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Abstract

The scope of this article is to present an overview of the Density Functional based Tight Binding
(DFTB) method and its applications. The paper introduces the basics of DFTB and its standard
formulation up to second order. It also addresses methodological developments such as third order
expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error,
implementation of long-range short-range separation, treatment of excited states viathe time-
dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB
or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape
exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A
number of applications are reviewed, focusing on -(i)- the variety of systems that have been
studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters,
supported or embedded systems, and -(ii)- properties and processes, such as vibrational
spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally
outlines and perspectives are given.
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Introduction

Since the demonstration by Hohenberg and Kohn [1] of the theoretical grounding of the
Density Functional Theory (DFT) [2-4], stating that the energy of any electronic system is a
universal functional of the density o and the proposal of the Kohn-Sham scheme [5] to find
the density, DFT has proved ubiquitous in the theoretical description of electronic system
properties of atoms, molecules and condensed matter [6,7]. It has become a choice tool for
atomic-scale simulations in Chemistry and Material Science [6-8]. In the Kohn-Sham
formulation, the energy of the actual many interacting electrons system is shown to be
equivalent to that of a fictitious system of independent electrons within an effective potential
involving the interaction with the nuclei (and possibly external potentials) complemented by
the electron-electron Coulomb interaction and the exchange-correlation functional £ x{p]

E[p] = Zk: i oi]-5 A loi) + Veulol + 5

p(r)p(r') 3 3 ZaZy
PA) Brde 4 B
= e zzm =

@

The first term is the kinetic energy of independent electrons in orbitals ¢ 4 weighted by their
occupation numbers. V oy IS the functional contribution associated with the external potential
V exe Applying the variational theorem, the resolution is obtained in terms of the mean-field

type Kohn-Sham (KS) equation

_1 p(r') 3., OEx _
A+ Vext(T) + /lr/ — rld r+ 5p(r) Pk = €kPk @

The left hand side of the above equation is the Kohn-Sham operator H X5= 5 consrstlng of

the sum of the kinetic contribution and the Kohn-Sham potential v ks

S6E,.
VK s[p] = Vexi(r) + |I{)/(I‘ ) |d3r/ + 3p(r) (©)]

The density (normalized to the number of electrons) is obtained from the individual orbitals

pm=;m%m2 @

The Kohn-Sham operator depends on the orbitals via the density and must hence be solved
self-consistently. While the Kohn-Sham equation is mathematically very similar to the
Hartree-Fock equation, a major difference lies in the fact that it formally incorporates the
electron-electron correlation. On the opposite, the Hartree-Fock energy must be
complemented by a wavefunction type many-body correlation contribution based on
multiconfigurational schemes with a generally unfavorable dependence to the number of
electrons. Conversely to many-body wavefunctions which are functions of coordinates in
space R 3N the electronic density is only a function of variables in /3. Hence, the resolution
of the KS equation is much simpler and computationally much more efficient than
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Configuration Interaction type schemes, which explains the success of DFT. Using linear
scaling algorithms and High Performance Computing systems, DFT is now able to deal with
a few thousands of atoms and a few tens of thousands of electrons at least for a single
geometry. Of course, the main theoretical handicap of DFT is that the exchange-correlation
functional remains unknown. This brings various drawbacks in many applications of DFT
such as the self-interaction error (SIE) [4,9-13], and consequent inherent failures like
improper description of the charge localization in extended compounds, ill-behaved
dissociation or an incorrect energy derivative with the number of electrons. The account of
dispersion forces is also problematic in standard DFT functionals. This situation has led to
the proposal of a forest of functionals, some of them taking advantage of theoretical
grounding, other empirically determined over reference training sets. This has sometimes
questioned the practice of DFT as a first principle theory. Many progresses are currently
done to design improved functionals, in particular based around the concept of long-range
correction (LC) through a short-range/long-range separation [4,14-17] and its account
through double hybrid functionals [17]. Correction of SIE and improvements of functionals
are also major challenges in the representation of excited states via the time-dependent
version of DFT (TD-DFT), in particular to properly describe Rydberg states or charge
transfer excitations.

Despite the favorable computational adaptation of DFT and dedicated progress to achieve
linear scaling, there is always a need from the computational point of view for even more
efficient techniques. This is the case if one aims at modelling larger systems in the nanoscale
domain for instance or running Molecular Dynamics (MD) or Monte Carlo (MC)
simulations for medium size systems with the scope of reaching statistical convergence,
which requires calculations of energies and energy gradients that must be repeated up to
106-108 times or even more. The development of approximate schemes, still treating
electrons quantum-mechanically, has always been a challenge since the early years of
quantum chemistry. There have been essentially two ways for designing such schemes. One
is offered by most of the approximate single electron descriptions, which start with very
simple elements and can be further complexified in a bottom-up strategy.

The second one, more recent and efficient, tends to be theoretically derived in a top-down
approximation scheme, from well established mean-field theories, formerly Hartree-Fock
and now DFT. It is in this last scheme that the Density Functional based Tight Binding
(DFTB) formalism [18-20] has been developed over the two-three decades, now described
in a number of review [20-24] or introductory [25] articles. The position of DFTB among
other simulation methods in terms of size and simulated time scales is shown in Figure 1.
The scope of the present article is (i) to provide an overview of the principles and advances
of DFTB in the domain of electronic structure and molecular simulation and (ii) to illustrate
applications to molecules, clusters and nanoparticles.

Section 2 introduces the basic formalism and approximations of DFTB. Section 3 describes
developments and extensions such as description of non-covalent forces, improvement of
electrostatics, inclusion of DFTB in hybrid methods or determination of electronic excited
states. The use of DFTB in large scale simulations (global optimization, dynamics in ground
and excited states or thermodynamics) is also commented. After reporting the accuracy of
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DFTB on small molecules, section 4 overviews applications to more involved classes of
systems such as biomolecules, bare or functionalized clusters and nanoparticles, or
supported/embedded systems. Note that the number of articles within the DFTB framework
is now too large to allow for a fully exhaustive account in the present review article. Hence,
the application sections should only be considered as an attempt to provide representative
DFTB applications to various fields of chemistry and molecular physics. Finally, outlines
and perspectives are given in the last section. Throughout the paper, we will in general use &,
b, ¢, dto label atoms, greek letters i, v, A, ... to label atomic orbitals, /, /, &, /... for
molecular orbitals, and capital letters A, B, C ... to address fragment systems. R, R 5 and r
will label global nuclei coordinates, nuclei coordinates of atom aand electronic coordinates,
respectively.

2 The density-functional based tight-binding approach: basic concepts

2.1 A brief overview of tight-binding theories

Prior to describe the principles of the DFTB method in details, we provide in this subsection
a brief general framework for Tight-Binding (TB) theories. Simplified quantum methods for
electronic structure rely on several general approximations. A first one concerns the
restriction of the Hamiltonian to a subclass of electrons directly involved in the electronic
properties of interest. Consideration of the valence electrons only is also related to the
physics and chemistry underlying frozen cores and pseudopotential schemes in ab initio
calculations. In general, model valence Hamiltonians are defined in linear combination of
atomic orbital (LCAQO)-type basis sets, so-called minimal in the sense that each valence
orbital 4 of atom ais defined by a single atomic function ¢4, This is a basic assumption of
early quantum semi-empirical methods, as featured by the Hiickel [26] or extended-Huickel
Hamiltonians [27-30] of quantum chemistry or the tightbinding equivalent in solid state
[31-33] and surface physics [34,35] corresponding to one-electron pictures. Restriction to
the valence space is also the basis of semi-empirical, multi- or mono-configurational
approximations of quantum chemistry such as CNDO [36], MNDO [37], AML1 [38] and
PM3 [39]. It remains the basis of the modern tight-binding versions [21,40]. In all these
schemes, the basis set is implicit and the Hamiltonian is defined in the matrix form.
Transferability and flexibility are accounted for by the dependence of the matrix elements
upon geometry [41].

A generic electronic TB Hamiltonian is defined by its matrix elements
Haﬂ, bv = (¢au|ﬁ|¢bv> ®)

expressed in the minimal LCAO representation. The diagonal elements have the meaning of
effective single-electron atomic energy levels associated with the valence shell atomic
orbitals, possibly screened by an effective potential V not necessarily explicited:

A —~
Hau, au = <¢au|_ 5 + V|¢au> = E&ay (6)
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while the interatomic off-diagonal elements between orbitals of different atoms (a# b),
called hopping integrals, describe electron delocalization primarily induced by the
(screened) kinetic energy operator
au bv = <¢au 5 t V'd’bv) M

The on-site off diagonal elements are generally zero.

In a LCAO non-orthogonal basis, the tight-binding eigenvalue problem is solved for the
orbitals ¢ 4, and energies e x

Pi = Z clgﬂd’a,u (8)
au
viathe set of secular equations
Z (Ha,u, bv — ngau, bv)cll)cv =0, Vau ©)

bv

If the atomic basis functions are supposed to be orthogonal, thus giving rise to the
orthogonal tight-binding scheme, the one-electron levels and orbitals are simply obtained by
diagonalizing the effective Hamiltonian matrix.

Labelling p 4, 4, the one-particle density matrix elements by the elements of the one-particle
density matrix ,5 the sum of the valence electrons energies is

— k
znkgk = Z Z ”kcau va au,bv = Z Pap, boH ap, bv (10)
k

k au, bv au, bv

Finally, the total TB energy can be cast under the very general form, consistent with DFT:

E[p] = Viep(R) + Zk] ey + Glp] 1)

where Vg (R) essentially describes the short-range repulsion of the ionic cores, the sum of
the single electron energies defines the band energy and the functional contribution of the
density G[p] provides an account of all residual contributions, namely the exchange and
correlation energies (in particular the dispersion contribution) that are not included in the
effective band contribution, as well as the double-counting corrections (the most important
being the double counting of Coulomb terms when relevant).

In the simplest version with no electrostatics and no self-consistency included, Vis
supposed to account for electron screening. In the case of ionic or iono-covalent systems or
systems with significant charge fluctuations, interactions between on-site charges can be
taken into account, either perturbatively [42—-44] or self-consistently [21,40,45-51].
Tightbinding methods may also be considered according to the origin of their
parametrization: either semi-empirical tight-binding, where simple functional forms are used
for the matrix elements fitted to reproduce ab /nitio or experimental data, or ab /nitio tight-
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binding, where the formalism, functions and inputs are fully derived from first principles
references [47].

2.2 From DFT to DFTB
The basic idea of DFTB consists in an expansion of the density po(9) = p o(7) + 8o(r) around a
Sp(r)ép(r’). ..

reference density o ()
o) = o)+ 2N st [ 2 e
(12)
| 5

SE[p(r)] . ®
[[ f5p(r)5p(r) 5p(r(P))| 8p(r)p( )...5/)( P)+

In current DFTB schemes, the superposed density of the atoms (isolated or in a confined
potential) is taken as starting point p . Collecting the terms which depend on pgonly in a
so-called repulsive energy contribution, one has

re oE
E™P = E(p) — / Elpopo(l‘)dl‘ (13)

Using the expression of the Kohn-Sham operator, the terms depending on p only provide the
so-called band-energy, which was the basis of the initial version of DFTB or DFTB1 [18]
(including the above repulsion energy).

oF
EW = / 5L0p(r)dr (14)

The second order dependence upon density fluctuation of the Coulomb and of the exchange-
correlation energy only appears in the second order term, namely

£ = //(Ir et ap(érngr)

This provides the second order or DFTB2 expansion, namely

6p(r)6p(r")drdr’ (15)

EDFTBZ = E'eP 4 zni<(l’i|H(€<S‘§0i> >

o] (|r g (spmaﬁf

which is the most widely spread DFTB scheme, also called self-consistent charge DFTB
(SCC-DFTB) [19,20]. The next step consists in expressing the molecular orbitals as linear
combinations of atomic orbitals, consequently defining the matrix elements of the Kohn-
Sham operator for the reference density

(16)

)ép(r)ép(r’)drdr’
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Hfl)ﬂ, bv = <¢aﬂ|H(€<S|¢bv> (17)

Another approximation consists in replacing the 3D continuous electronic density by a set of
discretized atomic electron populations. Assuming a nonpolar expansion of the density
fluctuation &p(7) over the atomic centers

p(r) = z A q,Fo(r—Ry) (18)

the electrostatic situation is described by atomic charges fluctuations Ag , with respect to the
atomic neutral references. In the standard versions of DFTB, Mulliken’s charges are used
[52]. One should note here that atomic charges are not observables and their definition is
arbitrary (see below section 3.1).

One can then introduce the two-electron integrals 5 as

XC ’r_ /
7ab - /](|r r | 5p(r)5p(r FO(I'—Ra)F()(I' Rb)dl'dr (19)
and the total DFTB2 energy reads
E=E*“"+ Z”z Z Hay bucaucbv 3 ZYab Ag, Agp (20)

i au, bv

The next approximation consists in retaining the two-center contributions only in the matrix
elements. These terms are then estimated making use of the superposition of pair reference
atomic densities py = p§ + p.

The second order expression for the KS operator is thus

DFTB2 _ 0 1
Ha;d bv = a,u bt Ha,u bv = Ha/t, bt ESau, bv Z A g(Yac + 7be) (21)
c#a,b

Also the repulsive contribution £ 7€ is usually taken as a sum of pair potentials

B = DR~ Re) @

Finally, the last standard approximation is to consider minimal valence sets only (although
auxiliary bases [53] and extended basis sets [54] have been considered also), namely s set
for H and He, s, pset for the second and third row elements, s, p, d'set for transition
elements and s, p, @, ffor rare earths.

The expansion of DFTB was carried out up to third order (DFTB3) by Elstner and co-
workers [55]
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53Exc [p] | / ) o
/f/ T 1 | AR

(23)
=1 _ 8 &E) N p(r" v
5 /ff 57 5|, 2P (F)OP(E')3p(x” Jdrdrdr
Submitting the third order terms to the DFTB approximations (retaining only two body
terms) yields the following expression
3)_ 1 dYap
) A gy B ap A gz~ = X (ARZAGTy + AguAgTy,)
abc ab (24)
. dyab
with T, = d_;bqg
The matrix elements of the KS operator are
3 ) 1 1
HcﬁtFlZ;JB = (3,]’:13;3 + Say, bv Z [g( AqaTae + A gpyp) + 3
c#ab (25)

A QC( Feg + Tep )]

This introduces a dependence on the atomic charges via an integral that explicitly depends
itself on the other atomic charges. Combined with a modification of the -y matrix, DFTB3
was shown [55] to provide an additional flexibility and, in particular, better proton affinities
for systems involving C, H, O, N, P and other elements important for chemistry in gas phase
or in solvents and, in particular, water. In contrast, DFTB3 only brings a poor improvement
of the reaction barriers for proton transfer [55].

2.3 Parametrization issues

The parametrization of the matrix elements Ha” o 1S achieved from DFT calculation. One
starts from atomic calculations to determine the atomic KS orbitals ¢4, and eigenvalues € g,

Hajiau = €an (26)
In principle, the above atomic orbitals could provide the LCAQ basis to span the DFTB
Hamiltonian. These atomic orbitals are actually constrained by the addition of a confinement
potential to the Kohn-Sham atomic operator under the form

peon — (%)m (27)

This confinement potential may yield better transferability. The resolution of the KS
equation in the presence of this potential thus defines confined atomic orbitals ¢~aﬂ which
will be taken as the actual DFTB/LCAO basis set.
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The overlap integrals Sz, 5, and the off-diagonal elements of the Hamiltonian are
determined from the equivalent DFT matrix elements of the atom pairs over the above
frozen atomic basis, along the inter-atomic distance R=|R ;— R 4

Hgy, bv = <$aM|H(§<S|$bv> Say, bv = <(l§a/4 | $b1)> (28)

The on-site second order contributions y 4, are identified with the atom Hubbard parameters
U ,and taken as the difference between the first ionization potential (IP) and the electron
affinity (EA) of atom a

Yaa=Uqg= IP(a) - EA(a) (29)

The two-center integrals y 4 (b# &) could in principle be calculated numerically from the
exact expression provided the atomic charges and the expansion functions are known. In
practice, they are expressed via an analytical damped Coulomb formula.

1
Yab= Ry~ f(Uq, Up, Ryp) (30)

depending on the on-site integrals U zand U p.

The parametrization of the repulsive term is certainly the most delicate. The initial and
somewhat consistent recipe should determine this term as the difference between the purely

electronic DFTB contribution to the interaction energy A E5F7B¢9) and the total DFT
interaction energy A EDFT of a given pair of atoms

WP (Rap) = A ERIT(Ryp) — A Em TP Ryy) 31
Let us mention a number of attempts to improve the transferability of the parametrization
beyond this basic recipe. For instance, constraints on the confinement potentials of the
atomic orbitals have been used to optimize bulk electronic band spectra of all elements
throughout the periodic table [56,57]. Also several authors have developed automatized
algorithms [58-61] to optimize the repulsive terms in multiproperty fits to various ensembles
of observables such as molecular binding energies, equilibrium geometries, bulk data band
structure, elastic constants or to develop parameters dedicated to specific chemical
environment [62]. Some authors also reported on-the-fly parametrization mapping the DFTB
parameters on the DFT data during global optimization simulations [63]. Recently, a new
scheme has been pioneered with the use of machine-learning algorithms to develop
optimized parametrizations [64].

The parameters, most of the time tabulated pointwise, are finally interpolated via spline
functions or polynomials. The main parameter sets available are the mio set [20], the matsci
set [65], the 30b set (adapted to DFTB3) [66], the pbc set [67] (adapted to periodic
calculations) and that of Wahiduzzaman et al. [56] for the electronic matrix elements
throughout the periodic table. Note that there is a dependency between the electronic version
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of DFTB and the repulsive potentials. In the following, if not specified, DFTB will be used
as a generic name referring either to DFTB1, DFTB2 or DFTBS3.

3 Extensions of density-functional tight-binding

3.1 Non-covalent interactions

Due to its formulation in minimal basis sets and considering the present quality of the DFT
functionals from which it is parametrized, DFTB tends to underestimate or even almost
ignore non-covalent contributions to the energy. This includes in particular the polarization
energy and the London dispersion energy. In low dimensional systems, such as 1D or 2D
systems for instance, whereas the calculation of longitudinal polarizabilities can benefit of
the presence of neighboring bases (mediated by the hopping integrals), the calculation of
perpendicular polarizabilities may be considerably hindered due to the atomic point charge
definition used in the second order term and the absence of basis sets in the orthogonal
direction. In addition, the description of electrostatic fluctuations in weakly bound systems
may be poorly described viathe Mulliken charges. Improvement of electric dipole
polarizabilities and polarization energies in the framework of DFTB2 [68] and DFTB3
[53,69] was proposed within the so-called Chemical Potential Equalization (CPE) scheme.
The principle is based on an expansion of the energy as a response to the field in the vicinity
of the field-less DFTB density

oF

AECPEzf ] 5pCPE(r)dr
3o loprr”" (x)
! [/ 5E CPE()5)CPE(r) (2
+ = — op r)op r’)drdr’
2 5p()S(') |, pr
The response density is itself expanded over p-type atomic-centered Gaussian functions
8p“PE(r) = Z djg(r) (33)
J

Within the DFTB approximation of charge densities by discrete atomic charges, the
minimization of the CPE energy is made viathe resolution of a system of linear equations,
from which the d jcoefficients are determined. The CPE implementation yields a
modification of the Hamiltonian matrix + g, 5,

A HCPE _1g oA ECPE A ECPE a4
au,bv = 3au, bv 044, 04 qp (34

The DFTB3/CPE response was shown to improve intermolecular interactions involving
charged and highly polarizable molecules [69].

An alternative scheme for improving polarization can be formulated in analogy with the
effective core polarization operators in ab initio treatment. It consists in adding
phenomenological atomic contributions to the DFTB energy
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2
A @R,
Y AR =2

1
EP =Y —Zq,
3
Z 2 b#a Rab

a

(35)

This expression accounts for the polarization of atom a due to the resultant electric field
created by all other atomic charges. a 4 is the polarizability (or possibly an effective
polarizability) of atom a, f{R ) a cut-off function to prevent short distance divergence. £~%/
can be incorporated in the SCC convergence. It does not require any extra basis but may
yield some overestimation of polarization contributions since the atomic polarizability
correction is isotropic and may be, at least partially, superfluous (case of longitudinal
polarizabilities for instance). Note however that it can be extremely helpful to properly
describe MM atoms as polarizable centers in the case of combination of DFTB with MM
force fields, for example in the treatment of cryogenic matrices [70].

Continuous theoretical efforts are made to derive DFT functionals describing the London
dispersion [71-78]. A more phenomenological approach used in a number of applications
[79-84] and systemized by Grimme et al. [85] consists in adding to the total energy specific
pairadditive dispersion contributions with 1/RS,, 1/RS,--- longrange behaviour. This

empirical approach was first applied for DFTB by Elsner et al. [86]. As, in standard DFTB,
the dispersion energy is almost completely absent, due to the reduced basis and the
functionals used for parametrization, very little double counting of the dispersion energy is
expected. As for polarization, a damping cut-off is necessary to avoid attractive divergence
at short distance. The form of the cut-off is strongly related to the parametrization of the
repulsive potential [86-88].

As an example, the benzene dimer, unstable at the DFTB2 level, becomes stable when
dispersion interactions are added [88]. Benchmarks of intermolecular interactions have been
done by Christensen et al. [69] combining DFTB3, CPE and the D3 form of Grimme’s
dispersion [89,90]

ab

Edisp — _ Z Z 5k Cok

36)
2k 2k (
a<bk=34 Rgp+[fap(Rap)]

with C§£ the 2k-order dispersion coefficient for the atom pair ab, s, a scaling factor and £ 4
a damping function.

Finally, the energy can still be improved by modifying the Coulomb interaction. In its
formulation, DFTB makes use of Mulliken definition of atomic point charges to define
second and third order terms responsible for the long-range Coulomb interaction between
charges fluctuations. This difference with DFT, where the Coulomb interaction is calculated
from explicit 3D electronic densities, can be problematic in the case of noncovalently
bonded systems, due to a delicate balance between different small contributions in the
interaction energy. Among the other definitions of the atomic charges (Bader [91], Léwdin
[92], ...), the Class IV — Charge Model 3 (CM3) developed by the group of Truhlar [93],
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easy to implement within the DFTB scheme, corrects the Mulliken charges to take into
account a more relevant bond polarization

atoms
2
A ng3 = A ‘I/qull + z [DabBab + CabBab] (37)
b#a

where B 4 is the Mayer’s bond order [94] along bond aband D 4, C 4 are empirical
parameters. The use of CM3 charges instead of Mulliken charges, first introduced in DFTB
as an a posteriori correction of molecular dipole values to compute IR spectra [95], was also
shown to improve the long-range Coulomb interactions when used instead of Mulliken
charges in DFTB equations [88]. An alternative definition of charges for DFTB was further
proposed recently [96]. Let us finally mention that it was also proposed to introduce
additional multipoles in the DFTB scheme to describe systems interacting with an electric
field [97].

3.2 Spin-polarized DFTB

DFTB was initially formulated within the restricted scheme, corresponding to closed shells
in which pairs of electrons a and g share the same spatial orbital. DFTB has also been
formulated within spin-polarized (unrestricted DFTB) versions [98,99] with possibly
different energies €, and orbitals ¢ ,, for different values of the spin-projection o. Kohler et
al. [98,99] published an atomic shell-resolved formulation. The spin-polarization
(magnetization) density /7(r) = p 4(r) — p g(r) is discretized over the atomic centers and
shell-resolved, defining atomic spin-polarization differences /77 o= 1 ajq = 11 215 (11 a1q 1S the
electron population with a spin in shell /of atom &). Consistently, the charge populations g
a/and the on-site electron-electron integrals U 5 become shell-dependent as well as the two-
center integrals y 475/ Which are functions of the U 4 parameters. The spin-polarized DFTB
energy (SDFTB) at second order reads

DFT B2, spin — pol __ 0
E P PO = Erep + Z < @ialH |‘pi0' >
i,o

+3 Z Yal, bl A qal A qpr + zzmalmal’Wall’
al, bl’ all'

where the W ;" parameters are shell-dependent atomic constants which, similarly to the
Hubbard constants, can be derived from Janak’s theorem [100].

1{ %€ala Ocqla
Wall’ = E(anal’a - anal’ﬂ) (39)
The above SDFTB energy corresponds to the electron spin-dependent operator
DFT B2, spin — pol 0 1
Haﬂ, bv, o = Hau, bt ESau, bv Z A ‘kl”(nzlﬂ, c” + Vbly, cl”)
¢l"€ec
| (40)
+ 665Say, bv( Z MaWal, 1" + Z mbl’WbIUl’)
I"'ea I'eb

where index / indicates the shell associated with orbital i on a given atom.
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Note that Melix et al. [101] use a version resolved to atoms only where the spin-polarized
DFTB energy is

DFT B2, spin — pol 0 1 1
E P POl = Epep+ Z < (Pia|H |(Pic; >+ fZYab AgaAgy+ 35
i,o ab

Y mWw,

(41)

where W ,is now a single atomic constant related to the population derivative of the highest
occupied atomic orbital and /m 5= 17 5 — 11 z5the difference between total populations with
a and B spins on atom a.

3.3 Self-interaction correction schemes

Most of standard DFT functionals undergo self-interaction error (SIE) which stems from the
fact that the self-exchange contributions in the functionals do not cancel the self-Coulomb
contribution. In its original formulation, DFTB meets the same problem. The SIE is
responsible for several major errors of standard DFT (and LDA in particular), namely (i) the

deviation of the asymptotic potential from —% which induces electron overdelocalization, (ii)

an underestimation of the HOMO-LUMO gap and (iii) the non linearity and derivative
continuity of the energy dependence of the system upon the number of electrons [102].

Several schemes have been proposed to cure the SIE of standard DFT, involving full self-
interaction corrections [103], the GW formalism [104], or using hybrid functionals including
a part of Hartree-Fock exchange [105]. Other schemes to correct LDA calculations consist in
adding corrections AE S/C calculated within the Hubbard model and on-site electronelectron
effective interactions U . This has yielded the LDA+U schemes which have also been
declined using /resolved electron-electron screened interactions U 4— J 4[106]. An
alternative so-called pseudo-SIC scheme [107-109] consists in expressing the corrections
via the projections of the KS orbitals onto atomic states concerned with the highly correlated
shells (dand/or felectrons). Houharine et al. [110] transposed those LDA+U and pseudo-
SIC corrections within the spin-polarized DFTB formalism. For example, the pseudo-SIC
correction reads

A EPSIC _ _“Z Z (Ua/;Jaz) Z Z (5, au)z w

a lE€a o au,av €l
where U 4/— J 4/1s taken from atomic DFT calculations and g, 5, is a matrix generalization
of the basis functions Mulliken atomic occupation numbers for a given shell /and a given
spin projection o. a is here an empirical scaling parameter. Analogous expressions were
given for the LDA+U schemes either in the fully localized (FLL) or in the mean-field
(AMF) limits. All these corrections rely on the fact that the largest contribution to the SIE is
that corresponding to electrons in localized shells. Those contributions to the energy may
bring significant improvement. For instance they allow for a gap opening in the strongly
correlated antiferromagnetic phase Il of bulk NiO, even though the gap remains
underestimated. Conversey the corrected magnetic moments show magnitudes comparable
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with the experimental ones. Further corrections, based on the trace of the idempotent
expression ;3— ,5 S ,5 were proposed to tackle the derivative continuities of the energy as a
function of the electron number. Test calculations over several aromatic molecules with CuS
substitutive contacts show that such corrections strongly increase the HOMO-LUMO gap
which becomes quite consistent with its thermodynamic charge definition (N + 1) — 2E(N)
+ E(N-1).

Another extension of DFTB in relationship with the SIE problem concerns specific classes
of systems such as cationic molecular clusters which consist of well identified subsystems.
In such cases, delocalization can be strongly overestimated in DFTB as in standard DFT.
The single electron picture may also present incorrect dissociation and, since it equally
distributes the charge on the separated subsystems (case of two identical subsystems), it may
induce spurious Coulomb repulsion at intermediate and long distance separation [10]. Those
drawbacks can be circumvented when combining DFTB with Configuration Interaction
within a valence bond framework, namely describing the global system viaa
multiconfigurational wavefunction expanded on charge-localized configurations:

+ HOMO
Yy = ;CACIA Yo = ;CA £ 9 (43)

where ¥ is the wavefunction of the neutral cluster and a}/MO the electron annihilation

operator of the HOMO on fragment A. The CI problem is then restricted to a secular
equation in the charge localized basis

; (HGE - EoSib)Cp=0 44)

where H ¢"and S ! are the Hamiltonian and overlap matrices respectively in the charge-
localized configurations basis { ¥ }. The dimension of the CI matrix is only the number of

fragments. In this approach, the diagonal terms of the Hamiltonian represent the energies of
fragment-localized charge configurations, while the non dynamical correlation arising from
the charge resonance and determining the extension of charge fluctuation is mediated by the
hopping integrals in the ClI resolution. Note that this valence bond CI formulation is well
suited to investigate hole transfer through extended system since it provides a naturally
quasi-diabatic framework where the hole dynamics is promoted by the hopping integrals
[111,112].

A similar partitioning scheme was the principle of the DFTB coarsegrained based approach
developed by Elstner et al. [113-116] to study charge transfer in DNA. In this approach, the
MOs are calculated independently for each fragment (the fragment orbital approach
[117,118]). The diagonal elements are estimated from DFTB2 single particle energies and
the hopping term between two fragments is calculated as

cI A 0 B
Hib= < ofomo|H [efomo > (45)
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where of oo is the HOMO of the charged fragment A in configuration W and A the

DFTB1 Kohn-Sham Hamiltonian. The charge mobility in DNA could be described by non-
adiabatic MD in a mean field approach with a refined version of this coarse grain model
[119].

An alternative scheme in a similar philosophy is that adapted from the constrained-DFT
scheme [120-122], in which the orbitals of the chargelocalized configurations ¥} are

calculated variationally within the DFTB scheme, minimizing a Lagrangian with respect to
the orbitals o/ with constraint of charge localization on a given fragment A

2= E({of)) - Y et <ot 1of > —6;)+ 2 Y < of|PYoft > = Na| @)

ij i

where E({of!}) is the DFT energy and the second term ensures the MO orthonormality

constraint. The last term is the expression of the charge localization constraint, with A A a
Lagrange parameter, 24 a projector of the density on the fragment carrying the charge and
N 4 the number of electrons fixing the charge localization on fragment A. Following Wu and
Van Voohris [123,124] the hopping integrals can be computed from the different charge-
localized MO coefficients and the Lagrange constraints parameters. The combination of this
approach within the DFTB approximations gives the DFTB-CI method [125,126]. This
approach differs from the previous coarse-grained one [113] in the sense that each charge
localized configuration is calculated self-consistently, thus including relaxation and
polarization of the neutral fragments by the charged one. From the computational point of
view, the Lagrangian optimization has to be repeated for each fragment, which is more time-
consuming than simple DFTB.

3.4 Long-range corrected DFTB

The long-range corrected DFT scheme (LC-DFT) has also been quite fruitful in curing DFT
deficiencies. It is based on a range separation of the electron-electron Coulomb interaction.
The short-range part is treated viaa DFT exchange-correlation functional while the long-
range contribution can receive a better treatment, for instance via exact Hartree Fock
exchange, contributing to cancellation of the SIE. LC-DFT achievements are obviously more
general since they also address issues of long-range correlation either via a higher level
correlation functional or even via combinations with Wavefunction type calculations [4,14—
16] in order to deal with the dynamical and non-dynamical contributions to electronic
correlation. The longrange corrected DFTB scheme (LC-DFTB) was formulated by Lutsker
etal. [127] using a Yukawa long-range/short-range type separation of the Coulomb operator
1 _ exp(-or)2) + 1 —exp(-wr12)

47
r12 r12 ri2 @7

This scheme depends on a separation range parameter . Using the specific DFTB
approximations, the Hamiltonian can be cast as
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0 1
Hau, bv = Hau, o+ n Z Pca, dTSa[l, bUSc/i, d‘r(yac + Yad + Vbe + de) (48)
cA, dt
1 I I I I
—5 O Ped.drSap,caSaz, bol Vi + Yed + Vg + Vify) (49)
cA,dt

where y, is the two center second order integral calculated with the full Coulomb potential
while yf{b is calculated with the long-range part only.

Lutsker et al. [127] benchmarked applications with DFTB parameters extracted from LC-
DFT calculations involving the LDA exchange functional and the local PBE form of
correlation for a set of organic molecules. They showed that, similarly to LC-DFT schemes,
LC-DFTB largely cures the delocalization problem attributed to SIE. As a consequence, a
number of properties of the systems are significantly improved, such as the energy of the
frontier orbitals, and consequently the estimations of the ionization potentials based on the
HOMO energies, the HOMO-LUMO gap, or electrical properties (longitudinal
polarizabilities of polyacenes). The LCDFTB also significantly improves the density of
states with respect to photoelectron spectroscopy data. The ordering of the orbitals in
delicate cases can still turn out to be incorrect and electron affinities still in default, either
due to inherent DFTB approximations (minimal basis set, retain of two-center integrals
only) or to the PBE-based parametrization. The improvement of excited electronic states
with the LC-DFTB correction is discussed in section 3.6.

3.5 DFTB in hybrid and QM-MM methods

DFTB has also been involved in schemes were the most active atoms/molecules are treated
via a higher level quantum-mechanical (QM) scheme while the largest part of the system
(large molecule or solvent) is treated at a lower level of approximation, generally via
molecular mechanics (MM) potentials or force fields (FF). It should be noted that DFTB,
involving two-center approximations, atom-based charges and two-atom repulsive
interactions, is very well suited for combination with force fields. The inclusion of point
charges in force field is quite straightforward since DFTB is itself based on point charges for
the QM atoms. Thus there have been adaptations of DFTB (QM method) within various MM
packages such as CHARMM [128], AMBER [129] or GROMACS [130].

Another type of QM-MM combination was adapted to investigate the dynamics of
molecules or clusters in a cryogenic environment, namely rare gas inert matrices. This
scheme relies on the definition of (possibly) anisotropic two-body interactions between the
active atoms and the rare gas atoms added to the DFTB-KS operator in the AO basis, the
description of inert atoms interaction (Rg-Rg) v/a a pair potential, and the inclusion of the
polarization response of the Rg atoms. Inclusion of the latter can be handled via atomic
polarization operators (see Equation 35) which can be finalized adding the following
contributions to the initial electrostatic/exchange correlation contributions to the DFTB2 »
matrix
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] RabRp
}’,';Z == 2 acfac(Rac)fbc(Rbc)% (50)
cE€ Rg RapRbe

where the rare gas atomic polarization a . and the cut-off functions 7 ;{ /<) between active
atoms and Rg inert atoms are introduced [70]. Such scheme proved able to describe the
influence of the matrix on the structures of molecular complexes such as water clusters in
interaction with polycyclic aromatic hydrocarbons [131]. Another combination has also been
explored combining DFTB as the low level description with DFT as the high level method
[132].

Finally, let us mention that environmental effects can also be taken into account through a
polarizable continuum model (for both ground and excited states) [133].

3.6 Excited states and time-dependent DFTB
In the framework of Density Functional Theory, the access to excited states is given by the
electronic response, based on the time-dependent Kohn-Sham equation

dpi(r,t
. q),a(tr >=(_% A + vgslo(r,1)])or. ) (51)

The linear response TD-DFTB was originally developed by Niehaus et al. [134] as a DFTB
analogue of the linear response TD-DFT [135,136]. Excitation energies are given as the
eigenvalues Q of the following matrix equation

)= 20 Sl -

where | is the identity matrix, A and B are matrices with the following elements

Ak, j1 = (€ — €k)8i 0kt + 2Kix ji (53)

B, j1 = 2K ji (54)

where indices /, jand k, /label occupied and virtual orbitals respectively, with energies € ; €
jand € 4 €1 The coupling matrices K, depending on the spin configuration, are determined
within the DFTB scheme [134] using the Mulliken approximation to compute transition
dipoles. The first application of the linear response TD-DFTB was reported in ref [134].
Absorption spectra were computed for neutral polyacenes ranging in size from naphthalene
to heptacene and compared with experimental as well as TD-DFT data. Vibrationally
resolved UV/Vis spectra of various aromatic and polar molecules were calculated using TD-
DFTB excitation energies and analytical gradients in ref [137]. The results of TD-DFTB
were found in a very good agreement with the TD-DFT calculations using local functionals.

Several extensions were developed in the framework of the linear response TD-DFTB. Spin-
unrestricted TD-DFTB [138,139] has been implemented in order to study absorption spectra
of open-shell systems. Conventional TD-DFTB fails to properly describe PES for charge

Adv Phys X. Author manuscript; available in PMC 2020 November 04.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Spiegelman et al.

Page 18

transfer states. TD-DFTB was combined with LC-DFTB [140-142] to benefit from the
range separation improvement for excited states that, in particular, leads to the recovering of
a correct -1/rbehaviour of the potential. Also, incorporation of intra-atomic exchange
integrals [139,143] was shown to improve the transitions energies both towards triplet and
singlet TDDFTB states. Calculation of spin-orbit coupling was interfaced by Gao et al. [144]
for TD-DFT approaches, including TD-DFTB. From a computational efficiency point of
view, intensity-selected TD-DFTB has been introduced by Ruiger et al. [145], delivering
similar accuracy as the linear response TD-DFTB, but at a lower computational cost. More
details about the TD-DFTB method as well as some other examples of applications can be
found in the review paper of T. A. Niehaus [146].

Further improvements were done in order to derive intermolecular excitonic transfer
couplings according to the Forster mechanism, implying a formulation of the interaction
integral between the transition dipoles of the interacting molecules A and B

drdr’ (55)

o < Y] YR > < PRI ¥ >
AB — II‘—I‘,I

where w7} is the intramolecular excited state on A correlated with the exciton band. Within
the DFTB formalism this integral becomes [147,148]

JAB= Z Z Qa'vab Q' (56)
acAbeB

where quantities Q) are atomic many-body transition charges determined within the TD-
DFTB scheme.

Another extension has also been opened for charged molecular clusters in the framework of
the DFTB-CI scheme (see above). Initially developed to investigate the ground state, it also
delivers excited states as higher roots of the CI matrix. The formalism has been extended in
order to provide a better description of the ionic excited states considering in the basis of
charged localized configurations, not only the removal of an electron from the HOMO of the
charged fragment, but also electron removal from sub-HOMO occupied orbitals ¢, yielding

a more general wavefunction [149]

+ + +
¥y = Z caayapomo Yh = Z cai Yai (57)

A,i € occ A,i € occ

This improvement vsthe simple initial scheme restricted to the HOMO orbital becomes
important for clusters or stacks of large molecules, presenting a small orbital separation
below the HOMO. Moreover, it allows to incorporate not only the excited states of the
charge transfer band, but also those correlated with local excitations on the fragment ions,
and their coupling. This scheme has been applied to ionic clusters of polyaromatic
hydrocarbon molecules and shown to yield satisfactory excited states potential energy
surface in the full geometry range up to intermolecular dissociation [149].
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3.7 Global exploration of the energy landscape and dynamics

Global exploration of the potential energy surface (PES) or energy landscape is how
standard either using Monte Carlo (MC) or molecular dynamics (MD) evolution schemes.
While MC only requires the knowledge of the total DFTB energy, the energy gradient is
needed in MD. In the widely used DFTB2 approximation, the expression of the gradient is

rep
Ou,y

- - nich ,ch
5 e~ 3 3 el

i au,bv
Yab
Aq, Eb a_la{aAqb

0
aHay, bv

1
_ _ Hay, bu\laSay, bv
R,

Fa - X Sa;l, bu} aRa

(58)

Note that ground state PES gradients are also available in various extended versions of
DFTB such as DFTB3 [55], spin-polarized DFTB [99], CI-DFTB [150] or when LDA+U or
pSIC-corrections are included [110].

In large systems like extended and/or flexible molecules, atomic or molecular clusters,
structural intuition is delicate, due to the large number of degrees of freedom. Finding the
most stable structure (global minimum) and possibly secondary metastable minima might
become a challenging task [151] and requires global optimization (GO) schemes with no a
prioriknowledge of the final structure. A variety of them have been coupled with DFTB and
often require the computation of millions of single point energies and possibly gradients for
various geometries. A first family of GO schemes rely on genetic algorithms [152] often
used to search for atomic cluster structures [63,153-157]. Simulated annealing [158] as well
as basinhopping schemes [159,160] have also often been used either in their standard form
[161-163] or improved versions like the modified basin hopping [164,165] or the Tsinghua
global minimum algorithms [166]. Other approaches rely on the exploration of the complex
potential energy surface (PES) with either MC or MD simulations, which are combined with
regular local optimization of the visited geometries as done for ammonium/water clusters
[167]. Reaching the bottom of the lowest energy PES basin requires low temperature
exploration, but, in such case, the system might be trapped in local minima with vanishing
possibility to overcome barriers. An alternative consists in running several simulations at
different temperatures [168] and to allow for replica exchange (RE) between the latter
following a Boltzmann criterion leading to Parallel Tempering (PT) schemes for MC [169]
or MD [170,171]. In the context of DFTB, Parallel-Tempering schemes have appeared quite
powerful in finding local minima for atomic and molecular clusters [172-175].

Obviously, MD is also be used to follow the dynamical aspects of the system, for instance to
simulate a reaction, collision and/or fragmentation (see section 4.7). A Car-Parrinello
version of DFTB molecular dynamics was also implemented [176] as well as biased
dynamics schemes like metadynamics [177-179]. Thermodynamical quantities can also be
calculated. For instance, DFTB has been combined with the multiple histogram method of
Labastie and Whetten [180] to derive the entropy and the heat capacity curves of finite
clusters and complexes [181].

Ad