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Abstract

MultiBUGS is a new version of the general-purpose Bayesian modelling software BUGS that 

implements a generic algorithm for parallelising Markov chain Monte Carlo (MCMC) algorithms 

to speed up posterior inference of Bayesian models. The algorithm parallelises evaluation of the 

product-form likelihoods formed when a parameter has many children in the directed acyclic 

graph (DAG) representation; and parallelises sampling of conditionally-independent sets of 

parameters. A heuristic algorithm is used to decide which approach to use for each parameter and 

to apportion computation across computational cores. This enables MultiBUGS to automatically 

parallelise the broad range of statistical models that can be fitted using BUGS-language software, 

making the dramatic speed-ups of modern multi-core computing accessible to applied statisticians, 

without requiring any experience of parallel programming. We demonstrate the use of MultiBUGS 

on simulated data designed to mimic a hierarchical e-health linked-data study of methadone 

prescriptions including 425,112 observations and 20,426 random effects. Posterior inference for 

the e-health model takes several hours in existing software, but MultiBUGS can perform inference 

in only 28 minutes using 48 computational cores.
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1 Introduction

BUGS is a long running project that makes easy to use Bayesian modelling software 

available to the statistics community. The software has evolved through three main versions 

since nineteen eighty-nine: first ClassicBUGS (Spiegelhalter et al. 1996), then WinBUGS 

(Lunn et al. 2000), then the current open-source OpenBUGS (Lunn et al. 2009). The software 
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is structured around the twin ideas of the declarative BUGS language (Thomas 2006), through 

which the user specifies the graphical model (Lauritzen et al. 1990) that defines the 

statistical model to be analysed; and Markov Chain Monte Carlo simulation (MCMC) 

(Geman and Geman 1984; Gelfand and Smith 1990), which is used to estimate the posterior 

distribution. These ideas have also been widely adopted in other Bayesian software, notably 

in JAGS (Plummer 2017) and NIMBLE (de Valpine et al. 2017), and related ideas are used in 

Stan (Carpenter et al. 2017).

Technological advances in recent years have led to massive increases in the amount of data 

that are generated and stored. This has posed problems for traditional Bayesian modelling, 

because fitting such models with a huge amount of data in existing standard software, such 

as OpenBUGS, is typically either impossible or extremely time-consuming. While most 

recent computers have multiple computational cores, which can be used to speed up 

computation, OpenBUGS has not previously made use of this facility. The aim of MultiBUGS 

is to make available to applied statistics practitioners the dramatic speed-ups of multi-core 

computation without requiring any knowledge of parallel programming, through an easy-to-

use implementation of a generic, automatic algorithm for parallelising the MCMC 

algorithms used by BUGS-style software.

1.1 Approaches to MCMC parallelisation

The most straightforward approach for using multiple computational cores or multiple 

central processing units (CPUs) to perform MCMC simulation is to run each of multiple, 

independent MCMC chains on a separate CPU or core (e.g., Bradford and Thomas 1996; 

Rosenthal 2000). Since the chains are independent, there is no need for information to be 

passed between the chains: the algorithm is embarrassingly parallel. Running several 

MCMC chains is valuable for detecting problems of non-convergence of the algorithm 

using, for example, the Brooks-Gelman-Rubin diagnostic (Gelman and Rubin 1992; Brooks 

and Gelman 1998). However, the time taken to get past the burn in period cannot be 

shortened using this approach.

A different approach is to use multiple CPUs or cores for a single MCMC chain, with the 

aim of shortening the time taken for the MCMC chain to converge and to mix. One way to 

do this is to identify tasks within standard MCMC algorithms that can be calculated in 

parallel, without altering the underlying Markov chain. A task that is often, in principle, 

straightforward to parallelise, and is fundamental in several MCMC algorithms, such as the 

Metropolis-Hastings algorithm, is evaluation of the likelihood (e.g., Whiley and Wilson 

2004; Jewell et al. 2009; Bottolo et al. 2013). Another task that can be parallelised is 

sampling of conditionally-independent components, as suggested by, for example, 

Wilkinson (2006).

MultiBUGS implements all of the above strategies for parallelisation of MCMC. There are 

thus two levels of parallelisation: multiple MCMC chains are run in parallel, with the 

computation required by each chain also parallelised by identifying both complex 

parallelisable likelihoods and conditionally-independent components that can be sampled in 

parallel.

Goudie et al. Page 2

J Stat Softw. Author manuscript; available in PMC 2020 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



There are numerous other approaches to MCMC parallelisation. Several authors have 

proposed running parts of the model on separate cores and then combining results (Scott et 
al. 2016) using either somewhat ad hoc procedures or sequential Monte Carlo-inspired 

methods (Goudie et al. 2018). This approach has the advantage of being able to reuse 

already written MCMC software and, in this sense, is similar to the approach used in 

MultiBUGS. A separate body of work (Brockwell 2006; Angelino et al. 2014) proposes 

using a modified version of the Metropolis-Hastings algorithm which speculatively 

considers a possible sequence of MCMC steps and evaluates the likelihood at each proposal 

on a separate core. The time saving tends to scale logarithmically in the number of cores for 

this class of algorithms. A final group of approaches modifies the Metropolis-Hastings 

algorithm by proposing a sequence of candidate points in parallel (Calderhead 2014). This 

approach can reduce autocorrelations in the MCMC chain and so speed up MCMC 

convergence.

1.2  MultiBUGS software

MultiBUGS is available as free software, under the GNU General Public License version 3, 

and can be downloaded from https://www.MultiBUGS.org. MultiBUGS currently requires 

Microsoft Windows, and version 8.1 or newer of the Microsoft MPI (MS-MPI) parallel 

programming framework, available from https://msdn.microsoft.com/en-us/library/

bb524831(v=vs.85).aspx. Note that the Windows firewall may require you to give 

MultiBUGS permission to communicate between cores. The source code for MultiBUGS 

can be downloaded from https://github.com/MultiBUGS/MultiBUGS. The data and model 

files to replicate all the results presented in this paper can be found within MultiBUGS, as 

we describe later in the paper, or can be downloaded from https://github.com/MultiBUGS/

MultiBUGS-examples.

The paper is organised as follows: in Section 2 we introduce the class of models we consider 

and the parallelisation strategy adopted in MultiBUGS; implementation details are provided 

in Section 3; Section 4 summarises the basic process of fitting models in MultiBUGS; 

Section 5 demonstrates MultiBUGS for analysing a large hierarchical dataset; and we 

conclude with a discussion in Section 6.

2 Background and methods

2.1 Models and notation

MultiBUGS performs inference for Bayesian models that can be represented by a directed 

acyclic graph (DAG), with each component of the model associated with a node in the DAG. 

A DAG G = (VG, EG) consists of a set of nodes or vertices VG joined by directed edges EG 

⊂ VG × VG, represented by arrows. The parents paG(v) = {u : (u, v) ∈ EG} of a node v are 

the nodes with an edge pointing to node v. The children chG(v) = {u : (v, u) ∈ EG} of a node 

v are the nodes pointed to by edges emanating from node v. We omit G subscripts here, and 

throughout the paper, wherever there is no ambiguity.

DAGs can be presented graphically (see Figures 1 and 3 below), with stochastic nodes 

shown in ovals, and constant and observed quantities in rectangles. Stochastic dependencies 
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are represented by arrows. Repeated nodes are enclosed by a rounded rectangle (plate), with 

the range of repetition indicated by the label.

To establish ideas, consider a simple random effects logistic regression model (called 

“seeds”) for the number ri of seeds that germinated out of ni planted, in each of i = 1, … , N 
= 21 experiments, with binary indicators of seed type X 1i and root extract type X 2i 

(Crowder 1978; Breslow and Clayton 1993).

ri ∼ Bin pi, ni
logit pi = α0 + α1X1i + α2X2i + α12X1iX2i + βi

βi ∼ N μβ, σβ
2

We choose normal priors for the regression parameters α 0, α 1, α 2, α 12, with mean µα = 0 

and standard deviation σα = 1000. We fix µβ = 0, and choose a uniform prior on the range σ 
min = 0 to σ max = 10 for the standard deviation σβ of the random effects βi. Figure 1 shows a 

DAG representation of the “seeds” model. The data are presented in Crowder (1978).

For ease of exposition of the parallelisation methods used by MultiBUGS, we assume 

throughout this paper that the set of nodes VG includes all stochastic parameters SG ⊆ VG 

and constant quantities (including observations and hyperparameters) in the model, but 

excludes parameters that are entirely determined by other parameters. As a consequence, the 

DAG for the seeds example (Figure 1) includes as nodes the stochastic parameters SG = {α 
0, α 1, α 2, α 12, β 1, … , β 21, σβ}, the observations {ri, X 1i, X 2i, ni : i = 1, … , 21} and the 

constant hyperparameters {µα, σα, µβ, σ min, σ max}, but not the parameters that are 

deterministic functions of other parameters (the germination probabilities pi), which have 

been assimilated into the definition of the distribution of ri before forming the DAG. 

Arbitrary DAG models can nevertheless be considered by assimilating deterministic 

intermediary quantities, such as linear predictors in generalised linear models, into the 

definition of the conditional distribution of the appropriate descendant stochastic parameter; 

and considering deterministic prediction separately from the main MCMC computation. For 

example, in the seeds example, the random effect precision τβ = σβ
−2 is deterministically 

related to the standard deviation σβ, so it would not be considered part of the graph if it were 

of interest: posterior inference for τβ could instead be made either by updating its value in 

the usual (serial) manner after each MCMC iteration, or by post-processing the MCMC 

samples for σβ.

In DAG models, the conditional independence assumptions represented by the DAG mean 

that the full joint distribution of all quantities V has a simple factorisation in terms of the 

conditional distribution p(v | pa(v)) of each node v ∈ V given its parents pa(v):

p V = ∏
υ ∈ V

p υ pa υ

Posterior inference is performed in MultiBUGS by an MCMC algorithm, constructed by 

associating each node with a suitable updating algorithm, chosen automatically by the 
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program according to the structure of the model. Most MCMC algorithms involve evaluation 

of the conditional distribution of the stochastic parameters S ⊆ V (at particular values of its 

arguments). The conditional distribution p(v | V −v) of a node v ∈ S, given the remaining 

nodes V −v = V \ {v} is

p υ V −υ ∝p υ pa υ L υ ,

where p(υ | pa(v)) is the prior factor and L(v) = ∏u∈ch(v) p(u | pa(u)) is the likelihood factor.

2.2 Parallelisation methods in MultiBUGS 

MultiBUGS performs in parallel both multiple chains and the computation required for a 

single MCMC chain. In this section, we describe how the computation for a single MCMC 

chain can be performed in parallel.

Parallelisation strategies—MCMC entails sampling, which often requires evaluation of 

the conditional distribution of the stochastic parameters S in the model. MultiBUGS 

parallelises these computations for a single MCMC chain via two distinct approaches.

First, when a parameter has many children, evaluation of the conditional distribution is 

computationally expensive, since Equation 1 is the product of many terms. However, the 

evaluation of the likelihood factor L(v) can easily be split between C cores by calculating a 

partial product involving every C th child on each core. With a partition {ch(1)(v), … , ch(C)

(v)} of the set of children ch(v), we can evaluate ∏u∈ch(c) (v) p(u | pa(u)) on the cth core, c = 

1, … , C. The prior factor p(v | pa(v)) and these partial products can be multiplied together 

to recover the complete conditional distribution.

Second, when a model includes a large number of parameters then computation may be slow 

in aggregate, even if sampling of each individual parameter is fast. However, parameters can 

clearly be sampled in parallel if they are conditionally independent. Specifically, all 

parameters in a set W ⊆ S can be sampled in parallel whenever the parameters in W are 

mutually conditionally-independent; i.e., all w 1 ∈ W and w 2 ∈ W (w 1 ≠ w 2) are 

conditionally independent given V \ W. If C cores are available and |W| denotes the number 

of elements in the set W, then in a parallel scheme at most ⌈|W|/C⌉ parameters need be 

sampled on a core (where ⌈x⌉ denotes the ceiling function), rather than |W| in the standard 

serial scheme.

To identify sets of conditionally-independent parameters, MultiBUGS first partitions the 

stochastic parameters S into depth sets DG
ℎ = v ∈ S : dG v = ℎ , defined as the set of 

stochastic nodes with topological depth dG(v) = h, where topological depth of a node v ∈ V 
is defined recursively, starting from the nodes with no parents.

dG v =
0 if paG v = ∅
1 + maxu ∈ paG v dG u otherwise
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Note that stochastic nodes v ∈ S have topological depth dG(v) ≥ 1, since the constant 

hyperparameters of stochastic nodes are included in the DAG.

Sets of conditionally-independent parameters within a depth set can be identified by noting 

that all parameters in a set W ⊆ DG
ℎ  are mutually conditionally-independent, given the other 

nodes V \ W, if the parameters in W have no child node in common. This follows from the 

d-separation criterion (Definition 1.2.3, Pearl 2009): all such pairs of parameters w 1 ∈ W 
and w 2 ∈ W (w 1 ≠ w 2) are d-separated by V \ W because no ‘chain path’ can exist 

between w 1 and w 2 because these nodes have the same topological depth; and all ‘fork 

paths’ are blocked by V \ W, as are all ‘collider paths’, except those involving a common 

child of w 1 and w 2, which are prevented by definition of W.

Heuristic for determining parallelisation strategy—A heuristic criterion is used by 

MultiBUGS to decide which type of parallelism to exploit for each parameter in the model. 

The heuristic aims to parallelise the evaluation of conditional distributions of ‘fixed effect’-

like parameters, and parallelise the sampling of ‘random effect’-like parameters. The former 

tend to have a large number of children, whereas the latter tend to have a small number of 

children. Each depth set is considered in turn, starting with the ‘deepest’ set DG
ℎ ⋆  with h* = 

maxv∈S dG(v). The computation of the parameter’s conditional distribution is parallelised if 

a parameter has more children than double the mean number of children 

ch = meanυ ∈ S chG υ , or if all parameters in the graph have topological depth h = 1; 

otherwise the sampling of conditionally independent sets of parameters is parallelised 

whenever this is permitted. The special case for h = 1 ensures that evaluation of the 

conditional distribution of parameters is parallelised in ‘flat’ models in which all parameters 

have identical topological depth. When a group of parameters is sampled in parallel we 

would like the time taken to sample each one to be similar, so MultiBUGS assigns 

parameters to cores in order of the number of children that each parameter has.

MultiBUGS creates a C-column computation schedule table T, which specifies the 

parallelisation scheme: where different parameters appear in a row, the corresponding 

parameters are sampled in parallel; where a single parameter is repeated across a full row, 

the evaluation of the conditional distribution for that parameter is split into partial products 

across the C cores. A single MCMC iteration consists of evaluating updates as specified by 

each row of the computation schedule in turn. The computation schedule includes blanks 

whenever a set W of mutually conditionally-independent parameters does not divide equally 

across the C cores; that is, when |W| mod C ≠ 0, where mod denotes the modulo operator. 

The corresponding cores are idle when a blank occurs. Appendix A describes the algorithms 

used to create the C-column computation schedule table T in detail.

We illustrate the heuristic by describing the process of creating Table 1, the computation 

schedule for the seeds example introduced in Section 2, assuming C = 4 cores are available. 

The model includes 26 stochastic parameters S = {α 0, α 1, α 2, α 12, β 1, … , β 21, σβ}; and 

| ch(α 0)| = | ch(α 1)| = | ch(α 2)| = | ch(α 12)| = | ch(σβ)| = 21 and | ch(β 1)| = … = | ch(β 21)| 

= 1. MultiBUGS first considers the parameters β 1, … , β 21, since the topological depth d(β 
1) = … = d(β 21) = 2 = maxv∈S d(v). None of the likelihood evaluation for β 1, … , β 21 is 
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parallelised, because all these parameters have only 1 child and ch ≈ 4.8 . However, β 1, … , 

β 21 are mutually conditionally-independent and so these parameters are distributed across 

the 4 cores as shown in the first 6 rows of Table 1. Since 21 mod 4 ≠ 0, cores 2, 3 and 4 will 

be idle while β 21 is sampled. Next, we consider α 0, α 1, α 2, α 12 and σβ, since d (α 0) = 

… = d(α 12) = d(σβ) = 1. Since all of these parameters have 21 children and ch ≈ 4.8,
MultiBUGS will spread the likelihood evaluation of all these parameters across cores, and 

these are assigned to the computation schedule in turn.

Block samplers— MultiBUGS is able to use a block MCMC sampler when appropriate: 

that is, algorithms that sample a block of nodes jointly, rather than just a single node at a 

time. Block samplers are particularly beneficial when parameters in the model are highly 

correlated a posteriori (see e.g., Roberts and Sahu 1997). The conditional distribution for a 

block B ⊆ S of nodes, given the rest of nodes V −B = V \ B, is

p B V −B ∝ ∏
b ∈ B

p b pa b × ∏
b ∈ B

∏
u ∈ ch b

p u pa u

Block samplers can be parallelised in a straightforward manner: if we consider a block B as 

a single node, and define ch(B) = ∪b∈B ch(b), then the approach introduced above is 

immediately applicable, and we can exploit both opportunities for parallelisation for block 

updates. A mixture of single node and block updaters can be used without complication.

In the seeds example it is possible to block together α 0, α 1, α 2, α 12. The block then has 

21 children, and so our algorithm chooses to spread evaluation of their likelihood over 

multiple cores. The computation schedule remains identical to Table 1, but the block 

sampler waits until all the likelihoods corresponding to rows 7 to 10 of Table 1 are evaluated 

before determining each update for the {α 0, α 1, α 2, α 12} block.

3 Implementation details

BUGS represents statistical models internally using a dynamic object-oriented data structure 

(Warford 2002) that is analogous to a DAG. The nodes of the graph are objects and the 

edges of the graph are pointers contained in these objects. Although the graph is specified in 

terms of the parents of each node, BUGS identifies the children of each node and stores this 

as a list embedded in each parameter node. Each node object has a value and a method to 

calculate its probability density function. For observations and fixed hyperparameters the 

value is fixed and is read in from a data file; for parameters the value is variable and is 

sampled within a MCMC algorithm. Each MCMC sampling algorithm is represented by a 

class (Warford 2002) and a new sampling object of an appropriate class is created for each 

parameter in the statistical model. Each sampling object contains a link to the node (or block 

of nodes) in the graphical model that represents the parameter (or block of parameters) being 

sampled. One complete MCMC update of the model involves a traversal of a list of all these 

sampling objects, with each object’s sampling method called in turn. Lunn et al. (2000) 

provides further background on the internal design of BUGS.
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The MultiBUGS software consists of two distinct computer programs: a user interface and a 

computational engine. The computational engine is a small program assembled by linking 

together some modules of the OpenBUGS software plus a few additional modules to 

implement our parallelisation algorithm. Copies of the computational engine run on multiple 

cores and communicate with each other using the message passing interface (MPI) protocol 

(Pacheco 1997), version 2.0. The user interface program is a slight modification (and 

extension) of the OpenBUGS software. The user interface program compiles an executable 

“worker program” that contains the computational engine required for a particular statistical 

model. It also writes out a file containing a representation of the data structures that specify 

the statistical model. It then starts a number of copies of the computational engine on 

separate computer cores. These worker programs then read in the model representation file 

to rebuild the graphical model and start generating MCMC samples using our distributed 

algorithms. The worker programs communicate with the user interface program via an MPI 

intercommunicator object. The user interface is responsible for calculating summary 

statistics of interest.

Both sources of parallelism described in Section 2.2 require only simple modifications of the 

data structures and algorithms used in the BUGS software. Each core keeps a copy of the 

current state of the MCMC, as well as two pseudo-random number generation (PRNG) 

streams (Wilkinson 2006): a “core-specific” stream, initialised with a different seed for each 

core; and “common” stream, initialised using the same seed on all cores. Initially, each core 

loads the sampling algorithm, the computation schedule, and the complete DAG, which is 

then altered as follows so that the overall computation yields the computation required for 

the original, complete DAG.

When the calculation of a parameter’s likelihood is parallelised across cores, the list of 

children associated with a parameter on each core is thinned (pruned) so that it contains only 

the children in the corresponding partition component of ch(v). The BUGS MCMC sampling 

algorithm implementations then require only minor changes so that the partial likelihoods 

are communicated between cores. For example, a random walk Metropolis algorithm 

(Metropolis et al. 1953) is performed as follows: first, on each core, the prior factor and a 

partial likelihood contributions to the conditional distribution are calculated for the current 

value of the parameter. Each core then samples a candidate value. These candidates will be 

identical across cores, since the “common” PRNG stream is used. The prior and partial 

likelihood contributions are then calculated for the candidate value, and the difference 

between the two partial log-likelihood contributions can be combined across cores using the 

MPI function Allreduce. The usual Metropolis test can then be applied on each core in 

parallel using the “common” PRNG stream, after which the state of Markov chain is 

identical across cores. Computation of the prior factor and the Metropolis test is 

intentionally duplicated on every core because we found that the time taken to evaluate these 

quantities is usually shorter than the time taken to propagate their result across cores.

When a set of parameters W is sampled in parallel over the worker cores, the list of MCMC 

sampling objects is thinned on each core so that only parameters specified by the 

corresponding column of the computation schedule are updated on each core. The existing 

MCMC sampling algorithm implementations used in OpenBUGS can then be used without 
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modification with each “core-specific” PRNG stream. The MPI function Allgather is used 

to send newly sampled parameters to each core. Note we need run Allgather only after 

each core has sampled all of its assigned components in W, rather than after each component 

in W is sampled. For example, in the seeds example, we use Allgather after row 6. This 

considerably reduces message-passing overheads when the number of elements in W is 

large.

Running multiple chains is handled via standard MPI methods. If we have, say, two chains 

and eight cores, we partition the cores into two sets of four cores and set up separate MPI 

collective communicators (Pacheco 1997) for each set of cores for Allreduce and 

Allgather to use. Requests can be sent from the master to the workers using the 

intercomunicater and results returned. We find it useful to designate a special “lead worker” 

for each chain that we simulate. Each of these lead workers sends back sampled values to the 

master, where summary statistics can be collected. Only sampled values corresponding to 

quantities that the user is monitoring need to be returned to the master. This can 

considerably reduce the amount of communication between the workers and the master.

4 Basic usage of MultiBUGS 

The procedure for running a model in MultiBUGS is largely the same as in WinBUGS or 

OpenBUGS. MultiBUGS adopts the standard BUGS language for specifying models, the core 

of which is common also to WinBUGS, OpenBUGS, JAGS and NIMBLE. A detailed tutorial on 

the use of BUGS can be found in, for example, Lunn et al. (2013).

An analysis is specified in MultiBUGS using the Specification Tool 

( ) by checking the syntax of a model ( ), loading the 

data ( ), compiling ( ) and setting up initial values (  and 

).

We then specify the total number of cores to distribute computation across by entering a 

number in the box labelled num cores (figure 2) and then clicking ( ). This 

should be set at a value less than or equal to the number of processing cores available on 

your computer (the default is 2). If multiple chains are run, the cores will be divided equally 

across chains. We recommend that users experiment with different numbers of cores, since 

the setting that leads to fastest computation depends both on the specific model and data 

being analysed and on the computing hardware being used. While increased parallelisation 

will often result in faster computation, in some cases communication overheads will balloon 

to the point where parallelisation gains are overturned. Furthermore, Amdahl’s bound 

(Amdahl 1967) on the speed-up that is theoretically obtainable with increased parallelisation 

may also be hit in some settings. Note that changing the number of cores will alter the exact 

samples obtained, since this affects the PRNG stream used to draw each sample (as 

described in Section 3).
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Samples are drawn using the Update Tool ( ). The use of the Sample 

Monitor Tool ( ) to monitor parameters; to assess MCMC 

convergence, using, for example, the Brooks-Gelman-Rubin diagnostic (Gelman and Rubin 

1992; Brooks and Gelman 1998); and to obtain results is the same as in WinBUGS and 

OpenBUGS. Analyses can be automated in MultiBUGS using the same simple procedural 

scripting language that is available in OpenBUGS. The new command 

modelDistribute(C) can be used to specify that parallelisation should be across C cores; 

for details see ( ).

4.1 Seeds example

The model, data and initial conditions for the seeds examples can be found within 

MultiBUGS in ( ). This is 

a simple model involving a small number of parameters and observations, so computation is 

already fast in OpenBUGS and is no faster in MultiBUGS (both take less than a second to do 

1000 MCMC updates) because the benefit of parallelisation is cancelled out by 

communication overheads. However, for some more complicated models, MultiBUGS will 

be dramatically faster than OpenBUGS. We illustrate this with an example based on e-health 

data.

5 Illustration of usage with hierarchical e-health data

Our e-health example is based on a large linked database of methadone prescriptions given 

to opioid dependent patients in Scotland, which was used to examine the influence of patient 

characteristics on doses prescribed (Gao et al. 2016; Dimitropoulou et al. 2017). This 

example is typical of many databases of linked health information drawn from primary care 

records, hospital records, prescription data and disease/death registries. Each data source 

often has a hierarchical structure, arising from regions, institutions and repeated 

measurements within individuals. Here, since we are unable to share the original dataset, we 

analyse a synthetic dataset, simulated to match the key traits of the original dataset.

The model includes 20,426 random effects in total, and was fitted to 425,112 observations. It 

is possible to fit this model using standard MCMC simulation in OpenBUGS but, 

unsurprisingly, the model runs extremely slowly and it takes 32 hours to perform a sufficient 

number of iterations (15,000) to satisfy standard convergence assessment diagnostics. In 

such data sets it can be tempting to choose a much simpler and faster method of analysis, but 

this may not allow appropriately for the hierarchical structure or enable exploration of 

sources of variation.

Instead it is preferable to fit the desired hierarchical model using MCMC simulation, while 

speeding up computation as much as possible by exploiting parallel processing.

The model code, data and initial conditions can be found within MultiBUGS in 

( )
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5.1 E-health data

The data have a hierarchical structure, with multiple prescriptions nested within patients 

within regions. For some of the outcome measurements, person identifiers and person-level 

covariates are available (240,776 observations). These outcome measurements yijk represent 

the quantity of methadone prescribed on occasion k for person j in region i (i = 1, … , 8; j = 

1, … , Ji; k = 1, … , Kij), and are recorded in the file ehealth_data_id_available. Each 

of these measurements is associated with a binary covariate rijk (called source.indexed) 

that indicates the source of prescription on occasion k for person j in region i, with rijk = 1 

indicating that the prescription was from a General Practitioner (family physician). No 

person identifiers or person-level covariates are available for the remaining outcome 

measurements (184,336 observations). We denote by zil the outcome measurement for the l 
th prescription without person identifiers in region i (i = 1, … , 8; l = 1, … , Li). These data 

are in the file ehealth_data_id_missing. A binary covariate sil (called 

source.nonindexed) indicates the source of the l th prescription without person identifiers 

in region i, with sil = 1 indicating that the prescription was from a General Practitioner 

(family physician). The final data file, ehealth_data_n, contains several totals used in the 

BUGS code.

5.2 E-health model

We model the effect of the covariates with a regression model, with regression parameter βm 

corresponding to the m th covariate xmij (m = 1, … , 4), while allowing for within-region 

correlation via region-level random effects ui, and within-person correlation via person-level 

random effects wij; source effects vi are assumed random across regions.

yijk = ∑
m = 1

4
βmxmij + ui + virijk + wij + εijk

ui ∼ N(μu, σu2), vi ∼ N(μv, σv2), wij ∼ N(μw, σw2 ), εijk ∼ N(με, σεe)

The means μw and με are both fixed to 0.

The outcome measurements zil contribute only to estimation of regional effects ui and source 

effects vi.

zil = λ + ui + visil + ηil
ηil N(μη, ση2)

The error variance ση2 represents a mixture of between-person and between-occasion 

variation. We fix the error mean μη = 0. We assume uniform priors for σu, σv, σw, σε, ση on 

the range σ min = 0 to σ max = 10, and normal priors for β 1, … , β 4, μu, μv and λ with mean 

β mean = μ mean = μ λ = 0 and standard deviation β sd = μ sd = μ λ = 100. Figure 3 is a DAG 

representation of this model.

The data have been suitably transformed so that fitting a linear model is appropriate. We do 

not consider alternative approaches to analysing the data set. The key parameters of interest 
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are the regression parameters β 1, … , β 4 and the standard deviations σu and σv for the 

region and source random effects.

This model can be specified in BUGS as follows:

  model {

    # Outcomes with person-level data available

    for (i in 1:n.indexed) {

      outcome.y[i] ~ dnorm(mu.indexed[i], tau.epsilon)

      mu.indexed[i] <- beta[1] * x1[i] +

                       beta[2] * x2[i] +

                       beta[3] * x3[i] +

                       beta[4] * x4[i] +

                       region.effect[region.indexed[i]] +

                       source.effect[region.indexed[i]] * source.indexed[i] +

                       person.effect[person.indexed[i]]

    }

    # Outcomes without person-level data available

    for (i in 1:n.nonindexed){

        Robert J. B. Goudie, Rebecca M. Turner, Daniela De Angelis, Andrew 

Thomas 13

      outcome.z[i] ~ dnorm(mu.nonindexed[i], tau.eta)

      mu.nonindexed[i] <- lambda +

                          region.effect[region.nonindexed[i]] +

                          source.effect[region.nonindexed[i]] *

                                        source.nonindexed[i]

    }

    # Hierarchical priors

    for (i in 1:n.persons){

      person.effect[i] ~ dnorm(0, tau.person)

    }

    for (i in 1:n.regions) {

      region.effect[i] ~ dnorm(mu.region, tau.region)

      source.effect[i] ~ dnorm(mu.source, tau.source)

    }

    lambda ~ dnorm(0, 0.0001)

    mu.region ~ dnorm(0, 0.0001)

    mu.source ~ dnorm(0, 0.0001)

    # Priors for regression parameters

    for (m in 1:4){

      beta[m] ~ dnorm(0, 0.0001)

    }

    # Priors for variance parameters

    tau.eta <- 1/pow(sd.eta, 2)

    sd.eta ~ dunif(0, 10)
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    tau.epsilon <- 1/pow(sd.epsilon, 2)

    sd.epsilon ~ dunif(0, 10)

    tau.person <- 1/pow(sd.person, 2)

    sd.person ~ dunif(0, 10)

    tau.source <- 1/pow(sd.source, 2)

    sd.source ~ dunif(0, 10)

    tau.region <- 1/pow(sd.region, 2)

    sd.region ~ dunif(0, 10)

  }

5.3 E-health initial values

For chain 1, we used the following initial values:

list(lambda = 0, beta = c(0, 0, 0, 0), mu.source = 0, sd.epsilon = 0.5,

     sd.person = 0.5, sd.source = 0.5, sd.region = 0.5, sd.eta = 0.5)

and for chain 2 we used:

list(lambda = 0.5, beta = c(0.5, 0.5, 0.5, 0.5), mu.source = 0.5,

     sd.epsilon = 1, sd.person = 1, sd.source = 1, sd.region = 1,

     sd.eta = 1)

5.4 Parallelisation in MultiBUGS 

After setting the number of cores, the computation schedule chosen by MultiBUGS can be 

viewed in ( ). MultiBUGS parallelises sampling of all the person-

level random effects wij, except for the component corresponding to the person with the 

most observations (176 observations); MultiBUGS parallelises likelihood computation of 

this component instead. The likelihood computation of all the other parameters in the model 

is also parallelised, except for the mutually conditionally-independent sets {μu, μv} and 

σu2, σv2 , which are sampled in parallel in turn.

5.5 Run time comparisons across BUGS implementations

To demonstrate the speed-up possible in MultiBUGS using a range of number of cores, we 

ran two chains for 15,000 updates for the e-health example. This run length was chosen to 

mimic realistic statistical practice, since, after discarding the first 5,000 iterations as burn-in, 

visual inspection of chain-history plots and the Brooks-Gelman-Rubin diagnostic (Gelman 

and Rubin 1992; Brooks and Gelman 1998) indicated convergence. We ran the simulations 

(each replicated three times) on a sixty four core machine consisting of four sixteen-core 

2.4Ghz AMD Operon 6378 processors with 128GB shared RAM.

Figure 4 shows the run time against the number of cores on a log-log scale. Substantial time 

savings are achieved using MultiBUGS: on average using one core took 8 hours 10 minutes; 

using two cores took 4 hours and 8 minutes; and using forty-eight cores took only 28 
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minutes. In contrast, these simulations took 32 hours in standard single-core OpenBUGS 

3.2.3; and 9 hours using JAGS 4.0.0 via R 3.3.1.

The scaling of performance with increasing number of cores is good up to sixteen cores and 

then displays diminishing gains. This may be due to inter core communication being much 

faster within each processor of 16 cores compared to across processors, or the diminishing 

returns anticipated by Amdahl’s law (Amdahl 1967). Running only one chain approximately 

halved the run time for two chains.

5.6 Results

The posterior summary table we obtained is as follows:

          mean      median    sd       MC_error   val2.5pc   val97.5pc 

start  sample ESS

beta[1]   -0.07124  -0.07137  0.01272  5.784E-4   -0.09561   -0.0461   

5001   20000  483

beta[2]   -0.2562   -0.2563   0.02437  9.186E-4   -0.3036    -0.208    

5001   20000  704

beta[3]   0.1308    0.1311    0.0114   5.7E-4     0.1085     0.1528    

5001   20000  399

beta[4]   0.13      0.1305    0.0182   7.083E-4   0.09474    0.1651    

5001   20000  660

sd.region 1.259     1.157     0.4606   0.005305   0.7024     2.445     

5001   20000  7536

sd.source 0.3714    0.3417    0.1359   0.001611   0.2057     0.7153    

5001   20000  7116

6 Discussion

MultiBUGS makes Bayesian inference using multi-core processing accessible for the first 

time to applied statisticians working with the broad class of statistical models available in 

BUGS language software. It adopts a pragmatic algorithm for parallelising MCMC sampling, 

which we have demonstrated speeds up inference in a random-effects logistic regression 

model involving a large number of random effects and observations. While a large literature 

has developed proposing methods for parallelising MCMC algorithms (see Section 1), a 

generic, easy-to-use implementation of these ideas has been heretofore lacking. Almost all 

users of BUGS language software will have a multi-core computer available, since desktop 

computers typically now have a moderate number (up to ten) of cores, and laptops typically 

have 2-4 cores. However, workstations with an even larger number of cores are now 

becoming available: for example, Intel’s Xeon Phi x200 processor contains between sixty-

four and seventy-two cores.

The magnitude of speed-up provided by MultiBUGS depends on the model and data being 

analysed and the computer hardware being used. Two levels of parallelisation can be used in 

MultiBUGS: independent MCMC chains can be parallelised, and then computation within a 

single MCMC chain can be parallelised. The first level of parallelisation will almost always 
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be advantageous whenever sufficient cores are available, since no communication across 

cores is needed. The gain from second level of parallelisation is problem specific: the gain 

will be largest for models involving parameters with a large number of likelihood terms 

and/or a large number of conditionally independent parameters. For example, MultiBUGS is 

able to parallelise inference for many standard regression-type models involving both fixed 

and random effects, especially with a large number of observations, since fixed effect 

regression parameters will have a large number of children (the observations), and random 

effects will typically be conditionally independent. For models without these features, the 

overheads of the second level of parallelisation may outweigh the gains on some computing 

hardware, meaning only the first level of parallelisation is beneficial.

The mixing properties of the simulated MCMC chains are the same in OpenBUGS and 

MultiBUGS, because they use the same collection of underlying MCMC sampling 

algorithms. Models with severe MCMC mixing problems in OpenBUGS are thus not resolved 

in MultiBUGS. However, since MultiBUGS can speed-up MCMC simulation, it may be 

practicable to circumvent milder mixing issues by simply increasing the run length.

Several extensions and developments are planned for MultiBUGS in the future. First, at 

present MultiBUGS requires the Microsoft Windows operating system. However, most large 

computational clusters use the Linux operating system, so a version of MultiBUGS running 

on Linux is under preparation. Second, MultiBUGS currently loads data and builds its 

internal graph representation of a model on a single core. This process will need to be 

rethought for extremely large datasets and graphical models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
DAG representation of the seeds model.
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Figure 2. 
The Specification Tool in MultiBUGS, including the ‘distribute’ button, which is used to 

initialise the parallelisation.
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Figure 3. 
DAG representation of the e-health model.
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Figure 4. 
Run time against number of cores for 15,000 iterations of the e-health example model, 

running 2 chains simultaneously. The run time in each of 3 replicate runs are shown. Both 

time and number of cores are displayed on a log scale.
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Table 1
Computation schedule table T for the seeds example, with 4 cores.

Row

Core

1 2 3 4

1 β 1 β 2 β 3 β 4

2 β 5 β 6 β 7 β 8

3 β 9 β 10 β 11 β 12

4 β 13 β 14 β 15 β 16

5 β 17 β 18 β 19 β 20

6 β 21

7 α 12 α 12 α 12 α 12

8 α 1 α 1 α 1 α 1

9 α 2 α 2 α 2 α 2

10 α 0 α 0 α 0 α 0

11 σβ σβ σβ σβ
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