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Abstract

Tissue engineering aims to grow artificial tissues in vitro to replace those in the body that have 

been damaged through age, trauma or disease. A recent approach to engineer artificial cartilage 

involves seeding cells within a scaffold consisting of an interconnected 3D-printed lattice of 

polymer fibres combined with a cast or printed hydrogel, and subjecting the construct (cell-seeded 

scaffold) to an applied load in a bioreactor. A key question is to understand how the applied load is 

distributed throughout the construct. To address this, we employ homogenisation theory to derive 

equations governing the effective macroscale material properties of a periodic, elastic–poroelastic 

composite. We treat the fibres as a linear elastic material and the hydrogel as a poroelastic 

material, and exploit the disparate length scales (small inter-fibre spacing compared with construct 

dimensions) to derive macroscale equations governing the response of the composite to an applied 

load. This homogenised description reflects the orthotropic nature of the composite. To validate 

the model, solutions from finite element simulations of the macroscale, homogenised equations are 

compared to experimental data describing the unconfined compression of the fibre-reinforced 

hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of 

the composite material for a range of fibre spacings and to determine the local mechanical 

environment experienced by cells embedded within the construct.
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1 Introduction

Tissue engineering is a rapidly developing field where one of the main goals is to generate 

artificial biological tissues in vitro (e.g. cartilage, bone or blood vessels) [21]. These tissues 

may then be implanted to replace natural tissues that have degenerated, been damaged, or 

removed during surgery. A particularly active area of this field is the development of 

articular cartilage implants as mature cartilage tissue has limited intrinsic capacity to heal. 

Cartilage damage can occur through injury or diseases such as osteoarthritis, and in the 

United Kingdom a third of people aged 45 or older have sought treatment for osteoarthritis 

[1]. Implants must be biocompatible with native cartilage and also able to withstand the 

mechanically demanding environment of a loaded joint.

A promising direction in cartilage tissue engineering [25] involves seeding cells 

(mesenchymal stem cells and/or chondrocytes) on a scaffold consisting of an interconnected, 

3D-printed lattice of polymer fibres combined with a cast or printed hydrogel; the seeded 

scaffold is then cultured in a bioreactor with biochemical and mechanical stimulation. 

Reinforced hydrogel composites are an ideal material for this purpose, since they are 

biocompatible with cartilage cells and the elastic fibres of the lattice endow the scaffold with 

greater structural integrity than a scaffold made only of hydrogel [42]. The principle 

challenge in this approach lies in developing practical strategies that generate artificial 

cartilage that mimics the form and function of the natural tissue. Mathematical modelling is 

a valuable tool for quickly and robustly assessing the efficacy of various combinations of 

cell-seeding strategies, biochemical and mechanical stimuli. The models can thereby guide 

experimental design; this is of value since these experiments are expensive, timeconsuming 

and cannot easily be sampled at multiple time points. An important modelling question is to 

predict the mechanical environment and stress distribution throughout the scaffold as a first 

step in developing appropriate strategies to seed the scaffold with mechanosensitive cells.

The scaffold of interest in this work comprises a soft gelatin methacrylate (GelMA) 

hydrogel cast around a 3D-printed, ε-polycapralactone (PCL) fibre lattice, for details see 

[11, 42]. The fibre lattice is created by melt electrospinning writing (MEW); a layer of 

parallel fibres at constant spacing is printed and then the next layer of parallel fibres at 

constant spacing is printed on top of the first layer, so that fibres in neighbouring layers meet 

at 90°, see Figure 1. The vertical distance between fibres is set by the extent to which each 

layer of fibres melts into the previous layer. When tested in unconfined compression, these 

fibre-reinforced scaffolds were shown to be up to 54 times stiffer (i.e. have a 54-fold 

increase in Young’s modulus) than the hydrogel alone [42]. The cells that are ultimately 
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seeded within the construct are mechanosensitive and will therefore undergo phenotypic 

changes due to the local stress [28, 40]. Consequently, in order to understand the response of 

these cells to mechanical loading, it is first necessary to understand the stress induced within 

the fibre-reinforced hydrogel.

The fibre-reinforced hydrogel scaffold described above is an example of a composite 

material, combining constituent materials with known characteristics to create a new 

material with properties desirous for a certain application. Composite materials are prevalent 

in engineering and becoming more widespread in biological applications [16, 19, 43]. A 

natural approach to model composite materials is via mathematical homogenisation [24], 

which allows the macroscale response to mechanical loading of a composite material to be 

determined from the properties of its constituent materials and knowledge of the 

microstructure.

In the context of modelling the composite material of this paper, mathematical 

homogenisation involves writing down governing equations for the constituent materials and 

then exploiting the separation of length scales to decompose the full model into macroscale 

and periodic microscale components. This, in turn, allows the bulk effective material 

properties at the macroscale to be derived from the solution to a periodic microscale ‘cell’ 

problem. Having determined the effective macroscale properties of the material it is possible 

to predict, for instance, the response of the composite material to an applied mechanical load 

(which is the focus of this paper). A general introduction to homogenisation theory for 

composite materials can be found in [24], which systematically describes approaches for 

treating materials with periodic microstructure for one-, two- and three-dimensional 

problems. Formal asymptotic and volume averaging approaches to treating the cell problem 

are compared in [14].

Throughout this work we treat the GelMA hydrogel as a poroelastic material. Porous, 

fluidsaturated media of this type were originally modelled via a phenomenological 

description by Biot [7, 8], where deformations of the porous (typically elastic) material are 

coupled to the flow of the interstitial fluid. This formulation may also be derived rigorously 

via a formal asymptotic homogenisation procedure [3, 33, 29]. The main advantage of such 

an approach is that it accounts for interactions between the solid and fluid components at the 

microscale (for a known microstructure) and therefore obviates the need to fit the material 

parameters in the Biot model from experimental data. A focus of recent work on 

poroelasticity has been to improve the computational efficiency of both the upscaling 

procedure for specific microstructures and the numerical solution of the resulting macroscale 

equations [4, 10].

Homogenisation is a particularly useful tool in biological contexts, where small-scale 

structures and multiple spatial scales are ubiquitous. In such conditions it allows tissue-level 

models to be derived that include cell-level properties. For example, in [39] effective 

transport coefficients were determined for the delivery of drugs in tumours by homogenising 

the microscale flow in the small-scale blood vessels within the tumour. A similar approach 

was used to define criteria for the design of cartilage tissue engineering scaffolds in [38] by 

tuning the microscale properties of the scaffold to optimise the flow of nutrients. This is 
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different to the homogenisation procedure of this paper since the goal here is to determine 

bulk effective mechanical properties of the scaffold.

A key aspect of describing natural or engineered tissues is to incorporate the effect of 

growth. Several recent approaches have addressed this question via homogenisation and 

poroelasticity. For example, the effective properties of a poroelastic medium with growth 

due to surface accretion of the solid phase were derived by [34] and lead to a new 

macroscale constitutive relationship describing this effect. A recent description of an active 

poroelastic medium [13] incorporated morphoelastic growth and derived effective governing 

equations under the assumption that growth occurs on a slower timescale than transport 

processes within the medium, as is typical in biological tissues. Also of interest are recent 

approaches that extend traditional homogenisation theory to incorporate the novel 

microstructure that arises in tissue engineering. For instance, one recent study derives an 

effective description of diffusion for porous media with spatially varying microstructure [9]; 

another details the homogenisation of reaction–diffusion processes in situations where the 

microstructure changes with time [35].

Homogenisation approaches have also been used to theoretically study the biomechanics and 

deformation of plant tissues. In one recent study [37] a macroscale description of the elastic 

properties and deformation of a plant cell wall was derived by considering the orientation of 

cellulose microfibrils (i.e. the microstructure) within individual plant cells. Another recent 

study [36] involves upscaling a coupled description of the microscale biochemical reaction–

diffusion processes within plant cells and the mechanical properties of the cells, under the 

assumption that the elastic deformation of the cells and the dynamics of their internal 

biochemistry are interdependent.

An alternate approach to modelling fibre-reinforced hydrogels might involve adapting an 

existing multiphase model of cartilage; see [26] for a comprehensive review of such models. 

Fibre-reinforced hydrogels have similar mechanical properties to cartilage [42], so it might 

be argued that we should employ an existing multiphase model. However, the advantage of 

our homogenisation approach is that it explicitly incorporates the mechanical role of the 

printed fibres and directly relates the properties of the constituent materials to those of the 

composite material. This then facilitates the tunable design of scaffolds with the properties 

required via alterations in the number, spacing and properties of the fibres. Multiphase 

models have also previously been used to investigate the ways in which the local mechanical 

environment experienced by mechanosensitive cells in tissue engineering scaffolds 

influences their behaviour. Such issues were considered in a multiphase porous mixture 

model by [27] which focussed on various aspects of tissue growth. A key result of that study 

was to demonstrate that multiphase models can replicate experimentally observed cell 

aggregation. Another study extends this modelling approach to examine tissue construct 

growth in a perfusion bioreactor [32] and reveals that mechanotransduction effects induced 

during the culture period can indeed affect the composition of the resulting engineered 

tissue.

A recent study on reinforced hydrogel composites with application to cardiac tissue 

engineering demonstrated that MEW can reproducibly generate fibre lattices and that when 
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cast in hydrogel the resulting scaffolds are biocompatible with cardiac progenitor cells [11]. 

Another recent study focused on the mechanical characterisation of fibre-reinforced 

hydrogel scaffolds, measuring the properties of both the overall scaffold and individual PCL 

fibres; this is of great interest since knowledge of both is required to parameterise the 

homogenised model of this paper. While finite element modelling of fibre-reinforced 

hydrogel scaffolds has previously been used to predict their overall mechanical properties 

[6], the homogenisation approach adopted here is more computationally efficient since it 

obviates the need to model each individual, repeating cell of the printed fibre lattice and the 

hydrogel contained within.

As stated above, we aim to understand how an applied load is distributed throughout a fibre-

reinforced hydrogel construct to the embedded, mechanosensitive cells. We previously 

investigated the mechanics of the composite scaffold with a phenomenological model that 

described the stiffness of the composite [42]. This simple model considered the fibres as 

stretched, linearly elastic strings, and neglected any rate-dependent features of the material.

Here, we develop a more detailed model that yields greater understanding of the mechanical 

properties of the composite, including its time-dependent response to loading. By 

developing governing equations for the stress and deformation of the composite, we develop 

a framework that may be used to predict the stresses that cells embedded in the scaffold 

experience. In systematically deriving this macroscale description we incorporate detail of 

the microstructure (in particular the geometry and spacing of the printed fibres) and the 

properties of the constituent materials of the composite thus giving a mechanistic description 

of the effective behaviour of the composite, with a view to revealing properties of this 

material that would not be known prior to homogenisation. The resulting framework is 

sufficiently general that it could be adapted to predict the macroscale properties of periodic 

elastic–poroelastic composites in other applications.

1.1 Paper outline

We formulate a model for the composite material in Section 2, where the fibres are treated as 

a linear elastic material, and the hydrogel is treated as a poroelastic material. This permits a 

separation of length scales, since the size of the repeating fibre lattice is much smaller than 

the size of the overall scaffold. The associated microscale cell problem is described in 

Section 3. Homogenisation theory is employed in Section 4 to derive macroscale equations 

which feature effective material parameters determined from the solution to the microscale 

cell problem, thus determining the nature of the bulk material. This model is validated in 

Section 5, where numerical solutions of the homogenised equations are compared to 

unconfined compression tests on reinforced hydrogels. We discuss our results in Section 6, 

where we also suggest possible future directions to continue this work.

2 Scaffold description and model derivation

We aim to model the response of a fibre-reinforced hydrogel scaffold to an applied load or 

displacement, as discussed in Section 1, and shown schematically in Figure 1. These 

scaffolds are typically a few millimetres in height and a comparable dimension in width; our 

model will later be compared to experimental results where cylindrical scaffolds of height H 
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≈ 2 mm and diameter L ≈ 5.5 mm are held at a strain of 6%, for instance. Interest lies in the 

stress and displacement fields induced in this composite material when mechanically loaded.

The material properties of the fibre-reinforced hydrogel, and hence its response to an applied 

load, will depend on the material properties of the unreinforced hydrogel, as well as the 

diameter and spacing of the 3D-printed fibres. These diameters and spacings are typically 

much smaller than the size of the overall construct; for instance, in the experiments of [42] 

the fibres are of radius 20 μm and printed at fibre spacings between 200 μm and 1 mm. The 

vertical fibre spacing is difficult to determine since there is an unknown degree of melting 

between adjacent printed layers. In later simulations we estimate that melting results in 

significant overlap between the layers so that the gap between parallel fibres is 60% of the 

fibre radius.

The following section details a homogenisation procedure to derive effective macroscale 

material properties of the reinforced construct, allowing us to calculate the stress and 

displacement within this composite material due to an applied load. We begin by developing 

sub-models for the two constituents of the composite viewing the hydrogel as a poroelastic 

material, occupying a region denoted Ωg, and the PCL fibres as linearly elastic, occupying a 

region denoted Ωf. The difference between the overall size of the construct and the spacing 

between the fibres permits a separation of length-scales. We exploit this property together 

with the periodicity of the geometry of the fibre scaffold to homogenise over one ‘cell’ of 

the scaffold (see Figure 1) and obtain the desired description of this composite material.

2.1 Sub-models for the hydrogel and the elastic fibres

Following Detournay and Cheng [15], we describe the hydrogel as a poroelastic material 

comprised of incompressible fluid and elastic phases. In the hydrogel region Ωg we have 

conservation of mass and assume that the flow of the fluid phase is governed by Darcy’s law. 

Thus, we write

ϕ∇ ⋅ v′ + 1 − ϕ ∂
∂t ∇ ⋅ ug′ = 0, (2.1)

ϕ v′ − ∂ug′
∂t′ = − k′

μ′ ∇p′, (2.2)

where ug′  is the displacement of the solid phase, v′ is the velocity of the fluid phase and p′ is 

the fluid pressure. Equations (2.1) and (2.2) contain several (constant) parameters, namely 

the volume fraction of the fluid phase, ϕ (sometimes called the porosity), the intrinsic 

permeability of the solid phase, k′, and the viscosity of the fluid phase, μ′; the ratio of these 

last two parameters, k′/μ′, represents the effective permeability of the poroelastic material. 

Typical values for these parameters for the hydrogel of interest, GelMA, are given in Table 1 

where these were obtained by fitting data from experimental relaxation tests on unreinforced 

GelMA to a model of a poroelastic material. A full description of this fitting procedure is 

given in Appendix A. We also require conservation of momentum in the hydrogel and 

introduce a constitutive relationship between the displacement and the stress. Following 

[24], these relationships are represented by
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∇ ⋅ σg′ = 0, (2.3)

σg′ = − p′I + D′: ∇ug′ , (2.4)

D′: ∇ug′ = μg′ ∇ug′ + ∇ug′
T + λg′ ∇ ⋅ ug′ I, (2.5)

where σg′  is the stress tensor (rank 2) in the hydrogel and ′ is the elasticity tensor (rank 4) 

for the solid phase of the hydrogel. Throughout this paper we follow the conventions for 

tensor products and derivatives given in [23, Chapter 1], which also defines these 

conventions in Einstein notation. In the constitutive relationship (2.4)–(2.5) we assume that 

the solid phase is linearly elastic, where μg′  and λg′  are the bulk Lamé parameters of the 

poroelastic material (which are both assumed to be constant). The fitted values of these 

parameters for GelMA derived in Appendix A are given in Table 1; the corresponding values 

for the Young’s modulus Eg′  and Poisson’s ratio ν g of the elastic phase of the hydrogel, 

which relate to the Lamé parameters in the standard way, are also given in Appendix A.

We model the PCL fibres as a linear elastic material. It is therefore straightforward to relate 

the stress and displacement in the fibre region Ωf by requiring conservation of momentum 

and introducing an appropriate constitutive law. Following [24], for instance, we assume

∇ ⋅ σf′ = 0, (2.6)

σf′ = ℂ′: ∇uf′, (2.7)

ℂ′: ∇uf′ = μf′ ∇uf′ + ∇uf′ T + λf′ ∇ ⋅ uf′ I, (2.8)

where σf′ is the stress tensor (rank 2) in the fibres, uf′ is the displacement in the fibre region 

and ℂ′ is the elasticity tensor (rank 4). In the constitutive relationship (2.7)–(2.8) μf′ and λf′

are the (constant) Lamé parameters of this material. The values for PCL in Table 1 are taken 

from [12], and converted from the Young’s modulus Ef′ = 363 MPa and Poisson’s ratio ν f = 

0.3 given in that study to Lamé parameters via equation (A1). As noted in Appendix A, 

published values for the Young’s modulus E f vary between 53 and 363 MPa [5, 42, 41, 12] 

and published values of the Poisson’s ratio ν f vary between 0.3 and 0.49 [17, 18, 12]. Thus, 

the values for the Lamé parameters of PCL given in Table 1 reflect the order of magnitude of 

these parameters; during later experimental comparison we will explore the parameter space 

defined by these published values.

We further assume that the fibres are perfectly bonded to the hydrogel, so that there are no 

voids between the fibre and gel regions. On the interface between the fibre and gel regions 

(denoted ∂Ωf = ∂Ωg) we impose continuity of stress and displacement, as well as a kinematic 

condition on the fluid velocity. These boundary conditions are
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σg′ ⋅ n = σf′ ⋅ n, (2.9)

ug′ = uf′, (2.10)

v′ − ∂ug′
∂t′ ⋅ n = 0, (2.11)

on ∂Ωf = ∂Ωg, where n is the outward pointing unit normal vector to Ωf. Note that the 

kinematic condition (2.11) has the usual interpretation here, namely that at the interface 

between the poroelastic and elastic materials there is no fluid flow, relative to the gel, in the 

direction normal to this interface and, therefore, no fluid transport across this material 

boundary.

To summarise, the equations governing the constituent parts of this composite material 

consist of (2.1)–(2.5) to be solved in the poroelastic hydrogel region Ωg, and (2.6)–(2.8) to 

be solved in the elastic PCL fibre region Ωf, subject to the boundary conditions (2.9)–(2.11) 

on the interface between these regions ∂Ωf = ∂Ωg. We note that it is possible to reduce (2.1)–

(2.5) to the more standard form of the Biot model for poroelastic media [8] by combining 

(2.1) and (2.2) to eliminate v, and substituting (2.4) into (2.3). The slightly longer form of 

the governing equations is retained here since it will (in Section 4) permit the explicit 

derivation of the effective macroscale fluid velocity and stress. Both of these quantities are 

of practical interest in tissue engineering to quantify the flow of nutrients through the 

scaffold and the local stress experienced by seeded cells.

2.2 Non-dimensionalisation

We define L to be the typical diameter of a sample of the fibre-reinforced composite and l to 

be the horizontal spacing between the printed fibres. In situations of practical interest the 

fibre spacing is small compared to the overall size of the composite and so we introduce the 

small parameter ε as

ε = l
L ≪ 1. (2.12)

We non-dimensionalise equations (2.1)–(2.11), scaling lengths with the typical diameter of 

the fibre-reinforced scaffold, L, time with a typical timescale for mechanical testing the 

composite, T, and stresses with a typical pressure in the fluid phase of the hydrogel, P = μ′ L 
2/(k′T). The dimensional variables (indicated by dashes) are replaced by dimensionless 

versions as follows:

ug′ = Lug, uf′ = Luf, p′ = P p, t′ = Tt,
σg′ = Pσg, σf′ = Pσf, x′ = Lx, v′ = L/T v, (2.13)

and the dimensional parameters are rescaled as follows:
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D′ = PD, μg′ = Pμg, λg′ = Pλg, (2.14)

ℂ′ = Pℂ, μf′ = Pμf, λf′ = Pλf . (2.15)

Under these scalings the dimensionless versions of equations (2.1)–(2.2), which represent 

conservation of mass and Darcy’s law in the hydrogel region Ωg, are

ϕ∇ ⋅ v + 1 − ϕ ∂
∂t ∇ ⋅ ug = 0, (2.16)

ϕ v− ∂ug
∂t = − ∇p, (2.17)

while equations (2.3)–(2.5), which govern conservation of momentum and the constitutive 

relationship, transform to give (2.18)–(2.20):

∇ ⋅ σg = 0, (2.18)

σg = − pI + D: ∇ug, (2.19)

D: ∇ug = μg ∇ug + ∇ug
T + λg ∇ ⋅ ug I . (2.20)

In the elastic fibre region Ωf the dimensionless versions of conservation of momentum and 

the constitutive relationship (2.6)–(2.8) are

∇ ⋅ σf = 0, (2.21)

σf = ℂ: ∇uf, (2.22)

ℂ: ∇uf = μf ∇uf + ∇uf
T + λf ∇ ⋅ uf I . (2.23)

Finally boundary conditions (2.9)–(2.11) transform to give

σg ⋅ n = σf ⋅ n, (2.24)

ug = uf, (2.25)

v− ∂ug
∂t ⋅ n = 0, (2.26)
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on ∂Ωf = ∂Ωg.

2.3 Description of the microscale cell and separation of length scales

Having established the dimensionless governing equations and boundary conditions (2.16)– 

(2.26) we could, given sufficient computing resources, solve these equations numerically in 

the complex interpenetrating geometry defined by Ωf and Ωg. Instead we exploit the periodic 

geometry and the small size of the repeating ‘cell’ compared to that of the composite (i.e. 0 

< ε ≪ 1). After non-dimensionalisation, typical lengths of the composite scaffold are x = 

(1); we henceforth term this the macroscale variable. We introduce the microscale variable X 
= x/ε, so that X = (1) is the length scale associated with the repeating cell. The presence of 

these disparate length scales suggests that it is appropriate to attempt an asymptotic 

separation of length scales.

The geometry of the microscale repeating cell is shown in Figure 1(e), with the orientation 

of the three components of X = (X, Y, Z) also indicated in this schematic diagram. The 

domain of a single cell is, in microscale variables, 0 ⩽ X ⩽ 1, 0 ⩽ Y ⩽ 1, 0 ⩽ Z ⩽ θ, where 

θ = h/l is the dimensionless microscale height of the cell. Within this cell there is a central 

cylinder of non-dimensional radius ρ, with its axis along (X = 0.5, Z = θ/2), representing a 

single printed PCL fibre. The fibres printed in the adjacent layers are perpendicular to this 

direction and, in order to maintain periodicity in the Z direction, are represented in the 

microscale cell as two half cylinders, each with non-dimensional radius ρ = d/(2l). The axis 

of one of the halfcylinders lies along the bottom of the cell at (Y = 0.5, Z = 0), while the axis 

of the other lies along the top of the cell at (Y = 0.5, Z = θ). The printed fibres overlap in the 

centre of the representative cell, where the adjacent layers have melted into each other and 

bonded. From the arrangement shown in Figure 1(e), it follows that θ/(4ρ) is a measure of 

the overlap between the fibres; this quantity is equal to 1 if adjacent fibre layers are just 

touching, and equal to 1/2 if they completely overlap. The union of the cylinder and the two 

overlapping half cylinders forms the microscale elastic fibre region Ω̂
f. The complement of 

Ω̂
f in this representative cell is the microscale hydrogel region Ω̂

g.

Following [34], we consider that all dependent variables are functions of x and X, so that 

e.g. u f = u f(x, X, t), and treat x and X as independent variables, in which case 

∇ ∇x + 1
ε ∇X. We also introduce regular perturbation series expansions in ε for each 

dependent variable, so that uf = uf
0 + εuf

1 + O ε2  and similarly for u g and p. Substitution 

of these series expansions into (2.19) and (2.22) implies that the leading order term for the 

stresses must be at O 1
ε , so that σf = 1

ε σf
−1 + σf

0 + ε σf
1 + O ε2  and similarly for σ g 

Under these assumptions (2.18) and (2.21) supply at O 1
ε2  the following equations:

∇X ⋅ σg
( − 1) = ∇X ⋅ D: ∇Xug

(0) = 0, in Ωg , (2.27)

∇X ⋅ σf
( − 1) = ∇X ⋅ ℂ: ∇Xuf

(0) = 0, in Ωf , (2.28)
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where we have substituted the O 1
ε  components of stress from (2.19) and (2.22) into (2.27) 

and (2.28), respectively. On the interface ∂Ωf the boundary conditions (2.24) at O 1
ε  and 

(2.25) at (1) supply

D: ∇Xug
0 ⋅ n = ℂ: ∇Xuf

0 ⋅ n, (2.29)

ug
0 = uf

0 , (2.30)

where we have used the expressions for the O 1
ε  stresses in (2.29). We note that (2.27) and 

(2.28) define linear homogeneous problems for uf
0 and ug

0  and that there is no external 

forcing from the boundary conditions (2.29)–(2.30). It follows that ∇Xug
0 = ∇Xuf

0 = 0 and 

so both ug
0 and uf

0  are independent of X, and therefore σg
−1 = σf

−1 = 0. Continuity of 

displacement on the cell-scale interface ∂ Ωf at leading order (2.30) implies that 

ug
0 x, t = uf

0 x, t .

In the hydrogel region Ωg, we see that (2.16)–(2.19) supply at O 1
ε  the following equations:

ϕ ∇X ⋅ v 0 = 0, (2.31)

∇Xp 0 = 0, p 0 ≡ p 0 x, t , (2.32)

∇X ⋅ σg
0 = 0, (2.33)

where, as noted above, equation (2.32) implies that p (0) is independent of X. In the fibre 

region Ωf, equation (2.21) at O 1
ε  supplies

∇X ⋅ σf
0 = 0, (2.34)

while on ∂Ωf boundary conditions (2.24) and (2.26) at (1) supply

σg
0 ⋅ n = σf

0 ⋅ n, (2.35)

v 0 −
∂ug

0

∂t ⋅ n = 0 . (2.36)

In the hydrogel region Ωg, at (1) equations (2.16) – (2.19) supply
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1 − ϕ ∂
∂t ∇x ⋅ ug

0 + ϕ∇x ⋅ v 0 = − 1 − ϕ ∂
∂t ∇X ⋅ ug

1 − ϕ∇X ⋅ v 1 , (2.37)

ϕ v 0 −
∂ug

0

∂t = − ∇xp 0 − ∇Xp 1 , (2.38)

∇x ⋅ σg
0 + ∇X ⋅ σg

1 = 0, (2.39)

σg
0 = − p 0 I + D: ∇xug

0 + ∇Xug
1 . (2.40)

In the fibre region Ωf, at (1) equation (2.22) supplies

∇x ⋅ σf
0 + ∇X ⋅ σf

1 = 0, (2.41)

σf
0 = ℂ: ∇xuf

0 + ∇Xuf
1 , (2.42)

while on ∂Ωf the boundary conditions (2.24)–(2.26) supply at (ε)

σg
1 ⋅ n = σf

1 ⋅ n, (2.43)

ug
1 = uf

1 , (2.44)

v 1 −
∂ug

1

∂t ⋅ n = 0 . (2.45)

3 Definition of cell problems

Having established that the leading order displacements uf
0 and ug

0  are independent of the 

microscale, we now obtain the equations that govern the microscale variation at (ε) in the 

displacements. Periodicity enables us to understand the microscale behaviour by considering 

a single repeating cell. We identify the restriction of Ωf to the single repeating cell by Ωf and 

likewise Ωg is the restriction of Ωg to the single repeating cell. To be clear, ∂ Ωf identifies the 

interface between Ωf and Ωg found within a single repeating cell. An example of this cell 

geometry is shown in Figure 1(d).

Substituting (2.40) into (2.33) and (2.42) into (2.34), and recalling that the leading order 

displacements and pressure are independent of X, we obtain
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∇X ⋅ D: ∇Xug
1 = 0, in Ωg, (3.1)

∇X ⋅ ℂ: ∇Xuf
1 = 0, in Ωf , (3.2)

subject to the continuity of stress and displacement conditions given by equations (2.35) and 

(2.44) on the cell-scale interface ∂Ω̂
f

ℂ: ∇Xuf
1 − D: ∇Xug

1 ⋅ n = − p 0 n − ℂ: ∇xuf
0 − D: ∇xuf

0 ⋅ n, (3.3)

uf
1 = ug

1 . (3.4)

Boundary conditions on the surface of the repeating cell are provided by requiring 

uf
1 and ug

1  to be periodic, with one additional boundary condition required to remove the 

translational freedom which is later set by requiring that various components of the 

microscale solution have zero mean on the microscale.

We note that equations (3.1) and (3.2) define linear homogeneous problems, subject only to 

linear forcing by the leading order displacement, uf
0 , and the leading order pressure, p (0), 

via the Neumann boundary condition (3.3). Hence, their solutions are of the form

ug
1 = r x p 0 + ℬ x : ∇xuf

0 , (3.5)

uf
1 = q x p 0 + A x : ∇xuf

0 , (3.6)

where r and q are vectors and B and  are rank 3 tensors. The solutions (3.5) and (3.6) are 

substituted into (3.1) and (3.2), respectively, and it follows from the linearity of (3.1) and 

(3.2) that

λg + μg ∇X ∇X ⋅ r + μg∇2r = 0, in Ωg , (3.7)

λf + μf ∇X ∇X ⋅ q + μf ∇2q = 0, in Ωf , (3.8)

where we have exploited the constitutive (linearly elastic) assumptions for  and ℂ, 

specified by equations (2.20) and (2.23), respectively. On the interface between the 

component materials equations (3.7)–(3.8) for r and q are subject to the boundary conditions

ℂ: ∇Xq − D: ∇Xr ⋅ n = − n, on ∂ Ωf , (3.9)
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q = r, on ∂ Ωf . (3.10)

We additionally require that r and q are periodic in X, and that

∭Ωg
r dV + ∭Ωf

q dV = 0, (3.11)

where dV is the volume element with respect to the microscale variables, so that the solution 

has zero mean on the microscale. We note that equations (3.7)–(3.11) for r and q define a 

linear elasticity problem on the repeating cell in which deformations in the gel region Ω̂
g and 

the fibre region Ω̂
f are coupled and caused by a jump in stress at the interface between Ω̂g 

and Ω̂
f.

A similar procedure is applied to obtain governing equations for B and . We first rewrite 

the components of each rank 3 tensor in a vectorised form as

b mn = ℬimnei, and a mn = Aimnei, (3.12)

where e i are the Cartesian basis vectors, m, n = 1, 2, 3, and we sum over the repeated index 

i. Substituting these vectorised forms into (3.1) and (3.2), and exploiting the linearity of 

these problems, we obtain

λg + μg ∇X ∇X ⋅ b mn + μg∇2b mn = 0, in Ωg , (3.13)

λf + μf ∇X ∇X ⋅ a mn + μf ∇2a mn = 0, in Ωf , (3.14)

where we have again made use of the constitutive assumptions (2.20) and (2.23). On the 

interface between the component materials, these problems for b (mn) and a (mn) are subject 

to the boundary conditions

ℂ: ∇Xa mn − D: ∇Xb mn ⋅ n = − ℂ:I mn − D:I mn ⋅ n, on ∂ Ωf , (3.15)

b mn = a mn , on ∂ Ωf , (3.16)

where I (mn) is an indicator matrix whose (m, n)-th entry is 1, otherwise zero. We 

additionally require that b (mn) and a (mn) are periodic in X, and that

∭Ωg
b mn dV + ∭Ωf

a mn dV = 0, (3.17)

so that the microscale solution has zero mean. Thus, equations (3.13)–(3.17) represent a 

further nine linear elasticity problems on the repeating cell in which deformations in the gel 
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region Ωg and the fibre region Ωf are coupled, and caused by a jump in stress at the interface 

between Ω̂
g and Ωf.

A similar procedure is applied to determine p (1), the (ε) pressure of the fluid phase in the 

hydrogel region. We note that as uf
0 = ug

0  is independent of X, equation (2.31) implies that 

the divergence of the fluid phase velocity in the poroelastic region is zero at leading order. 

We then take the divergence of (2.38) on the microscale to find that

∇X
2 p 1 = 0, in Ωg . (3.18)

Next we take the scalar product of (2.38) with n and, exploiting equations (2.44) and (2.45), 

obtain the following boundary condition for p (1) on the hydrogel-fibre interface:

∇Xp 1 ⋅ n = − ∇xp 0 ⋅ n, on ∂ Ωf . (3.19)

Thus, equations (3.18)–(3.19) comprise a linear homogeneous cell problem for p (1) subject 

to forcing by the leading order pressure p (0) via the Neumann boundary condition. As 

above, we formulate a solution to this problem as

p 1 = f ⋅ ∇xp 0 , (3.20)

where f = f(X) is a vector. Upon substitution of (3.20) into (3.18) we obtain

∇X
2 f = 0, in Ωg . (3.21)

Similarly, substitution of (3.20) into (3.19) provides the boundary condition

∇Xf ⋅ n = − n, on ∂ Ωf . (3.22)

Finally, we require that f is periodic in x, and that

∭Ωg
f dV = 0, (3.23)

so that the microscale solution has zero mean. Thus, equations (3.21)–(3.23) define linear, 

scalar problems for the three components of f.

4 Macroscale equations and effective parameters

To complete the homogenisation procedure we now average across the microscale solutions 

from Section 3 to obtain governing equations and effective material parameters for the 

composite material at the macroscale.
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We integrate the (1) continuity of mass equation (2.37) over the microscale repeating unit 

cell and divide by the cell volume. It follows from the divergence theorem, and application 

of the continuity of displacement condition (2.44) and the kinematic condition (2.45) that

ϕ∇x ⋅ veff + 1 − ϕ Ωg
Ω

∂
∂t ∇x ⋅ uf

0 = 1
Ω

∂
∂t∭Ωf

∇X ⋅ uf
1 dV , (4.1)

where |Ω̂| is the volume of a microscale repeating unit cell, |Ω̂
g| is the volume within this cell 

occupied by the hydrogel, dV is the volume element with respect to the microscale variables 

and v eff is the effective velocity of the fluid phase of the hydrogel, namely

veff x, t = 1
Ω ∭Ωg

v 0 x, x, t dV . (4.2)

We now substitute the solution for uf
1  given by (3.6) into the averaged continuity of mass 

equation (4.1) to obtain

ϕ∇x ⋅ veff + 1 − ϕ Ωg
Ω

∂
∂t ∇x ⋅ uf

0 = Seff : ∂
∂t ∇xuf

0 + Γeff ∂p 0
∂t , (4.3)

where S eff is an effective compressibility tensor (rank 2) and Γeff is a parameter related to 

the compressibility of the composite material; this accounts for both the compressibility of 

the linear elastic materials in the composite (namely the PCL fibres and the solid phase of 

the hydrogel) and the effect associated with the flow of the incompressible fluid phase 

within the hydrogel due to the deformation of the solid phase (where water will be lost from 

the composite). These are defined as

Seff = 1
Ω ∭Ωf

∇X ⋅ A dV , (4.4)

Γeff = 1
Ω ∭Ωf

∇X ⋅ q dV , (4.5)

where dV is the volume element with respect to the microscale variables. To determine these 

effective parameters we first solve equations (3.7)–(3.11) and (3.13)–(3.17) to obtain  and 

q for a particular geometry and then use these solutions in (4.4) and (4.5) above.

Continuing, we integrate the (1) version of Darcy’s law (2.38) over the microscale 

repeating cell and divide by total cell volume to obtain

ϕ veff − Ωg
Ω

∂uf
0

∂t = − Ωg
Ω

∇xp 0 − 1
Ω ∭Ωg

∇Xp 1 dV . (4.6)

We then use equation (3.20) to substitute for p (1) in equation (4.6). Rewriting the right-hand 

side of that equation in a more compact form, we obtain
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ϕ veff − Ωg
Ω

∂uf
0

∂t = − Keff ∇xp 0 , (4.7)

where K eff is an effective permeability tensor (rank 2) for the composite material; this is 

defined as

Keff = 1
Ω

Ωg I + ∭Ωg
∇Xf dV . (4.8)

Thus, to determine the effective permeability K eff we first solve (3.21)–(3.23) to obtain f for 

a particular microscale geometry and then use that solution in (4.8). In later numerical 

simulations it is convenient to eliminate v eff by substituting (4.7) into (4.3) to give

−Keff ∇x
2 p 0 + Ωg

Ω
∂
∂t ∇x ⋅ uf

0 = Seff : ∂
∂t ∇xuf

0 + Γeff ∂p 0
∂t . (4.9)

We remark that writing the equation in this form eliminates the porosity ϕ, obviating the 

need to know that quantity.

Finally, we integrate the (1) conservation of momentum equations, (2.39) and (2.41), over 

the microscale repeating unit cell and divide by the total cell volume; we then apply 

continuity of stress at the hydrogel–fibre interface (2.43) to obtain a volume averaged 

conservation of momentum equation:

∇x ⋅ σeff = 1
Ω

∇x ⋅ ∭ Ωfσf
0 dV + ∇x ⋅ ∭ Ωgσg

0 dV = 0, (4.10)

where σeff is an effective stress tensor (rank 2) representing the macroscale stress of the 

composite material. To develop an explicit expression for σeff we substitute the first order 

displacements, (3.5) and (3.6), into the definitions of leading-order stress, (2.40) and (2.42), 

to obtain

σg
0 = − p 0 I + D: ∇xuf

0 + ∇Xr p 0 + ∇Xℬ : ∇xuf
0 , (4.11)

σf
0 = ℂ: ∇xuf

0 + ∇Xq p 0 + ∇XA : ∇xuf
0 . (4.12)

On substituting these expressions into (4.10) we deduce that the appropriate form of the 

effective stress tensor is

σeff = ℂeff : ∇xuf
0 + Geffp 0 , (4.13)

where ℂeff is an effective elasticity tensor (rank 4), and G eff is a rank 2 tensor describing the 

hydrostatic component of the effective stress; these are defined as
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ℂeff = 1
Ω

Ωf ℂ + Ωg D + ℂ:∭Ωf
∇XA dV + D:∭Ωg

∇Xℬ dV , (4.14)

Geff = 1
Ω

− Ωg I + ℂ:∭Ωf
∇Xq dV + D:∭Ωg

∇Xr dV , (4.15)

where |Ω̂
f| is the volume occupied by the fibres. Thus, to find the effective stress tensor σeff 

of the macroscale composite material for a particular (microscale) hydrogel–fibre geometry 

we first solve equations (3.7)–(3.11) and (3.13)–(3.17) to obtain the solution components of 

the microscale cell problem, namely r, q, B and , and then use these solutions in 

expressions (4.14) and (4.15) above.

To summarise, we have now derived a system of four macroscale equations for continuity of 

mass (4.3), Darcy’s law (4.7), conservation of momentum (4.10) and the effective stress 

tensor (4.13) which, subject to appropriate boundary and initial conditions, govern the 

macroscale variables for displacement uf
0 , pressure in the hydrogel p (0) and the effective 

velocity of the fluid phase of the hydrogel v eff. Calculating these effective parameters 

involves evaluating 189 volume integrals; by exploiting the symmetry of the microscale cell 

geometry and the assumption that the fibres and the solid phase of the hydrogel are linear 

elastic only 39 of these integrals need to be evaluated, as described in detail in Appendix B.

5 Solution procedure and comparison with experiments

We now validate the model presented in Sections 3 and 4 against a series of experiments that 

were performed to establish how fibre spacing affects the mechanical properties of 

reinforced hydrogel scaffolds. These experiments involved scaffolds reinforced with PCL 

fibres 20 μm in diameter and 3D-printed at spacings of either 300 or 800 μm (with three 

replicates for each choice of fibre spacing). The fibre lattices are then cast in GelMA to 

produce cylindrical scaffolds with diameters between 5.54 and 5.98 mm and heights 1.80–

1.98 mm. These composite samples were held in unconfined compression at a fixed strain 

between two parallel plates while the applied stress required to maintain this displacement 

was recorded; after an initial ramping phase the required stress decreases slowly due to the 

poroelastic relaxation of the composite.

Details of the numerical solution procedure for the microscale cell problem of Section 3 and 

the homogenised macroscale problem of Section 4 are given in Sections 5.1 and 5.2, 

respectively. The experimental relaxation tests are compared to our theoretical simulation 

results in Sections 5.3, with a focus on replicating the poroelastic relaxation phase of these 

experiments in the simulations.

5.1 Microscale solution procedure

The microscale cell problem requires the solution of the linear elasticity problems (3.7)–

(3.11) and (3.13)–(3.17) to obtain r, q, b (mn) and a (mn), and the solution to Laplace’s 

equation (and boundary conditions) (3.21)–(3.23) to obtain f. These sub-problems are solved 
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using the multiphysics package COMSOL, which can perform finite element simulations on 

the interpenetrating geometry of the fibres and hydrogel regions to a high degree of 

accuracy. The cell geometry was meshed with an internal routine that accounts for the shape 

of the two materials and generates a fine (non-adaptive) mesh with 12,990 vertices and 

307,890 degrees of freedom. COMSOL implements period boundary conditions 

automatically and the solutions to these finite element simulations converge with a typical 

relative error of (10–11). These simulations are repeated to give values of the volume 

integrals in Section 4 for two cell geometries, described by the dimensionless parameter 

values given in Table 2, and for several values of the material parameters of PCL within the 

published range (as later described in Section 5.3).

For each of the cell geometries in Table 2 and each choice of the material parameters of PCL 

we use the COMSOL simulation results to calculate ℂeff, G, K eff, S eff and Γeff. As 

described in Section B, this requires the computation of only the volume integrals of the 

derivatives of the solution components given in Table B1. The form of the effective elasticity 

tensor Ceff in (4.14) reveals that the composite material can best be described as an 

orthotropic material in which two of the defined directions X and Y of the effective material 

properties of the composite are the same. This is not the same as a transversely isotropic 

material which has one distinguishable axis and is isotropic in any plane which lies 

perpendicular to that axis. In our material X and Y are interchangeable, but the two 

directions which are parallel to the directions of the fibres are both ‘special’ directions. This 

is intuitively simple to reconcile with the square grid pattern of the printed fibres. From 

these calculations we observe that ℂ1111
eff = ℂ2222

eff  are an order of magnitude larger than 

ℂ3333
eff , indicating that the composite material is much stronger along the fibre directions than 

perpendicular to the fibres. The other non-zero components of ℂeff are much smaller, which 

suggests that the composite material would be weaker in shearing.

5.2 Macroscale solution procedure

Having obtained the effective material parameters from the microscale problem, we proceed 

to solve the macroscale equations (4.3), (4.7), (4.10) and (4.13) with a finite element 

scheme. We aim to compare this with experiments on a cylindrical scaffold and the 

dimensions of the scaffolds from these experiments determine the choice of length scale L. 

For example, for the experiments with 300 μm fibre spacing we take this length scale to be L 
= 5.76 mm, the mean diameter of the three scaffolds, and the corresponding mean 

dimensionless scaffold height is η = H/L = 0.34. The solution domain is then

x2 + y2 ⩽ (1/2)2, 0 ⩽ z ⩽ η . (5.1)

The scaffold is held between two plates, so no-slip conditions are appropriate at both the 

upper and lower surfaces of the cylinder. Additionally, we prescribe a time-dependent 

displacement in z on the upper surface as a means of implementing the loading strategy. The 

appropriate boundary conditions are then
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uf
0 = 0, ∂p 0

∂z = 0, on z = 0, (5.2)

ufl
0 = uf2

0 = 0, uf3
0 = d t , ∂p 0

∂z = 0, on z = η, (5.3)

where uf1
0 , uf2

0 and uf3
0  are, respectively, the x, y and z components of uf

0 . Different choices 

of the displacement function d(t) are required to simulate the relaxation tests, and these will 

be defined in the following section. We impose no stress boundary conditions on the curved 

surfaces of the cylinder:

p 0 = 0, σeff ⋅ eR = 0, on x2 + y2 = (1/2)2, (5.4)

where e R is the outward-pointing unit normal to the cylinder surface. In all simulations the 

initial conditions are

uf
0 x, 0 = 0, (5.5)

p x, 0 = 0, (5.6)

so that the scaffold is initially in an undeformed and unstressed reference state.

We use a finite element method to calculate numerical solutions of (4.9) and (4.10), subject 

to the boundary conditions (5.2)–(5.4) and the initial conditions (5.5) and (5.6). The 

effective stress σeff used in (4.10) and (5.4) is defined in terms of p (0) and uf
0  in (4.13). The 

domain x 2 + y 2 ⩽ (1/2)2, 0 ⩽ z ⩽ η is partitioned into tetrahedral elements using the mesh 

generation package TetGen [22]. A finite element solution is then calculated, using an 

implicit approximation to all time derivatives, that uses a quadratic approximation to uf
0  on 

each element and a linear approximation to p (0) on each element. This finite element 

method has been shown to be stable for poroelasticity [31] and is therefore suitable here 

since the homogenised governing equations are of a similar form to those that describe small 

deformation poroelasticity.

5.3 Comparison with relaxation test experiments

The relaxation test involves applying a 6% strain at the top of the scaffold and recording the 

stress required to maintain this displacement over the course of 15 min, that is, for 0 ⩽ t ⩽ 
15. In line with the experiments, the time-dependent displacement d(t) of the top-loading 

plate used in the simulations was chosen so that a strain of 6% was attained after an initial 

period of linear displacement over 0 ⩽ t < δ, where δ is a short initiation time. The form of 

the loading function for the relaxation test is then

d t = ξη 1
δ tH δ − t + H t − δ , (5.7)
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where ξ = 0.06 is the maximum applied strain, H(t) is the Heaviside step function, and δ 
takes a slightly different value for each choice of fibre spacing to match the initial transient 

strain applied in the experiments; these values are δ = 0.14 for the 300 μm fibre spacing and 

δ = 0.11 for the 800 μm fibre spacing.

The results of the macroscale simulations of this relaxation test for 300 μm spacing are 

shown in Figure 2, along with experimental data based on three replicates of this test. The 

model exhibits qualitatively similar behaviour to the experiments, with an initial ramp-up 

phase followed by a relaxation phase. These results are all displayed in terms of ‘average 

stress’, defined as the total force applied at the top of the scaffold divided by the cross-

sectional area. During the initial fast-loading phase the response of the scaffold is dominated 

by the fibres, and so the average stress is essentially linearly elastic. During the relaxation 

phase the scaffold exhibits poroelastic behaviour due to the flow induced in the fluid phase 

of the hydrogel.

There are marked quantitative differences between the experiments and the simulations. The 

model overestimates the maximum stress attained after the initial loading by two orders of 

magnitude and displays a more rapid relaxation, reaching a steady state after approximately 

2 min, whereas the measured experimental stress is still decreasing at 15 min.

As noted previously, the published values for the Young’s modulus Ef′ of PCL fibres vary 

between 53 and 363 MPa [5, 12, 41, 42] and published values of the associated Poisson’s 

ratio ν f vary between 0.3 and 0.49 [12, 17, 18]. In light of this we now embark on a sparse 

exploration of this parameter space, with a view to fitting appropriate material parameters 

for the batch of PCL used in these experiments.

Close inspection of the scaffolds used in the experiments suggests some possible 

explanations for these discrepancies. The printed fibre lattices do not exactly correspond to 

our idealised model, with the fibres in the uppermost layers sagging and adopting a curved 

shape, as shown in Figure 1(b) and (c). We hypothesise that when the scaffold is loaded 

these fibres do not come under tension as readily as the fibres in the lower layers. 

Additionally, as a result of casting the printed fibres in the hydrogel, there is a thin layer of 

pure (unreinforced) hydrogel at the top of the scaffold. We hypothesise that this thin layer 

will yield more readily to loading than the reinforced gel below it, and that the reinforced 

gel, therefore, experiences a lower strain than that applied to the scaffold as a whole. For 

instance, if the depth of the pure hydrogel layer is 5–10% of the height of the entire 

construct, then we estimate, based on the relative Young’s moduli of the PCL and the solid 

phase of the GelMA, that the strain applied to the reinforced hydrogel will be less than 1%. 

In this hypothetical situation the pure hydrogel layer would significantly deform during the 

initial loading. We propose this to account for both these effects by adjusting the applied 

strain in the model, via the parameter ξ in (5.7).

We now consider the effect of varying the three parameters described above, namely ξ, E f 
and ν f, on the time-dependent average stress predicted by the model. The role of changing 

the applied strain is shown in Figure 3(a), for four values of ξ ranging from the recorded 

value of 6% to a much smaller strain of 0.15%. The peak stress value at the end of the 
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loading phase for the smallest of these applied strains is approximately two orders of 

magnitude smaller than the original 6% strain and of the same order of magnitude as the 

experimentally recorded stress. The shape of the relaxation profile is, however, uneffected by 

varying the strain; it still decays more rapidly than the experimentally observed profile.

The effect of lowering the Young’s modulus of the fibres E f is shown in Figure 3(b) for 

three choices of this parameter, with the original 6% strain. To achieve a peak stress which is 

similar in magnitude to the experimentally observed value, E f must be set to a value which 

is an order or magnitude smaller than the lowest published value of this parameter. At the 

lowest published value (of E f = 53 MPa) the model overpredicts the peak value of stress, but 

the relaxation profile is similar to that seen experimentally. The effect of varying ν f is 

shown in Figure 3(c); this has a relatively small effect on both the peak stress at the end of 

the loading phase and the rate at which the composite relaxes.

The sensitivity of the stress response to ξ and E f shown in Figure 3(a) and (b) suggests that 

the model will come close to the observed stress if both parameters are lowered in 

combination. We have performed a sparse parameter sweep through these parameters to 

determine values which produce reasonable agreement with the observed data. The stress 

given by these parameters is shown in Figure 4(a). Here, the parameters ξ =0.45%, E f = 

90.8 MPa and ν f = 0.49 produce a stress through the loading phase which closely follows 

the experiment and a relaxation phase which is in good agreement up to time of about t = 1, 

after which the model predicts a faster decay in stress.

Further relaxation tests were performed for reinforced hydrogel scaffolds with fibres printed 

at a wider spacing of 800 μm, and data from three replicates of this experiment are compared 

to the homogenised model in Figure 4(b). Applying the model naively as in Figure 2 over-

predicts the observed average stress by two orders of magnitude. The model solution shown 

in Figure 4(b) is for ξ =0.525%, E f = 45.4 MPa and ν f = 0.49; these parameters were 

obtained through a sparse parameter sweep, as described earlier. As before, the model 

follows the observations closely through the loading phase and remains in agreement with 

the stress in the relaxation phase for a longer time than in the 300 μm case. This agreement 

was obtained using a value of E f which was half that of the 300 μm case, suggesting that the 

sagging of the fibres is more pronounced for this larger fibre spacing.

6 Discussion

We have used mathematical homogenisation theory to develop a new model to describe the 

deformation of a composite elastic–poroelastic material. This was motivated by a desire to 

determine the macroscale mechanical properties of fibre-reinforced hydrogels used in the 

tissue engineering of articular cartilage. Our model enables us to calculate the effective 

material properties of the composite given knowledge of the material parameters of the 

constituent materials (namely the GelMA hydrogel and the PCL fibres) and the geometrical 

arrangement of the fibres and hydrogel within a single repeating cell of the composite. By 

incorporating these details in a coherent, systematically derived description of the 

composite, we are able to gain mechanistic insight into its behaviour. Our initial application 

of the model, shown in Figure 2, predicted much stronger fibre-reinforced composites than 
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those we tested experimentally, but exhibited good qualitative agreement with both the 

initial linear elastic loading phase and a poroelastic relaxation phase. Further numerical 

solutions, shown in Figure 3, demonstrate that the predicted stiffness of the composite is 

very sensitive to the Young’s modulus of the PCL fibres and the strain applied to the 

composite.

There are several possible explanations for why our model over-predicts the strength of the 

fibre-reinforced composites. In Section 5.3 we discussed two of these in detail, namely the 

sagging of the printed fibres, which effectively lowers the Young’s modulus of the fibres, 

and the presence of a layer of unreinforced hydrogel at the top of the scaffold, which means 

that an applied strain is not directly passed on to the reinforced composite material. 

Accounting for these effects, we obtained good agreement between the observed relaxation 

behaviour of the composite and our model, as shown in Figure 4. We postpone formally 

including these effects in the model for future work. Adding the extra thin layer of hydrogel 

would be a relatively straightforward extension of the current model. Accounting for the 

effect of sagging fibres would be more involved; in this case the cell geometry is no longer 

symmetric in z and therefore some of the computational advantages that this symmetry 

confers would be lost.

There are other possible sources of discrepancy between the model and the experiments. For 

instance, the vertical spacing between the fibres was estimated with knowledge of the total 

number of printed layers and the overall scaffold height. If the vertical overlap between the 

fibres in the definition of the cell geometry is further reduced, then the model predictions 

may be brought closer to the experimental data. Another possible source of the discrepancy 

is the boundary conditions imposed between the fibres and the hydrogel. We have assumed 

continuity of stress and displacement at the interface between the fibres and the hydrogel. In 

practice, a boundary condition that allows for some slip between the hydrogel and the fibres 

may be more appropriate and would probably lead to the model predicting a weaker fibre-

reinforced composite. Modifying the homogenisation procedure to account for such effects 

is an interesting direction for future work.

Finally, the hydrogel may not be perfectly poroelastic. Some of the observed relaxation 

behaviour may be due to viscous relaxation, and incorporating these effects by using a 

different model for the hydrogel would require altering the homogenisation process. Such a 

model would introduce history dependence of the material and could potentially make it far 

less numerically efficient if a new set of cell problems had to be solved at each time step; 

see, for example, the discussion in [34].

The elastic material in our composite is much stronger than the poroelastic hydrogel; μ f and 

λ f are five orders of magnitude larger than μ g and λ g, which might suggest that it is 

possible to neglect entirely the contribution of the poroelastic region and model only the 

elastic fibre scaffold. This approach would not, however, capture the time-dependent 

response of the composite. Accounting for both the elastic and the dynamic poroelastic 

nature of these composites, as we do here, is important to understand their mechanical 

properties. An interesting direction for study might be to formally incorporate the difference 

in the material properties of the hydrogel and the fibres in the model by exploiting the small 
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parameter associated with the ratio of the Young’s moduli of the elastic phase of the 

hydrogel and that of the fibres, and then repeating the homogenisation procedure.

Our model captures the key features of the fibre-reinforced hydrogel, in particular its 

orthotropic nature, and directly relates the material properties of the constituent hydrogel 

and fibres to those of the composite material. Modelling the mechanical properties of these 

scaffolds is an important step to inform tissue engineers about the stress experienced by cells 

when the scaffold is mechanically loaded, thus allowing future modelling work to consider 

the response of the cells to this stimulation. A key point of interest here is to understand how 

the scaffold is remodelled as the seeded cells deposit extracellular matrix components in 

response to loading, a process which eventually leads to implants which resemble natural 

articular cartilage. This might involve replacing the hydrogel phase with a cartilage-like 

phase that can explicitly describe the mechanical role of the extracellular matrix 

components; see [26] for a review of such models of cartilage. Candidate models for this 

replacement phase include the model of [30], which treats cartilage as a poroelastic material, 

or the detailed cartilage model of [2], which includes the mechanical effects of ions 

interacting with the extracellular matrix. Since the cells embedded in the scaffold are 

actively remodelling their surrounding mechanical environment, this approach should also 

account for the growth of the cartilage, and a natural framework to do this would be via the 

theory of morphoelasticity [20].

To conclude, this homogenised model successfully captures the orthotropic nature of the 

fibre-reinforced hydrogel scaffold, can (when suitably adjusted) predict the behaviour seen 

in experimental relaxation tests and provides a basis for future study of the mechanical 

stimulation of cell-loaded scaffolds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Optical microscope image of a fibre-reinforced hydrogel with a square fibre lattice of 

800 μm. Note that the overall dimensions of the construct shown here are slightly different to 

those used in later experimental comparison. (b) Scanning electron microscopy (SEM) 

image of the fibre scaffold prior to it being cast in the hydrogel. (c) SEM image showing a 

detail of fibre buildup at the interconnection between printed vertical layers. (d) Schematic 

diagram of the idealised scaffold used in the homogenised model of this paper. (e) 

Schematic diagram of the microscale repeating cell, showing the microscale hydrogel region 

Ω̂
g, and the microscale fibre region Ω̂

f. The characteristic length scale at the microscale is the 

horizontal fibre spacing l, and the characteristic macroscale length is the overall diameter of 

the scaffold L. It is assumed that the scaffold diameter is much greater than the fibre spacing 

and that their ratio ε = l/L ≪ 1, which permits a separation of length scales as described in 

Section 2.3.
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Figure 2. 
Numerical simulations of the relaxation text for 300 μm fibre spacing held at 6% strain 

(solid line), shown as the time-dependent stress response of the scaffold to the imposed 

displacement given in (5.7). Also shown is the mean time-dependent stress from three 

replicates of the experimental relaxation test (dashed line) and a 95% confidence interval on 

these data (dotted lines).
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Figure 3. 
Examples of the sensitivity of the stress response to the key parameters of the model. (a) 

Varying the displacement ξ, with the fibre parameters fixed at E f = 363.3 MPa and ν f = 

0.43. (b) Varying the Young’s modulus of the fibres E f, with an applied strain of 6% and ν f 
= 0.43. (c) Varying the Poisson’s ratio of the fibres ν f, with an applied strain of 6% and E f 
= 2.65 MPa.
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Figure 4. 
Numerical simulations of the relaxation text compared with the experimental data. (a) 300 

μm fibre spacing with adjusted modelling parameters of ξ = 0.45%, E f = 90.8 MPa and ν f 
= 0.49 (solid line). (b) 800 μm fibre spacing with adjusted modelling parameters of ξ = 

0.525%, E f = 45.4 MPa and ν f = 0.49 (solid line). Both (a) and (b) show the mean time-

dependent stress from three replications of the experimental relaxation test (dashed line) and 
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a 95% confidence interval on these data (dotted lines). Note that 300 μm fibre spacing data is 

the same as that shown in Figure 2 with a log scale on the vertical axis.
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Table 1

Summary of dimensional parameters that appear in equations (2.1)–(2.11), along with the parameters used in 

the non-dimensionalisation procedure in Section 2.2

Quantity Description Representative value

ϕ Porosity (GelMA) (Later eliminated from model)

k′/μ′ Effective permeability (GelMA) 2.382 × 10–4 kPa–1 min–1 (Appendix A)

μg′ Lamé’s first parameter (GelMA) 19.97 kPa (Appendix A)

λg′ Lamé’s second parameter (GelMA) 17.01 kPa (Appendix A)

μf′ Lamé’s first parameter (PCL) 1.27 × 105kPa [12]

λf′ Lamé’s second parameter (PCL) 7.80 × 105kPa [12]

L Overall diameter of scaffold 5.54–5.98 mm

H Overall height of scaffold 1.80–2.04 mm

d Fibre diameter 20 μm

l Horizontal fibre spacing 300–800 μm

h Vertical fibre spacing 32 μm

ϵ = l/L Small parameter 5.0 × 10–2–1.4 × 10–1

T Typical test time 1 min

P Typical stress in hydrogel 1.67 × 104kPa

Eur J Appl Math. Author manuscript; available in PMC 2020 November 03.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Chen et al. Page 33

Table 2

Dimensionless parameters characterising the repeating cell for the two repeating cell geometries used in the 

simulations. The fibre radius is ρ, the dimen-sionless microscale height of the cell is θ = h/l and θ/4ρ is a 

measure of the vertical overlap between adjacent fibre layers, where a larger value indicates less overlap and 

θ/(4ρ) = 1 represents the case where the fibres are just touching.

Dimensional fibre spacing (μm) ρ θ θ/4ρ

300 0.0333 0.1066 0.8

800 0.0125 0.04 0.8
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