlang-modulated cosinusoidal 

distribution:

Fpre t = Fpre
max 1 + cos 2πf0 t − nτ × nT − t α − 1exp −β − nT − t , (19)

where all common parameters with Eq. (12) were identical in their description and function, 

and parameters α(=4) and β(=0.002) governed the extent of asymmetry. Similar to the theta 

modulation that we had introduced for the Gaussian, we incorporated theta modulation to 

the Erlang distribution by multiplying this function with an 8-Hz sinusoid. We maintained 

the same T-τ relationship as that of the Gaussian profile of synaptic activation [Figs. 1(e) 

and 2] for the 50 consecutive place field traversals, which now involve the Erlang 

distribution instead.
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In comparing the implications of symmetric and asymmetric afferent activations on the place 

field rate and phase codes, we first constructed the firing rate profiles across each of the 50 

different symmetric [Eq. (12)] or asymmetric [Eq. (19)] place field traversals for a given 

model neuron. To do this, the spike time responses of each model neuron to the 50 distinct 

symmetric or asymmetric place field inputs were convolved with a Gaussian kernel to 

produce instantaneous firing rate responses. These 50 firing rate profiles were finally 

averaged to produce the rate code of that particular model neuron [e.g., Fig. 6(b)], in 

response to either the symmetric or the asymmetric input profiles. To assess the sensitivity of 

the model to afferent input strength, we presented either symmetric or asymmetric inputs at 

three different maximal presynaptic firing rates (Fpre
max = 40, 80, or 160 Hz). We computed an 

asymmetry index (AI) to assess the extent of asymmetry of the firing rate profile of a given 

model neuron:

AI = AL − AR
AL + AR

, (20)

where A L denoted, for each model neuron, the area under the firing rate profile to the left of 

the place field center (0–0.5 on the normalized spatial axis) while A R represented the same 

to the right of the place field center (0.5 to 1 on the normalized spatial axis). The firing rate 

profiles and their asymmetry indices were computed for each of the 132 concomitantly MI-

and intrinsically valid models, at three different presynaptic firing rates, for both symmetric 

and asymmetric input profiles [Figs. 6(c) and 6(d)]. Predictably, the firing rate of the model 

cells increased with increase in Fpre
max [Figs. 6(b) and 6(c)], irrespective of whether the 

activation profile was driven by a symmetric or an asymmetric distribution. As would be 

expected from the asymmetry in the afferent activation profile, we also found that the rate 

code displayed an asymmetry when the models were activated with the asymmetric 

distribution, with asymmetry progressively increasing with increase in Fpre
max [Figs. 6(b) and 

6(d)].

To understand the change in phase code as functions of asymmetry and Fpre
max we computed 

the phase-space plots for each of these 132 models with each input configurations 

(symmetric vs asymmetric and three different values of Fpre
max) by computing the spike 

phases with reference to the respective fPOP. We found phase precession to be overall similar 

for symmetric vs asymmetric synaptic activation profiles [Figs. 6(e) and 6(f)], which was 

confirmed by the similar efficiency in the phase code [Fig. 6(g)]. However, an important 

effect of asymmetry in the afferent activation profile was a leftward “predictive“ shift in the 

phase precession profile, which was consequent to the early intraplace field firing when 

neurons were activated with an asymmetric input profile and was observed for all values of 

Fpre
max [Figs. 6(b) and 6(d)]. Specifically, although the models expressed similar efficiency 

values, their phase codes underwent a leftward shift to be able to preserve the high 

efficiency. In other words, models whose phase precession profiles looked very similar to 

their profiles in response to a symmetric activation curve (models that did not undergo a 
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leftward shift) would not constitute the most efficient models in the asymmetric activation 

case.

These analyses revealed important differences in the phase code that emerged when the 

synaptic activation rate (Fpre
max) was changed [Figs. 6(e)–6(g)]. First, consistent with the rate 

code [Fig. 6(b)], the temporal spread of the extent of place field firing increased with Fpre
max

implying that the phase code now spread over a larger number of theta cycles [Fig. 6(e)]. 

Second, the increase in firing rate with increase in Fpre
max implied that the cell spiked more 

than once during a single theta cycle [Figs. 6(e) and 6(f)], resulting in a reduction in the 

efficiency of the phase code with increase in Fpre
max, when all spikes were considered for the 

computation of mutual information [Fig. 6(g)]. Third, changes introduced to the phase code 

by increasing Fpre
max were broadly invariant to whether the input activation profile was 

symmetric or not. Specifically, the increase in temporal extent of firing, the presence of 

multiple spikes within a single theta cycle, and the reduction in the efficiency of the phase 

code were all observed with increase in Fpre
max, irrespective of whether the synaptic activation 

profile was symmetric or asymmetric [Figs. 6(e)–6(g)]. Together, in our model, asymmetry 

in place field afferent inputs introduced predictive temporal shifts to the rate and phase 

codes, with the shift in the phase code constituting a stimulus-dependent adaptation of the 

code to the altered input statistics in order to achieve similar efficiency. These results imply 

that the phase code follows the stimulus statistics, which in this case is driven by the 

distribution of the afferent inputs as a function of space (as the traversal itself was 

considered uniform), thereby preserving the efficiency of information transfer.

Theta modulation and symmetry profiles of subthreshold ramps in place-cell voltage 
responses

Thus far, we have shown that our model neurons exhibit signature electrophysiological and 

encoding characteristics of CA1 place fields. Specifically, we showed that our place cell 

models exhibit electrophysiologically matched intrinsic properties (Figs. 5–7), also 

manifesting neuron-to-neuron heterogeneities in these intrinsic properties 

[36,37,56,57,67,68] through variable expression of ion channels in these neurons. 

Importantly, the kinetics and gating properties of these ion channels and the range of 

intrinsic heterogeneities were derived from CA1 pyramidal neuron electrophysiology. The 

incorporation of these intrinsic heterogeneities provided the substrate for us to demonstrate 

the need for strong synergy between intrinsic and synaptic properties to achieve efficient 

phase-coding models [Fig. 5(i)]. We showed that our models matched place field firing rates 

[Figs. 1(d), 5(a), 5(b), and 6] and experience-dependent asymmetry [31,33,65,66] in their 

firing rate profiles (Fig. 6). These place-cell electrophysiological characteristics that our 

models matched were in addition to the core focus of our study on phase precession 

[28,30,33], achieved by the emergence of the extracellular theta with a frequency that was 

lesser than the intracellular theta frequency [Figs. 1(f) and 1(g)]. In addition to these 

characteristics, place cells exhibit strong theta power and manifest a subthreshold ramp in 

their voltage response during place field traversals [33]. To further validate our models 

against these characteristics, we assessed theta power and subthreshold ramps in our model 
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voltage responses and asked if they matched their electrophysiological counterparts. We 

performed these for each of the 132 models, with Fpre
max set to three different values and with 

both symmetric as well as asymmetric synaptic activation profiles (Fig. 7).

We analyzed theta modulation and theta power by bandpass filtering the voltage response 

between 4 and 10 Hz. The subthreshold voltage response profile, to verify the presence of 

and quantify subthreshold ramps, was computed by median filtering the voltage response 

trace. The raw voltage responses, the theta-filtered traces, and the subthreshold response 

profiles for an example model neuron, receiving symmetric [Fig. 7(a)] and asymmetric [Fig. 

7(b)] synaptic activation profiles for the three different values of Fpre
max (40, 80, and 160 Hz) 

confirmed that our models manifested signature electrophysiological characteristics. 

Specifically, we observed that the theta-filtered traces showed a clear increase in theta power 

in the voltage response during place field traversals, with the spectra consistently showing 

peak power at 8 Hz. We also noted a consistent subthreshold response profile of 5–8 mV 

amplitude that was either symmetric [Fig. 7(a)] or exhibited an asymmetric ramp [Fig. 7(b)] 

depending on the nature of synaptic activation.

We noted that both the theta modulation (amplitude of the band-pass filtered signal) and the 

membrane potential ramp amplitude were comparable to those observed in place cells in 
vivo [33]. However, it may be noted that the out-of-field theta power in our model is zero, 

because our model assumes the out-of-field theta input to be zero, driven by our focus on 

spatial encoding within a single place field. The addition of spatially uniform inhibitory 

theta rhythm [54] to our formulation would ensure nonzero theta power outside the place 

field. However, the incorporation of such a spatially uniform inhibitory term to Eq. (6) 

would only contribute a small additive bias to the overall theta power computation. 

Therefore, we note that the difference in theta power within the place field, compared to 

outside, reported here is comparable to their experimental counterparts.

We quantified these measurements for all the 132 models that are both information efficient 

and intrinsically valid, for all the six cases (three different values of Fpre
max for symmetric and 

asymmetric activation profiles) of synaptic activation profiles. We computed the area under 

the curve (AUC) of the Fourier spectrum of the theta-filtered voltage response [Fig. 7(c)], 

the ramp amplitude [Fig. 7(d)], and the asymmetry index [Eq. (20), Fig. 7(e)] from the 

correspondingly filtered versions of these voltage responses. Our results confirmed the 

expression of theta modulation and high theta power during place field traversals across all 

models [Fig. 7(c)]. We also confirmed that there was always a depolarizing subthreshold 

voltage profile during place field traversals that formed the substrate for action potential 

firing [Fig. 7(d)]. This subthreshold voltage profile was an asymmetric ramp [Fig. 7(b)] 

showing a strong asymmetry index [Eq. (20)] when the model was presented with 

asymmetric synaptic activation profiles [Fig. 7(e)]. Together, our model measurements 

matched their biological counterparts with reference to the expression of strong theta 

modulation and the manifestation of a depolarizing subthreshold ramp during place field 

traversals of an animal.
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VII Discussion

We built a conductance-based model for phase precession in CA1 pyramidal neurons, and 

derived a model-independent generalized quantitative measure for efficient phase coding 

within single place fields using information-theoretic approaches. We assessed the cellular 

and molecular constraints that are essential for obtaining highly efficient phase codes, 

employing a heterogeneous population of biophysically and physiologically constrained 

models. The prime conclusion of our study is that phase coding in place cells is critically 

reliant on a synergistic balance between neural gain and strength of external inputs, and that 

efficient information transfer through such a phase code could be achieved through multiple 

disparate routes while concomitantly maintaining signature excitability properties. These 

analyses unveil a role for neuronal intrinsic properties in maintaining a tight counterbalance 

to the overall afferent synaptic drive in achieving encoding efficiency. Importantly, this 

synergistic balance was found exclusively in models exhibiting efficient phase coding, and 

not for mere maintenance of excitability homeostasis. These conclusions on a role for 

neuronal intrinsic properties in regulating phase coding efficiency were possible because we 

had employed a population of models that incorporates biological heterogeneities in intrinsic 

excitability, rather than using a single hand-tuned neuronal model.

We arrived at these conclusions by employing an unbiased stochastic search across 

parameters involving thousands of models to ensure that we capture biological neuron-to-

neuron heterogeneities. Our stochastic search involved an 11-dimensional parametric space, 

and demonstrated the absence of any strong constraints on ion channel expression in the 

emergence of efficient phase coding. Importantly, our analyses unveil an important cellular 

constraint involving a negative slope manifold in the two-dimensional intrinsic-synaptic 

functional plane in achieving efficient phase coding. This critical cellular constraint was 

achievable with disparate parametric combinations, thereby resulting in ion channel 

degeneracy that defined the emergence of efficient phase coding. Finally, by modifying the 

symmetry properties of the afferent inputs, we demonstrated that asymmetry in place field 

afferent inputs introduces predictive temporal shifts to the rate and phase codes. We noted 

that the shift in the phase code constitutes an adaptive shift to preserve phase-code efficiency 

in a manner that was driven by afferent stimulus statistics.

A Synergistic interactions between intrinsic and synaptic properties drive phase coding 
efficiency

Our results make a clear case for phase precession and the efficiency of the associated phase 

code to be regulated by neuronal intrinsic properties, rather than being solely reliant on the 

temporal structure of the afferent network inputs. Employing models that received afferent 

inputs with identical temporal structure, we showed that neuronal intrinsic properties are 

critical in achieving efficient phase coding. Importantly, this dependence was not driven by a 

simple correlation between efficient phase coding and neuronal excitability (Figs. 5 and S3 

[55]) or between phase-coding efficiency and firing rate during place field traversal [Fig. 

5(a)]. Instead, phase-coding efficiency and associated parametric degeneracy were mediated 

by synergistic interactions between intrinsic and synaptic properties, specifically pointing 

towards the ability of intrinsic excitability and synaptic drive to counterbalance each other in 
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achieving this [Fig. 5(i)]. Based on these observations, we postulate that the emergence of 

stable, efficient, and robust encoding in neuronal systems relies on synergistic interactions 

between disparate forms of plasticity. Under such a postulate, the specific forms of plasticity 

that define such emergence would be variable in a neuron-and context-dependent manner, 

depending on the internal state of the network (given parametric degeneracy) and on the 

afferent modulation imposed by behavior. Future studies could explore the manifestation of 

such counterbalances in intrinsic vs synaptic characteristics, and their roles in regulating 

encoding and homeostasis under physiological or pathophysiological conditions where these 

characteristics are known to undergo changes.

Our model presents a quantitative testable prediction on the dominant impact of SK channels 

on phase coding. Future computational studies could focus on whether this dominant role is 

a reflection of the slow kinetics of the SK current, or if this were just a reflection of the SK 

current altering neuronal excitability. Experimentally, electrophysiological recordings of 

phase precession within a single place field (in different cell types) could employ the 

generalized information metric derived here for assessing spatial information in and 

efficiency of the phase code. Such experiments could also test the role of different ionic 

currents (including SK) on phase coding in place cells with specific pharmacological agents 

or specific transgenic mice that have altered channel conductance or properties.

B Degeneracy in efficient coding and excitability robustness

We show that the emergence of efficient phase coding (Fig. 2) and concomitant excitability 

robustness (Fig. 3) is independent of the ability of a neuron to maintain its ion channel 

densities at specific values but was driven by synergistic interactions between synaptic and 

intrinsic properties [Fig. 5(i)]. Such degeneracy implies that there are several degrees of 

freedom available to a neuron in concomitantly maintaining efficiency of the phase code and 
homeostasis of intrinsic excitability, without cross interferences between the encoding and 

the homeostasis processes. This constitutes an important departure from conventional 

analyses of the encoding-homeostasis balance, where encoding is hypothesized to be 

achieved by specific processes and other concurrent (or slower) processes achieve 

homeostasis. Within our framework, encoding and homeostasis is postulated to emerge 

concomitantly, with significant degeneracy in the specific components that contribute to 

such emergence. This degeneracy was effectuated by the ability of disparate combinations of 

molecular constituents to satisfy the cellular-scale constraint on counterbalancing afferent 

synaptic drive and matching excitability properties of CA1 pyramidal neurons.

Our analyses also constitute a scenario where redundancy reduction with reference to a code 

is brought about by degeneracy in the structural components that contribute to the 

emergence of the code. It is important to note that our analysis does not constitute coding 

degeneracy, where disparate codes (potentially mediated by different structural components) 

encode the same stimulus or structural redundancy, where a dysfunctional component is 

replaced by an identical component that restores function. Ours is an example of a scenario 

where an efficient code, that reduces redundant representations, is achieved by disparate 

combinations of underlying structural components (channels and receptors). Similar to other 

examples of degeneracy across the literature [34,35,58,59,62,63], while the contribution of 
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different structural components to individual models is variable, the specific function that 

emerges as a consequence of interactions between these distinct structural components 

remains precise and well defined.

C Models for phase precession

There are several competing models in the literature for how phase precession could emerge: 

the dual oscillator interference model [23,69], the modified dual oscillator model [70], the 

soma-dendritic interference model [71–74], and network [75–78], experience-dependent 

[31], and inheritance-based [79,80] models. There are ongoing debates about which of the 

several models best explain the experimental observations. Our model builds on an existing 

rate-based model [30] to formulate a conductance based model for phase precession that 

specifically accounts for several observations on place cell firing and electrophysiology: the 

emergence of phase precession from exact spike timings in conductance-based models with 

neuron-specific ion channels and receptors (Figs. 1 and 2); biological heterogeneities in 

neural excitability (Figs. 3 and 4); the emergence of subthreshold voltage ramp (Fig. 7), 

increased firing rate (Fig. 6), enhanced theta power within the place field (Fig. 7); a 

signature reduction in extracellular theta frequency compared to its intracellular counterpart 

[Figs. 1(f) and 1(g)]; and experience-dependent asymmetry in firing rate profile (Figs. 6 and 

7).

Intuitively, the higher frequency of the intracellular theta (compared to the extracellular 

theta, which acts as the reference oscillation for assessing phase precession), in conjunction 

with the ramp in the voltage driven by afferent synaptic inputs, explain phase precession in 

this model [30,33]. Specifically, the extracellular theta oscillations are slower [f θ= 7.57 Hz; 

Figs. 1(f) and 1(g)], owing to the well-defined temporal structure [Eqs. (12) and (19)] of 

inputs from the presynaptic CA3 neurons. The intracellular theta, which is slightly faster (in 

our case f 0 = 8 Hz), drives spiking close to the peaks of the intracellular oscillation. In 

addition, the depolarization driven by afferent synaptic drive enhances theta power during 

place field traversal, thereby increasing spike probability and allowing spikes to occur earlier 

than the peak of the extracellular theta. Therefore, with reference to the slower extracellular 

oscillation, these spikes show precession in phase space. Thus, in our model, the input 

structure from CA3 which accounts for the T — τ relationship and the depolarization ramp 

[Gaussian in Eq. (12) and Erlang in Eq. (19)] mediates phase precession. Our systematic 

stochastic search demonstrated the requirement of a synergistic balance between intrinsic 

excitability and synaptic strength in preserving the ability of this input structure in mediating 

phase precession and in yielding efficient phase coding through disparate routes.

Do our conclusions on phase coding depend on the specific choice of the model for phase 

precession? In the absence of heterogeneous conductance-based implementations of each of 

these different models, it is infeasible to make predictions on whether our conclusions would 

depend on the specific model in hand. However, we postulate that our main conclusions 

should hold irrespective of model choice. First, we postulate the requirement of a balance 

between synaptic drive and intrinsic excitability as a general principle for achieving efficient 

phase coding. Second, we hypothesize that ion-channel degeneracy would play a key role in 

the emergence of concomitant efficient phase codes and signature electrophysiological 
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properties. We base this hypothesis on the several instances across different systems 

demonstrating ion-channel degeneracy in achieving cellular-and network-scale functions 

[35,60–62,81–85]. Further theoretical explorations could implement the different models for 

phase precession within a heterogeneous conductance-based setting to directly test these 

postulates and to assess the role of specific ion channels on phase coding efficiency.

D Excitation-inhibition-intrinsic excitability (E-I-IE) balance

There are several competing models on the specific roles of the balance between excitatory 

and inhibitory synaptic inputs in the emergence of place cells and phase precession 

[30,31,54,70,71,73,79,80,86–92]. Although our model doesn’t explicitly account for 

inhibition, the parameter P max [Eqs. (8)–(10)] could be interpreted as the strength of the net 

synaptic drive. This is feasible because there are lines of evidence that inhibition is spatially 

uniform [54], and the addition of uniform rhythmic inhibition to our model equation [Eq. 

(6)] would only serve as a bias term within the place field, and could be absorbed into the 

leak term within the framework.

An important methodological variation in our study is the systematic incorporation of 

biological heterogeneities in ion channel conductances and in neuronal intrinsic properties. 

This is in contrast to models for phase procession, which employ a single hand-tuned model 

with fixed channel conductances and intrinsic excitability. This methodological variation 

allowed us to demonstrate a modulatory role for intrinsic excitability in the emergence of 

phase precession, while also ruling out a direct well-defined relationship between intrinsic 

excitability and phase-coding efficiency [Figs. 5(c)–5(e)]. Importantly, incorporation of 

heterogeneities in intrinsic excitability and in synaptic strength allowed us to demonstrate 

the synergistic counterbalance between intrinsic excitability and synaptic strength for the 

emergence of efficient phase coding systems. Explicitly, as in [30], the temporal structure of 

CA3 inputs [defined by Eqs. (12) and (19)] mediates phase precession in our model. Here, 

we demonstrate that neuronal intrinsic excitability and synaptic strength play modulatory 
roles in preserving the ability of this input structure in mediating phase precession and 

unveil the requirement for a synergistic counterbalance between them in maintaining high 

efficiency phase coding. These observations emphasize the need to broaden the scope of the 

definition of excitation-inhibition (E-I) balance to include neuronal intrinsic excitability (IE) 

in the assessment of phase coding in particular, and in neuronal and network physiology and 

pathophysiology in general.

The discoveries of physiological roles for active dendritic structures in information 

processing [14,93–98], of behavior-driven activity-dependent plasticity in ion channels and 

intrinsic excitability [36,37,99–103], and of channelopathies that are associated with several 

neurological conditions [104–110], have emphasized the need to broaden the scope of a 

passive balance between excitatory and inhibitory synaptic inputs. Neuronal intrinsic 

properties—including neural excitability, frequency-dependent filtering, spatiotemporal 

summation, dendritic spike, and plateau potential initiation— could dramatically alter neural 

function even when identical inputs arrive onto neural structures. Therefore, studies 

assessing neural coding should assess an active balance that incorporates neuronal intrinsic 

excitability and ion channel function as a part of this balance. These studies should 
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incorporate the tremendous biological heterogeneities observed in neural excitability, 

synaptic strength, and ion channel properties, rather than assuming a single model with fixed 

excitability and/or fixed excitatory/inhibitory synaptic strengths. Together, our study 

strongly suggests that a passive E-I balance be instead replaced by an active E-I-IE balance 
in the assessment of neural and network structures under physiological as well as 

pathophysiological conditions.

E Limitations of our model and future directions

While emphasizing the phase code from a single neuron perspective, our approach did not 

account for the rate code or for phase and rate codes from a network perspective where 

different neurons together encode space by representing different place fields in an arena 

[31,69,111]. The analyses of encoding efficiency that accounts for multineuronal rate and 

phase coding is an important step forward. Such analyses should assess the specific roles of 

neuronal intrinsic properties in the concomitant emergence of efficient rate and phase codes 

across neurons, along with efficacious maintenance of intrinsic neuronal excitability across 

the network. These analyses would also provide avenues for assessment of degeneracy in a 

network-coding framework, for analyzing the role of heterogeneities in place field properties 

(e.g., in peak firing rates of individual neurons, extent of individual place fields, and the 

slope of phase precession), and for the study of potential relationships between phase-coding 

efficiency at a single-neuron scale and network scale, spanning a large spatial arena. From a 

broader perspective, our analyses here focus only on molecular and cellular constraints in 

achieving efficient phase codes of external space. However, the hippocampal formation has 

been implicated in other functions, such as recognition, completion, and separation of 

patterns and in engram formation. Future studies should therefore focus on the possibility 

that there could be other molecular and cellular constraints that define the hippocampal 

architecture towards satisfying these additional functions as well.

In the context of experience-dependent asymmetry, our model predicts a temporal adaptation 

that preserves the efficiency of the phase code when the symmetry of afferent synaptic drive 

is altered (Fig. 6). Our results show an expected predictive temporal shift in the rate and 

phase codes, with a stimulus statistics-dependent adaptation that preserved phase-coding 

efficiency (Fig. 6). However, it is important to note that the asymmetric afferent drive is just 

one of the physiological attributes that change with experience, with other attributes such as 

the somatodendritic inhibitory tone [91], the overall afferent drive, and dendritically initiated 

spiking [92] also exhibiting changes with experience. Although we report stimulus-

dependent adaptation in the phase code that preserved its efficiency with the asymmetry, 

experience dependence might alter or preserve the efficiency of the phase code through any 

of these other experience-dependent changes, which have not been incorporated into our 

model. Therefore, future models could assess experience dependence of phase coding 

efficiency (and potential mechanisms that preserve efficiency) by accounting for all aspects 

of experience dependence, rather than assessing only asymmetric afferent drives 

[31,65,66,91,92].

Accounting for these aspects of experience dependence also requires that the place-cell 

model accounts for morphological properties of CA1 pyramidal neurons [63], including 
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localization and activation profiles of intrinsic [57,63,112] and synaptic [54,63,113–116] 

properties. Incorporation of these components into morphologically realistic neurons will 

enable the computation of extracellular theta waveforms using forward modeling approaches 

for local field potentials [116,117], rather than using population firing as a proxy for the 

extracellular theta. Such models, apart from exploring the roles of E-I-IE balance and 

degeneracy in efficient phase coding, could also assess potential roles for intrinsic neuronal 

properties (and specific ion channels that mediate them) in amplifying and extending the 

range of phase precession (similar to the role for spatially uniform inhibition demonstrated 

in [54]). We postulate that the degeneracy in efficient phase coding and concomitant 

robustness in intrinsic excitability, emergent due to synergistic interactions between neural 

gain and external inputs, would span more structural components and express more 

effectively if these additional components and associated interactions were introduced into 

our model.

Our model was limited to phase precession in CA1 pyramidal neurons, focusing on 

heterogeneities in intrinsic properties owing to baseline variability, activity-dependent 

plasticity, or neuromodulation. We postulate that our fundamental conclusions would extend 

to other neuronal subtypes that exhibit phase precession. Specifically, we hypothesize that 

synergistic interactions between neural gain and external inputs would mediate the 

expression of degeneracy in the concomitant emergence of efficient phase coding and 

homeostasis in other neuronal subtypes as well. Such degeneracy would be achieved through 

disparate combinations of specific structural components expressed in those neuronal 

subtypes, and should be explored through careful assessment of intrinsic-synaptic 

counterbalances mediated by ion channels and receptors expressed in those neurons. 

However, such generalization should specifically account for differences in local/afferent 

connectivity (including recurrent connections) as well as the specific intrinsic properties and 

ion channels expressed in these neurons.
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Fig. 1. 
Developing a conductance-based neuronal model that incorporates biological heterogeneities 

to assess efficiency of the phase code. (a) Hippocampal rate and phase codes: A 

representation of hippocampal neurons, endowed with inherent biological heterogeneities in 

active and passive neuronal properties, receiving dynamic spatial stimuli from the external 

world. The rate code (violet-red along the rainbow spanning lower to higher firing) during 

an animal’s traversal along a one-dimensional track corresponds to a bell-shaped profile in 

the neuronal firing rate within the place field of the neuron. The concurrent phase code is 

derived from the phase of neuronal spikes with respect to an external reference oscillation. 

(b) Electric circuit equivalent of the conductance-based neuronal model employed in this 

study. (c), (d) A Gaussian modulated sinusoid (c) defined the probability distribution of 

activating 100 independent synaptic inputs arriving onto the conductance-based model 

during a place field traversal. In response to afferent synaptic activation, the neuronal model 

elicited a voltage response (d), with spike rate defining the rate code [(d), inset]. (e) 

Illustration of the temporal relationship between the probability distributions that govern the 
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two adjacent place field afferent synaptic activation. T signifies the longer time scale that 

corresponds to the temporal distance (the travel time) between adjacent place field centers. τ 
characterizes the shorter theta time scale temporal difference between adjacent place fields, 

modeled as a phase shift in adjacent sinusoids at theta frequency (inset). For this illustration, 

T = 1000 ms; τ = 75 ms. (f), (g) 50 overlapping place field inputs were presented to the 

model and the cumulative firing rate (f POP) spanning all such presentations were computed 

(f). The oscillatory frequency of this cumulative firing rate was computed from its Fourier 

spectrum [(f), inset]. Phase coding emerges in the model as a precession of the phase of 

spikes elicited during each place field traversal (three traversals shown), computed with f 

POP as the reference oscillation (g).
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Fig. 2. 
Degeneracy in efficient phase coding achieved through disparate combinations of neuronal 

components. (a), (b) Changes in neuronal intrinsic properties are sufficient to alter phase 

precession and the efficiency of the phase code. Phase profile of a model neuron that failed 

to express phase precession [(a), left] despite receiving identical synaptic inputs, thereby 

lowering the efficiency of information transfer (mutual information between firing phase and 

spatial location = 0.04 bits) through the phase code. A polar coordinate representation of 

conditional probabilities P(ϕ/S) of firing phases given the spatial bins within which the 

model received inputs [(a), right]. Theta phase precession [(b), left] and conditional 

probability distribution of phase responses [(b), right] for another model neuron (b) with a 

higher efficiency of information transfer (mutual information between firing phase and 

spatial location = 2.1 bits) through the phase code. The color code correspond to the 

different spatial stimuli (bins), and the normalized color code is provided along with the P(ϕ/

S) graphs. (c) Phase precession of five example model neurons with very similar mutual 

information values, picked from a pool of 284 models classified as efficient phase coders 

due to an MI value greater than 1.5 bits. (d) Distribution of active and passive parameters 
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that defined the five example models normalized between their respective ranges. (e) Scatter 

plot matrix of all 11 parameters that govern the 284 valid models, displaying pairwise 

correlations. The last row shows the histogram of the 11 parameters that defined these model 

neurons. (f) Beeswarm plot of the mutual information between firing phase ϕ and spatial 

location S for all the 284 valid models. (g) Pearson’s correlation coefficient quantifying the 

pairwise correlations, of scatter plots shown in (e). (h) Histogram of Pearson’s correlation 

coefficients of all 11 parameters, clustering around zero.
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Fig. 3. 
Degeneracy in efficient phase coding and concomitant physiological robustness achieved 

through disparate combinations of neuronal components. (a) The five color-coded rows 

represent different model neurons picked from a pool of 132 models that were classified as 

valid, based on high MI values and their intrinsic measurements satisfying 

electrophysiological bounds specified in Table II. The five models were chosen based on 

similarity in MI values as well as intrinsic measurements. The similarity of phase precession 

curves and mutual information (column 1), resting membrane potential (column 2), input 

resistance (column 3), and firing rate at 250 pA (column 4) across these five models may be 

noted. (b) Normalized parameter values that yielded the five models represented in (a), 

color-coded to represent the model identity. The parameter values are seen to span a large 

range (b), despite similarities spanning efficient encoding (MI) and intrinsic (RMP,R in, f 

250) measurements. The firing rate for 50-pA current injection, f 50, was identically zero and 

σRMP < 0.01mV for all 132 valid models (Table II). (c)–(f) Beeswarm plots of the mutual 

information between firing phase ϕ and spatial location S (c), resting membrane potential 

(d), input resistance (e), and firing rate for 250 pA (f 250) current injection (f) for all the 132 
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valid models. (g) Scatter plot matrix showing pairwise correlations between parameters that 

underlie 132 models that were classified as valid based on MI values and excitability 

measurements. (h) The Pearson correlation coefficient matrix for all the pairwise 

correlations in the scatter plot matrix in (g). (i) Histogram of correlation coefficients shown 

in (h).
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Fig. 4. 
Virtual knockout models unveil differential and variable dependence of efficient phase 

coding on individual ion channels. (a) Phase precession profiles of an example model 

randomly picked from the 132 models that exhibited efficient phase coding and excitability 

homeostasis. Phase precession of this model with all the conductances intact (marked 

“Control“) and after virtual knockout of each of the six channels one at a time (the specific 

channel knocked out is mentioned on top of the respective phase-space plots). (b), (c) 

Beeswarm plots (b) and histograms (c) of percentage changes in mutual information values 

after virtual knockout of each channel from the population of 132 models. (d) Scatter plot 

matrix showing pairwise correlations between percentage changes in MI after virtual 

knockout of the six distinct channel subtypes in all 132 models. (e) The Pearson correlation 

coefficient matrix for all the pairwise correlations in the scatter plot matrix in (d). (f) 

Histogram of correlation coefficients shown in (e).
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Fig. 5. 
Synergistic functional interactions between synaptic strength and intrinsic excitability 

governed the emergence of efficient phase coding. (a), (b) Mutual information plotted as a 

function of the respective maximal firing rate (F max) and full width at half maximum 

(FWHM) of all 11 000 models. Inset between (a) and (b) shows a firing rate profile 

indicating F max and FWHM of an example place-cell firing rate profile. (c)–(f) Scatter plots 

of mutual information vs resting membrane potential (c), input resistance (d), firing rate at 

250 pA (e), and synaptic permeability (f) unveiled the absence of strong correlations 
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between efficient coding and intrinsic/synaptic functional properties. (g)–(i) Scatter plots of 

synaptic permeability vs resting membrane potential (g), input resistance (h), and firing rate 

at 250 pA (i) revealed strong correlations between intrinsic firing frequency and synaptic 

strength (i). For all panels, black circles represented the population of models (N valid = 284; 

from Fig. 2) that were endowed with an MI ≥ 1.5 bits, and a red outline around the black 

circles represented a subset of these models that were also endowed with valid intrinsic 

measurements (N valid = 132; from Fig. 3). The values against R represent Pearson’s 

correlation coefficients for the respective color-coded scatter plots.
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Fig. 6. 
Experience dependence of rate and phase coding modeled through an asymmetric input 

distribution. (a) Symmetric (black) and asymmetric (green) profiles defining the probability 

distribution governing the activation of synaptic inputs arriving onto a model neuron during 

place field traversals. The symmetric profile is a theta-modulated Gaussian distribution 

while the asymmetric profile is a theta-modulated Erlang distribution. The peak Fpre
max

denotes the maximal presynaptic firing rate and the dashed black line indicates the center of 

the place field. (b) The three columns represent the firing rate profiles of an example model 

neuron that received symmetric (black) and asymmetric (green) inputs within its place field 

at three different presynaptic firing rates (40, 80, and 160 Hz). The place field extent is 

normalized between 0 and 1. (c), (d) Beeswarm plots of firing rates (c) and asymmetry 

indices (d) of all the 132 valid models receiving both symmetric (black) and asymmetric 

(green) input profiles at three different presynaptic firing rates (40, 80, 160 Hz). (e) Single-

trial phase precession plots of the same model neuron as shown in (b) with reference to the 

theta oscillation. The three columns represent the model neuron receiving three different pre-

synaptic firing rates (40, 80, and 160 Hz) and the two rows indicate symmetric (black) and 
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asymmetric (green) cases of synaptic inputs. The black filled dots (in top traces) and dashed 

lines represent the troughs, which are aligned in time with the spikes of the model neuron 

(dots, bottom traces), in each panel. Note that the temporal scale bars for 500 ms become 

progressively shorter with increase in Fpre
max. (f) Multitrial phase precession plots of the same 

model neuron as shown in (b) and (e) for symmetric (black, top) and asymmetric (green, 

bottom) cases at three different presynaptic firing rates (40, 80, and 160 Hz) shown in the 

three columns. The leftward shift of the phase code for an asymmetric synaptic input profile 

may be noted for all three different presynaptic firing rates. (g) Beeswarm plots of mutual 

information between spike phase and spatial location within the place field, for all the 132 

valid models, for both symmetric (black) and asymmetric (green) cases at three different 

presynaptic firing rates (40, 80, and 160 Hz).
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Fig. 7. 
Model neurons exhibited enhanced theta power and subthreshold voltage ramp during place 

field traversals. For all panels in this figure, black and green correspond to symmetric and 

asymmetric synaptic activation profiles, respectively. (a), (b) The three columns for all plots 

represent three different values of the maximal firing rate of the presynaptic input Fpre
max (40, 

80, and 160 Hz from left to right). Top: Unfiltered voltage response of the model neuron for 

the symmetric (a) and asymmetric (b) synaptic activation during a place field traversal. 

Middle: The band-pass (4–10 Hz, theta band) filtered voltage response, represented in time 

domain along with its Fourier spectrum (blue) presented as an inset for symmetric (a) and 

asymmetric (b) cases. The area under the curve (AUC) for the blue Fourier spectrum traces 

in (a) were computed to be 234, 281, and 303 V s, and for those in (b) were computed to be 

253, 290, and 287 V s, respectively for Fpre
max = 40, 80 160 Hz. Bottom: The subthreshold 

voltage response profile was obtained by median filtering the voltage response, for the 

symmetric (a) and asymmetric (b) cases. The dashed red lines in panel (a) and the dashed 

black lines in panel (b) represent the respective centers of the place fields. The traces shown 

in (a) and (b) are from the same model cell employed in Fig. 6(b). (c)–(e) Beeswarm plots of 
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AUC of the Fourier spectrum of the band-pass filtered signal (c), the subthreshold ramp 

amplitude (d), and asymmetry index of the subthreshold ramp (e) for all the 132 models. 

Measurements corresponding to symmetric (black) and asymmetric (green) synaptic 

activation profiles for the three values of Fpre
max (40, 80, and 160 Hz, left to right) are shown. 

The red rectangles represent the corresponding median values.
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Table I
Parameters and their ranges governing the multiparametric multiobjective stochastic 
search.

No. Parameter Minimum value Maximum value

1 Sodium conductance, gNa (mS/cm2) 1 100

2 Delayed rectifier potassium conductance, gKDR (mS/cm2) 0.1 100

3 A type K+ conductance, gKA (mS /cm2) 0 10

4 L type Ca2+ conductance, gCal (μS/cm2) 0 100

5 Calcium gated K+ conductance, gSk (μS/cm2) 0 100

6 HCN conductance, gℎ (μS/cm2) 0 100

7 M type K+ conductance, gKM (μS/cm2) 0 100

8 T type Ca2+ conductance, gCaT  (μS/cm2) 0 100

9 Calcium decay constant, τ Ca(ms) 20 100

10 Specific membrane resistance, R m(kΩ cm2) 20 60

11 Synaptic permeability, P max(nm/s) 0.2 2
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Table II
Electrophysiological bounds on intrinsic measurements employed for model validation.

No. Intrinsic measurement Lower bound Upper bound

1 Mean resting membrane potential, μ RMP(mV) -75 -60

2 Standard deviation of resting membrane potential, σRMP(mV) <1

3 Input resistance, R in (MΩ) 30 120

4 Firing rate at 50 pA, f 50(Hz) =0

5 Firing rate at 250 pA, f 250 (Hz) 1 45
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