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Abstract

The scope of this article is to present an overview of the Density Functional based Tight Binding 

(DFTB) method and its applications. The paper introduces the basics of DFTB and its standard 

formulation up to second order. It also addresses methodological developments such as third order 

expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error, 

implementation of long-range short-range separation, treatment of excited states via the time-

dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB 

or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape 

exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A 

number of applications are reviewed, focusing on -(i)- the variety of systems that have been 

studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters, 

supported or embedded systems, and -(ii)- properties and processes, such as vibrational 

spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally 

outlines and perspectives are given.
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1 Introduction

Since the demonstration by Hohenberg and Kohn [1] of the theoretical grounding of the 

Density Functional Theory (DFT) [2–4], stating that the energy of any electronic system is a 

universal functional of the density ρ and the proposal of the Kohn-Sham scheme [5] to find 

the density, DFT has proved ubiquitous in the theoretical description of electronic system 

properties of atoms, molecules and condensed matter [6,7]. It has become a choice tool for 

atomic-scale simulations in Chemistry and Material Science [6–8]. In the Kohn-Sham 

formulation, the energy of the actual many interacting electrons system is shown to be 

equivalent to that of a fictitious system of independent electrons within an effective potential 

involving the interaction with the nuclei (and possibly external potentials) complemented by 

the electron-electron Coulomb interaction and the exchange-correlation functional E xc[ρ]

E ρ = ∑
k

nk φk − 1
2 Δ φk + V ext ρ + 1

2

∫ ρ r ρ r′
r′ − r d3rd3r′ + Exc ρ + 1

2 ∑
a, b

ZaZb
Ra − Rb

(1)

The first term is the kinetic energy of independent electrons in orbitals φ k weighted by their 

occupation numbers. Vext is the functional contribution associated with the external potential 

v ext. Applying the variational theorem, the resolution is obtained in terms of the mean-field 

type Kohn-Sham (KS) equation

− 1
2 Δ + vext r + ∫ ρ r′

r′ − r d3r′ + δExc
δρ r φk = ϵkφk (2)

The left hand side of the above equation is the Kohn-Sham operator H KS = δE
δρ  consisting of 

the sum of the kinetic contribution and the Kohn-Sham potential v KS

vKS ρ = vext r + ∫ ρ r′
r′ − r d3r′ + δExc

δρ r (3)

The density (normalized to the number of electrons) is obtained from the individual orbitals

ρ r = ∑
k

nk φk r 2
(4)

The Kohn-Sham operator depends on the orbitals via the density and must hence be solved 

self-consistently. While the Kohn-Sham equation is mathematically very similar to the 

Hartree-Fock equation, a major difference lies in the fact that it formally incorporates the 

electron-electron correlation. On the opposite, the Hartree-Fock energy must be 

complemented by a wavefunction type many-body correlation contribution based on 

multiconfigurational schemes with a generally unfavorable dependence to the number of 

electrons. Conversely to many-body wavefunctions which are functions of coordinates in 

space R 3N, the electronic density is only a function of variables in R 3. Hence, the resolution 

of the KS equation is much simpler and computationally much more efficient than 
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Configuration Interaction type schemes, which explains the success of DFT. Using linear 

scaling algorithms and High Performance Computing systems, DFT is now able to deal with 

a few thousands of atoms and a few tens of thousands of electrons at least for a single 

geometry. Of course, the main theoretical handicap of DFT is that the exchange-correlation 

functional remains unknown. This brings various drawbacks in many applications of DFT 

such as the self-interaction error (SIE) [4,9–13], and consequent inherent failures like 

improper description of the charge localization in extended compounds, ill-behaved 

dissociation or an incorrect energy derivative with the number of electrons. The account of 

dispersion forces is also problematic in standard DFT functionals. This situation has led to 

the proposal of a forest of functionals, some of them taking advantage of theoretical 

grounding, other empirically determined over reference training sets. This has sometimes 

questioned the practice of DFT as a first principle theory. Many progresses are currently 

done to design improved functionals, in particular based around the concept of long-range 

correction (LC) through a short-range/long-range separation [4,14–17] and its account 

through double hybrid functionals [17]. Correction of SIE and improvements of functionals 

are also major challenges in the representation of excited states via the time-dependent 

version of DFT (TD-DFT), in particular to properly describe Rydberg states or charge 

transfer excitations.

Despite the favorable computational adaptation of DFT and dedicated progress to achieve 

linear scaling, there is always a need from the computational point of view for even more 

efficient techniques. This is the case if one aims at modelling larger systems in the nanoscale 

domain for instance or running Molecular Dynamics (MD) or Monte Carlo (MC) 

simulations for medium size systems with the scope of reaching statistical convergence, 

which requires calculations of energies and energy gradients that must be repeated up to 

106-108 times or even more. The development of approximate schemes, still treating 

electrons quantum-mechanically, has always been a challenge since the early years of 

quantum chemistry. There have been essentially two ways for designing such schemes. One 

is offered by most of the approximate single electron descriptions, which start with very 

simple elements and can be further complexified in a bottom-up strategy.

The second one, more recent and efficient, tends to be theoretically derived in a top-down 

approximation scheme, from well established mean-field theories, formerly Hartree-Fock 

and now DFT. It is in this last scheme that the Density Functional based Tight Binding 

(DFTB) formalism [18–20] has been developed over the two-three decades, now described 

in a number of review [20–24] or introductory [25] articles. The position of DFTB among 

other simulation methods in terms of size and simulated time scales is shown in Figure 1. 

The scope of the present article is (i) to provide an overview of the principles and advances 

of DFTB in the domain of electronic structure and molecular simulation and (ii) to illustrate 

applications to molecules, clusters and nanoparticles.

Section 2 introduces the basic formalism and approximations of DFTB. Section 3 describes 

developments and extensions such as description of non-covalent forces, improvement of 

electrostatics, inclusion of DFTB in hybrid methods or determination of electronic excited 

states. The use of DFTB in large scale simulations (global optimization, dynamics in ground 

and excited states or thermodynamics) is also commented. After reporting the accuracy of 
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DFTB on small molecules, section 4 overviews applications to more involved classes of 

systems such as biomolecules, bare or functionalized clusters and nanoparticles, or 

supported/embedded systems. Note that the number of articles within the DFTB framework 

is now too large to allow for a fully exhaustive account in the present review article. Hence, 

the application sections should only be considered as an attempt to provide representative 

DFTB applications to various fields of chemistry and molecular physics. Finally, outlines 

and perspectives are given in the last section. Throughout the paper, we will in general use a, 

b, c, d to label atoms, greek letters μ, ν, λ, τ … to label atomic orbitals, i, j, k, l … for 

molecular orbitals, and capital letters A, B, C … to address fragment systems. R, R a, and r 
will label global nuclei coordinates, nuclei coordinates of atom a and electronic coordinates, 

respectively.

2 The density-functional based tight-binding approach: basic concepts

2.1 A brief overview of tight-binding theories

Prior to describe the principles of the DFTB method in details, we provide in this subsection 

a brief general framework for Tight-Binding (TB) theories. Simplified quantum methods for 

electronic structure rely on several general approximations. A first one concerns the 

restriction of the Hamiltonian to a subclass of electrons directly involved in the electronic 

properties of interest. Consideration of the valence electrons only is also related to the 

physics and chemistry underlying frozen cores and pseudopotential schemes in ab initio 
calculations. In general, model valence Hamiltonians are defined in linear combination of 

atomic orbital (LCAO)-type basis sets, so-called minimal in the sense that each valence 

orbital μ of atom a is defined by a single atomic function ϕaμ. This is a basic assumption of 

early quantum semi-empirical methods, as featured by the Hückel [26] or extended-Hückel 

Hamiltonians [27–30] of quantum chemistry or the tightbinding equivalent in solid state 

[31–33] and surface physics [34,35] corresponding to one-electron pictures. Restriction to 

the valence space is also the basis of semi-empirical, multi- or mono-configurational 

approximations of quantum chemistry such as CNDO [36], MNDO [37], AM1 [38] and 

PM3 [39]. It remains the basis of the modern tight-binding versions [21,40]. In all these 

schemes, the basis set is implicit and the Hamiltonian is defined in the matrix form. 

Transferability and flexibility are accounted for by the dependence of the matrix elements 

upon geometry [41].

A generic electronic TB Hamiltonian is defined by its matrix elements

Haμ, bv = ϕaμ H ϕbv (5)

expressed in the minimal LCAO representation. The diagonal elements have the meaning of 

effective single-electron atomic energy levels associated with the valence shell atomic 

orbitals, possibly screened by an effective potential Ṽ not necessarily explicited:

Haμ, aμ = 〈ϕaμ|− Δ
2 + V |ϕaμ〉 = εaμ (6)
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while the interatomic off-diagonal elements between orbitals of different atoms (a ≠ b), 

called hopping integrals, describe electron delocalization primarily induced by the 

(screened) kinetic energy operator

Haμ, bv = 〈ϕaμ|− Δ
2 + V |ϕbv〉 (7)

The on-site off diagonal elements are generally zero.

In a LCAO non-orthogonal basis, the tight-binding eigenvalue problem is solved for the 

orbitals φ k and energies ε k

φk = ∑
aμ

caμk ϕaμ (8)

via the set of secular equations

∑
bv

Haμ, bv − εkSaμ, bv cbv
k = 0, ∀aμ (9)

If the atomic basis functions are supposed to be orthogonal, thus giving rise to the 

orthogonal tight-binding scheme, the one-electron levels and orbitals are simply obtained by 

diagonalizing the effective Hamiltonian matrix.

Labelling ρ aμ,bν the one-particle density matrix elements by the elements of the one-particle 

density matrix ρ̂, the sum of the valence electrons energies is

∑
k

nkεk = ∑
k

∑
aμ, bv

nkcaμk ∗ cbv
k Haμ, bv = ∑

aμ, bv
ρaμ, bvHaμ, bv (10)

Finally, the total TB energy can be cast under the very general form, consistent with DFT:

E ρ = V rep R + ∑
k

nkεk + G ρ (11)

where V rep (R) essentially describes the short-range repulsion of the ionic cores, the sum of 

the single electron energies defines the band energy and the functional contribution of the 

density G[ρ] provides an account of all residual contributions, namely the exchange and 

correlation energies (in particular the dispersion contribution) that are not included in the 

effective band contribution, as well as the double-counting corrections (the most important 

being the double counting of Coulomb terms when relevant).

In the simplest version with no electrostatics and no self-consistency included, Ṽ is 

supposed to account for electron screening. In the case of ionic or iono-covalent systems or 

systems with significant charge fluctuations, interactions between on-site charges can be 

taken into account, either perturbatively [42–44] or self-consistently [21,40,45–51]. 

Tightbinding methods may also be considered according to the origin of their 

parametrization: either semi-empirical tight-binding, where simple functional forms are used 

for the matrix elements fitted to reproduce ab initio or experimental data, or ab initio tight-
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binding, where the formalism, functions and inputs are fully derived from first principles 

references [47].

2.2 From DFT to DFTB

The basic idea of DFTB consists in an expansion of the density ρ(r) = ρ 0(r) + δρ(r) around a 

reference density ρ 0(r)

E ρ r = E ρ0 r + ∫ δE ρ r
δρ r ρ0

δρ r + 1
2∬ δ2E ρ r

δρ r δρ r′ ρ0
δρ r δρ r′ …

+ 1
p!∬ …∫ δE ρ r′

δρ r δρ r′ …δρ r(p) ρ0
δρ r δρ r″ …δρ r(p) + …

(12)

In current DFTB schemes, the superposed density of the atoms (isolated or in a confined 

potential) is taken as starting point ρ 0. Collecting the terms which depend on ρ 0 only in a 

so-called repulsive energy contribution, one has

Erep = E ρ0 − ∫ δE
δρ ρ0

ρ0 r dr (13)

Using the expression of the Kohn-Sham operator, the terms depending on ρ only provide the 

so-called band-energy, which was the basis of the initial version of DFTB or DFTB1 [18] 

(including the above repulsion energy).

E 1 = ∫ δE
δρ ρ0

ρ r dr (14)

The second order dependence upon density fluctuation of the Coulomb and of the exchange-

correlation energy only appears in the second order term, namely

E 2 = 1
2∬ 1

r−r′ + δ2Exc
δρ r δρ r′ ρ0

δρ r δρ r′ drdr′ (15)

This provides the second order or DFTB2 expansion, namely

EDFTB2 = Erep + ∑
i

ni〈φi H0
KS φi〉 >

+ 1
2∬ 1

r−r′ + δ2Exc
δρ(r)δρ r′ ρ0

δρ r δρ r′ drdr′
(16)

which is the most widely spread DFTB scheme, also called self-consistent charge DFTB 

(SCC-DFTB) [19,20]. The next step consists in expressing the molecular orbitals as linear 

combinations of atomic orbitals, consequently defining the matrix elements of the Kohn-

Sham operator for the reference density
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Haμ, bv
0 = ϕaμ H0

KS ϕbv (17)

Another approximation consists in replacing the 3D continuous electronic density by a set of 

discretized atomic electron populations. Assuming a nonpolar expansion of the density 

fluctuation δρ(r) over the atomic centers

δρ r = ∑
a

Δ qaF0 r−Ra (18)

the electrostatic situation is described by atomic charges fluctuations Δq a with respect to the 

atomic neutral references. In the standard versions of DFTB, Mulliken’s charges are used 

[52]. One should note here that atomic charges are not observables and their definition is 

arbitrary (see below section 3.1).

One can then introduce the two-electron integrals γab as

γab = ∬ 1
r−r′ + δ2Exc

δρ(r)δρ r′ ρ0
F0 r−Ra F0 r′ − Rb drdr′ (19)

and the total DFTB2 energy reads

E = Erep + ∑
i

ni ∑
aμ, bv

Haμ, bv
0 caμi cbv

i + 1
2 ∑

a, b
γab Δ qa Δ qb (20)

The next approximation consists in retaining the two-center contributions only in the matrix 

elements. These terms are then estimated making use of the superposition of pair reference 

atomic densities ρ0 = ρ0
a + ρ0

b.

The second order expression for the KS operator is thus

Haμ, bv
DFTB2 = Haμ, bv

0 + Haμ, bv
1 = Haμ, bv

0 + 1
2Saμ, bv ∑

c ≠ a, b
Δ qc γac + γbc (21)

Also the repulsive contribution E rep is usually taken as a sum of pair potentials

Erep = ∑
a, b

uab
rep Ra − Rb (22)

Finally, the last standard approximation is to consider minimal valence sets only (although 

auxiliary bases [53] and extended basis sets [54] have been considered also), namely s set 

for H and He, s, p set for the second and third row elements, s, p, d set for transition 

elements and s, p, d, f for rare earths.

The expansion of DFTB was carried out up to third order (DFTB3) by Elstner and co-

workers [55]
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E 3 = 1
6∭ δ3Exc[ρ]

δρ(r)δρ r′ δρ r″ ρ0
δρ r δρ r′ δρ r″ drdr′dr″

= 1
6∭ δ

δρ r″
δ2Exc[ρ]

δρ(r)δρ r′ ρ0
δρ r δρ r′ δρ r″ drdr′dr″

(23)

Submitting the third order terms to the DFTB approximations (retaining only two body 

terms) yields the following expression

E 3 = 1
6 ∑

abc
Δ qa Δ qb Δ qc

dγab
dqc

= 1
6 ∑

ab
Δ qa2 Δ qb Γab + Δ qa Δ qb

2 Γba

with Γab = dγab
dqb qa0

(24)

The matrix elements of the KS operator are

Haμ, bv
DFTB3 = Haμ, bv

DFTB2 + Saμ, bv ∑
c ≠ a, b

1
3 Δ qa Γac + Δ qbγbc + 1

6

Δ qc Γca + Γcb
(25)

This introduces a dependence on the atomic charges via an integral that explicitly depends 

itself on the other atomic charges. Combined with a modification of the γ matrix, DFTB3 

was shown [55] to provide an additional flexibility and, in particular, better proton affinities 

for systems involving C, H, O, N, P and other elements important for chemistry in gas phase 

or in solvents and, in particular, water. In contrast, DFTB3 only brings a poor improvement 

of the reaction barriers for proton transfer [55].

2.3 Parametrization issues

The parametrization of the matrix elements Haμ, bv
KS  is achieved from DFT calculation. One 

starts from atomic calculations to determine the atomic KS orbitals ϕaμ and eigenvalues ϵ aμ

Haμ, aμ
KS = ϵaμ (26)

In principle, the above atomic orbitals could provide the LCAO basis to span the DFTB 

Hamiltonian. These atomic orbitals are actually constrained by the addition of a confinement 

potential to the Kohn-Sham atomic operator under the form

vcon = r
r0

m
(27)

This confinement potential may yield better transferability. The resolution of the KS 

equation in the presence of this potential thus defines confined atomic orbitals ϕ̃ aμ which 

will be taken as the actual DFTB/LCAO basis set.
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The overlap integrals Saμ,bν and the off-diagonal elements of the Hamiltonian are 

determined from the equivalent DFT matrix elements of the atom pairs over the above 

frozen atomic basis, along the inter-atomic distance R = |R a – R b|

Haμ, bv
0 = 〈ϕaμ H0

KS ϕbv〉 Saμ, bv = 〈ϕaμ ∣ ϕbv〉 (28)

The on-site second order contributions γ aa are identified with the atom Hubbard parameters 

U a and taken as the difference between the first ionization potential (IP) and the electron 

affinity (EA) of atom a

γaa = Ua = IP a − EA a (29)

The two-center integrals γ ab (b≠ a) could in principle be calculated numerically from the 

exact expression provided the atomic charges and the expansion functions are known. In 

practice, they are expressed via an analytical damped Coulomb formula.

γab = 1
Rab

− f Ua, Ub, Rab (30)

depending on the on-site integrals U a and U b.

The parametrization of the repulsive term is certainly the most delicate. The initial and 

somewhat consistent recipe should determine this term as the difference between the purely 

electronic DFTB contribution to the interaction energy Δ Eab
DFTB(elec) and the total DFT 

interaction energy Δ Eab
DFT  of a given pair of atoms

uab
rep Rab = Δ Eab

DFT Rab − Δ Eab
DFTB elec Rab (31)

Let us mention a number of attempts to improve the transferability of the parametrization 

beyond this basic recipe. For instance, constraints on the confinement potentials of the 

atomic orbitals have been used to optimize bulk electronic band spectra of all elements 

throughout the periodic table [56,57]. Also several authors have developed automatized 

algorithms [58–61] to optimize the repulsive terms in multiproperty fits to various ensembles 

of observables such as molecular binding energies, equilibrium geometries, bulk data band 

structure, elastic constants or to develop parameters dedicated to specific chemical 

environment [62]. Some authors also reported on-the-fly parametrization mapping the DFTB 

parameters on the DFT data during global optimization simulations [63]. Recently, a new 

scheme has been pioneered with the use of machine-learning algorithms to develop 

optimized parametrizations [64].

The parameters, most of the time tabulated pointwise, are finally interpolated via spline 

functions or polynomials. The main parameter sets available are the mio set [20], the matsci 
set [65], the 3ob set (adapted to DFTB3) [66], the pbc set [67] (adapted to periodic 

calculations) and that of Wahiduzzaman et al. [56] for the electronic matrix elements 

throughout the periodic table. Note that there is a dependency between the electronic version 
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of DFTB and the repulsive potentials. In the following, if not specified, DFTB will be used 

as a generic name referring either to DFTB1, DFTB2 or DFTB3.

3 Extensions of density-functional tight-binding

3.1 Non-covalent interactions

Due to its formulation in minimal basis sets and considering the present quality of the DFT 

functionals from which it is parametrized, DFTB tends to underestimate or even almost 

ignore non-covalent contributions to the energy. This includes in particular the polarization 

energy and the London dispersion energy. In low dimensional systems, such as 1D or 2D 

systems for instance, whereas the calculation of longitudinal polarizabilities can benefit of 

the presence of neighboring bases (mediated by the hopping integrals), the calculation of 

perpendicular polarizabilities may be considerably hindered due to the atomic point charge 

definition used in the second order term and the absence of basis sets in the orthogonal 

direction. In addition, the description of electrostatic fluctuations in weakly bound systems 

may be poorly described via the Mulliken charges. Improvement of electric dipole 

polarizabilities and polarization energies in the framework of DFTB2 [68] and DFTB3 

[53,69] was proposed within the so-called Chemical Potential Equalization (CPE) scheme. 

The principle is based on an expansion of the energy as a response to the field in the vicinity 

of the field-less DFTB density

Δ ECPE = ∫ δE
δρ(r) ρDFTB

δρCPE r dr

+ 1
2∬ δ2E

δρ(r)δ r′ ρDFTB
δρCPE r δρCPE r′ drdr′

(32)

The response density is itself expanded over p-type atomic-centered Gaussian functions

δρCPE r = ∑
j

djgj r (33)

Within the DFTB approximation of charge densities by discrete atomic charges, the 

minimization of the CPE energy is made via the resolution of a system of linear equations, 

from which the d j coefficients are determined. The CPE implementation yields a 

modification of the Hamiltonian matrix H aμ,bv

Δ Haμ, bv
CPE = 1

2Saμ, bv
∂ Δ ECPE

∂ Δ qa
+ ∂ Δ ECPE

∂ Δ qb
(34)

The DFTB3/CPE response was shown to improve intermolecular interactions involving 

charged and highly polarizable molecules [69].

An alternative scheme for improving polarization can be formulated in analogy with the 

effective core polarization operators in ab initio treatment. It consists in adding 

phenomenological atomic contributions to the DFTB energy
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Epol = ∑
a

− 1
2αa ∑

b ≠ a
f Rab

Δ qbRab
Rab

3

2
(35)

This expression accounts for the polarization of atom a due to the resultant electric field 

created by all other atomic charges. α a is the polarizability (or possibly an effective 

polarizability) of atom a, f(R ab) a cut-off function to prevent short distance divergence. E pol 

can be incorporated in the SCC convergence. It does not require any extra basis but may 

yield some overestimation of polarization contributions since the atomic polarizability 

correction is isotropic and may be, at least partially, superfluous (case of longitudinal 

polarizabilities for instance). Note however that it can be extremely helpful to properly 

describe MM atoms as polarizable centers in the case of combination of DFTB with MM 

force fields, for example in the treatment of cryogenic matrices [70].

Continuous theoretical efforts are made to derive DFT functionals describing the London 

dispersion [71–78]. A more phenomenological approach used in a number of applications 

[79–84] and systemized by Grimme et al. [85] consists in adding to the total energy specific 

pairadditive dispersion contributions with 1/Rab
6 , 1/Rab

8 ⋯ longrange behaviour. This 

empirical approach was first applied for DFTB by Elsner et al. [86]. As, in standard DFTB, 

the dispersion energy is almost completely absent, due to the reduced basis and the 

functionals used for parametrization, very little double counting of the dispersion energy is 

expected. As for polarization, a damping cut-off is necessary to avoid attractive divergence 

at short distance. The form of the cut-off is strongly related to the parametrization of the 

repulsive potential [86–88].

As an example, the benzene dimer, unstable at the DFTB2 level, becomes stable when 

dispersion interactions are added [88]. Benchmarks of intermolecular interactions have been 

done by Christensen et al. [69] combining DFTB3, CPE and the D3 form of Grimme’s 

dispersion [89,90]

Edisp = − ∑
a < b

∑
k = 3, 4

s2k
C2k

ab

Rab
2k + fab Rab

2k (36)

with C2k
ab the 2k-order dispersion coefficient for the atom pair ab, s 2k a scaling factor and f ab 

a damping function.

Finally, the energy can still be improved by modifying the Coulomb interaction. In its 

formulation, DFTB makes use of Mulliken definition of atomic point charges to define 

second and third order terms responsible for the long-range Coulomb interaction between 

charges fluctuations. This difference with DFT, where the Coulomb interaction is calculated 

from explicit 3D electronic densities, can be problematic in the case of noncovalently 

bonded systems, due to a delicate balance between different small contributions in the 

interaction energy. Among the other definitions of the atomic charges (Bader [91], Löwdin 

[92], …), the Class IV – Charge Model 3 (CM3) developed by the group of Truhlar [93], 
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easy to implement within the DFTB scheme, corrects the Mulliken charges to take into 

account a more relevant bond polarization

Δ qaCM3 = Δ qaMull + ∑
b ≠ a

atoms
DabBab + CabBab

2
(37)

where B ab is the Mayer’s bond order [94] along bond ab and D ab, C ab are empirical 

parameters. The use of CM3 charges instead of Mulliken charges, first introduced in DFTB 

as an a posteriori correction of molecular dipole values to compute IR spectra [95], was also 

shown to improve the long-range Coulomb interactions when used instead of Mulliken 

charges in DFTB equations [88]. An alternative definition of charges for DFTB was further 

proposed recently [96]. Let us finally mention that it was also proposed to introduce 

additional multipoles in the DFTB scheme to describe systems interacting with an electric 

field [97].

3.2 Spin-polarized DFTB

DFTB was initially formulated within the restricted scheme, corresponding to closed shells 

in which pairs of electrons α and β share the same spatial orbital. DFTB has also been 

formulated within spin-polarized (unrestricted DFTB) versions [98,99] with possibly 

different energies ∊iσ and orbitals φ iσ for different values of the spin-projection σ. Kohler et 

al. [98,99] published an atomic shell-resolved formulation. The spin-polarization 

(magnetization) density m(r) = ρ α(r) – ρ β(r) is discretized over the atomic centers and 

shell-resolved, defining atomic spin-polarization differences m al = n alα – n alβ (n alα is the 

electron population with α spin in shell l of atom a). Consistently, the charge populations q 

al and the on-site electron-electron integrals U al become shell-dependent as well as the two-

center integrals γ al,bl’ which are functions of the U al parameters. The spin-polarized DFTB 

energy (SDFTB) at second order reads

EDFTB2, spin − pol = Erep + ∑
i, σ

< φiσ H0 φiσ >

+ 1
2 ∑

al, bl′
γal, bl′ Δ qal Δ qbl′ + 1

2 ∑
all′

malmal′W all′
(38)

where the W all′ parameters are shell-dependent atomic constants which, similarly to the 

Hubbard constants, can be derived from Janak’s theorem [100].

W all′ = 1
2

∂ϵalα
∂nal′α

− ∂ϵalα
∂nal′β

(39)

The above SDFTB energy corresponds to the electron spin-dependent operator

Haμ, bv, σ
DFTB2, spin − pol = Haμ, bv

0 + 1
2Saμ, bv ∑

c, l″ ∈ c
Δ qcl″ γalμ, cl″ + γblv′ , cl″

+ δσ
1
2Saμ, bv ∑

l′ ∈ a
mal′W alμl′ + ∑

l′ ∈ b
mbl′W blvl′

(40)

where index l μ indicates the shell associated with orbital μ on a given atom.
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Note that Melix et al. [101] use a version resolved to atoms only where the spin-polarized 

DFTB energy is

EDFTB2, spin − pol = Erep + ∑
i, σ

< φiσ H0 φiσ > + 1
2 ∑

ab
γab Δ qa Δ qb + 1

2

∑ma2W a
(41)

where W a is now a single atomic constant related to the population derivative of the highest 

occupied atomic orbital and m a = n aα – n aβ the difference between total populations with 

α and β spins on atom a.

3.3 Self-interaction correction schemes

Most of standard DFT functionals undergo self-interaction error (SIE) which stems from the 

fact that the self-exchange contributions in the functionals do not cancel the self-Coulomb 

contribution. In its original formulation, DFTB meets the same problem. The SIE is 

responsible for several major errors of standard DFT (and LDA in particular), namely (i) the 

deviation of the asymptotic potential from − 1
r  which induces electron overdelocalization, (ii) 

an underestimation of the HOMO-LUMO gap and (iii) the non linearity and derivative 

continuity of the energy dependence of the system upon the number of electrons [102].

Several schemes have been proposed to cure the SIE of standard DFT, involving full self-

interaction corrections [103], the GW formalism [104], or using hybrid functionals including 

a part of Hartree-Fock exchange [105]. Other schemes to correct LDA calculations consist in 

adding corrections ΔE SIC calculated within the Hubbard model and on-site electronelectron 

effective interactions U a. This has yielded the LDA+U schemes which have also been 

declined using l-resolved electron-electron screened interactions U al – J al [106]. An 

alternative so-called pseudo-SIC scheme [107–109] consists in expressing the corrections 

via the projections of the KS orbitals onto atomic states concerned with the highly correlated 

shells (d and/or f electrons). Houharine et al. [110] transposed those LDA+U and pseudo-

SIC corrections within the spin-polarized DFTB formalism. For example, the pseudo-SIC 

correction reads

Δ EpSIC = − α∑
a

∑
l ∈ a

Ual − Jal
2 ∑

σ
∑

aμ, av ∈ l
naμ, avσ 2

(42)

where U al – J al is taken from atomic DFT calculations and naμ, bν
σ  is a matrix generalization 

of the basis functions Mulliken atomic occupation numbers for a given shell l and a given 

spin projection σ. α is here an empirical scaling parameter. Analogous expressions were 

given for the LDA+U schemes either in the fully localized (FLL) or in the mean-field 

(AMF) limits. All these corrections rely on the fact that the largest contribution to the SIE is 

that corresponding to electrons in localized shells. Those contributions to the energy may 

bring significant improvement. For instance they allow for a gap opening in the strongly 

correlated antiferromagnetic phase II of bulk NiO, even though the gap remains 

underestimated. Conversey the corrected magnetic moments show magnitudes comparable 
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with the experimental ones. Further corrections, based on the trace of the idempotent 

expression ρ̂ – ρ̂ S ρ̂ were proposed to tackle the derivative continuities of the energy as a 

function of the electron number. Test calculations over several aromatic molecules with CuS 

substitutive contacts show that such corrections strongly increase the HOMO-LUMO gap 

which becomes quite consistent with its thermodynamic charge definition E(N + 1) − 2E(N) 

+ E(N − 1).

Another extension of DFTB in relationship with the SIE problem concerns specific classes 

of systems such as cationic molecular clusters which consist of well identified subsystems. 

In such cases, delocalization can be strongly overestimated in DFTB as in standard DFT. 

The single electron picture may also present incorrect dissociation and, since it equally 

distributes the charge on the separated subsystems (case of two identical subsystems), it may 

induce spurious Coulomb repulsion at intermediate and long distance separation [10]. Those 

drawbacks can be circumvented when combining DFTB with Configuration Interaction 

within a valence bond framework, namely describing the global system via a 

multiconfigurational wavefunction expanded on charge-localized configurations:

Ψ0
+ = ∑

A
CAaA

HOMO Ψ0 = ∑
A

CA ΨA
+

(43)

where Ψ0 is the wavefunction of the neutral cluster and aA
HOMO the electron annihilation 

operator of the HOMO on fragment A. The CI problem is then restricted to a secular 

equation in the charge localized basis

∑
B

HAB
CI − E0SAB

CI CB = 0 (44)

where H CI and S CI are the Hamiltonian and overlap matrices respectively in the charge-

localized configurations basis ΨA
+ . The dimension of the CI matrix is only the number of 

fragments. In this approach, the diagonal terms of the Hamiltonian represent the energies of 

fragment-localized charge configurations, while the non dynamical correlation arising from 

the charge resonance and determining the extension of charge fluctuation is mediated by the 

hopping integrals in the CI resolution. Note that this valence bond CI formulation is well 

suited to investigate hole transfer through extended system since it provides a naturally 

quasi-diabatic framework where the hole dynamics is promoted by the hopping integrals 

[111,112].

A similar partitioning scheme was the principle of the DFTB coarsegrained based approach 

developed by Elstner et al. [113–116] to study charge transfer in DNA. In this approach, the 

MOs are calculated independently for each fragment (the fragment orbital approach 

[117,118]). The diagonal elements are estimated from DFTB2 single particle energies and 

the hopping term between two fragments is calculated as

HAB
CI = < φHOMO

A H0 φHOMO
B > (45)
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where φHOMO
A  is the HOMO of the charged fragment A in configuration ΨA

+ and H 0 the 

DFTB1 Kohn-Sham Hamiltonian. The charge mobility in DNA could be described by non-

adiabatic MD in a mean field approach with a refined version of this coarse grain model 

[119].

An alternative scheme in a similar philosophy is that adapted from the constrained-DFT 

scheme [120–122], in which the orbitals of the chargelocalized configurations ΨA
+ are 

calculated variationally within the DFTB scheme, minimizing a Lagrangian with respect to 

the orbitals φiA with constraint of charge localization on a given fragment A

ℒA = E φiA − ∑
ij

ϵijA < φiA ∣ φjA > − δij + λA ∑
i

< φiA PA φjA > − NA (46)

where E φiA  is the DFT energy and the second term ensures the MO orthonormality 

constraint. The last term is the expression of the charge localization constraint, with λ A a 

Lagrange parameter, P A a projector of the density on the fragment carrying the charge and 

N A the number of electrons fixing the charge localization on fragment A. Following Wu and 

Van Voohris [123,124] the hopping integrals can be computed from the different charge-

localized MO coefficients and the Lagrange constraints parameters. The combination of this 

approach within the DFTB approximations gives the DFTB-CI method [125,126]. This 

approach differs from the previous coarse-grained one [113] in the sense that each charge 

localized configuration is calculated self-consistently, thus including relaxation and 

polarization of the neutral fragments by the charged one. From the computational point of 

view, the Lagrangian optimization has to be repeated for each fragment, which is more time-

consuming than simple DFTB.

3.4 Long-range corrected DFTB

The long-range corrected DFT scheme (LC-DFT) has also been quite fruitful in curing DFT 

deficiencies. It is based on a range separation of the electron-electron Coulomb interaction. 

The short-range part is treated via a DFT exchange-correlation functional while the long-

range contribution can receive a better treatment, for instance via exact Hartree Fock 

exchange, contributing to cancellation of the SIE. LC-DFT achievements are obviously more 

general since they also address issues of long-range correlation either via a higher level 

correlation functional or even via combinations with Wavefunction type calculations [4,14–

16] in order to deal with the dynamical and non-dynamical contributions to electronic 

correlation. The longrange corrected DFTB scheme (LC-DFTB) was formulated by Lutsker 

et al. [127] using a Yukawa long-range/short-range type separation of the Coulomb operator

1
r12

= exp −ωr12
r12

+ 1 − exp −ωr12
r12

(47)

This scheme depends on a separation range parameter ω. Using the specific DFTB 

approximations, the Hamiltonian can be cast as
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Haμ, bv = Haμ, bv
0 + 1

4 ∑
cλ, dτ

ρcλ, dτSaμ, bvScλ, dτ γac + γad + γbc + γbd (48)

− 1
8 ∑

cλ, dτ
ρcλ, dτSaμ, cλSdτ, bv γab

lr + γcd
lr + γad

lr + γdb
lr

(49)

where γab is the two center second order integral calculated with the full Coulomb potential 

while γab
lr  is calculated with the long-range part only.

Lutsker et al. [127] benchmarked applications with DFTB parameters extracted from LC-

DFT calculations involving the LDA exchange functional and the local PBE form of 

correlation for a set of organic molecules. They showed that, similarly to LC-DFT schemes, 

LC-DFTB largely cures the delocalization problem attributed to SIE. As a consequence, a 

number of properties of the systems are significantly improved, such as the energy of the 

frontier orbitals, and consequently the estimations of the ionization potentials based on the 

HOMO energies, the HOMO-LUMO gap, or electrical properties (longitudinal 

polarizabilities of polyacenes). The LCDFTB also significantly improves the density of 

states with respect to photoelectron spectroscopy data. The ordering of the orbitals in 

delicate cases can still turn out to be incorrect and electron affinities still in default, either 

due to inherent DFTB approximations (minimal basis set, retain of two-center integrals 

only) or to the PBE-based parametrization. The improvement of excited electronic states 

with the LC-DFTB correction is discussed in section 3.6.

3.5 DFTB in hybrid and QM-MM methods

DFTB has also been involved in schemes were the most active atoms/molecules are treated 

via a higher level quantum-mechanical (QM) scheme while the largest part of the system 

(large molecule or solvent) is treated at a lower level of approximation, generally via 
molecular mechanics (MM) potentials or force fields (FF). It should be noted that DFTB, 

involving two-center approximations, atom-based charges and two-atom repulsive 

interactions, is very well suited for combination with force fields. The inclusion of point 

charges in force field is quite straightforward since DFTB is itself based on point charges for 

the QM atoms. Thus there have been adaptations of DFTB (QM method) within various MM 

packages such as CHARMM [128], AMBER [129] or GROMACS [130].

Another type of QM-MM combination was adapted to investigate the dynamics of 

molecules or clusters in a cryogenic environment, namely rare gas inert matrices. This 

scheme relies on the definition of (possibly) anisotropic two-body interactions between the 

active atoms and the rare gas atoms added to the DFTB-KS operator in the AO basis, the 

description of inert atoms interaction (Rg-Rg) via a pair potential, and the inclusion of the 

polarization response of the Rg atoms. Inclusion of the latter can be handled via atomic 

polarization operators (see Equation 35) which can be finalized adding the following 

contributions to the initial electrostatic/exchange correlation contributions to the DFTB2 γ 
matrix
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γab
pol = − ∑

c ∈ Rg
αcfac Rac fbc Rbc

RabRbc
Rab

6 Rbc
6 (50)

where the rare gas atomic polarization α c and the cut-off functions f ac(R) between active 

atoms and Rg inert atoms are introduced [70]. Such scheme proved able to describe the 

influence of the matrix on the structures of molecular complexes such as water clusters in 

interaction with polycyclic aromatic hydrocarbons [131]. Another combination has also been 

explored combining DFTB as the low level description with DFT as the high level method 

[132].

Finally, let us mention that environmental effects can also be taken into account through a 

polarizable continuum model (for both ground and excited states) [133].

3.6 Excited states and time-dependent DFTB

In the framework of Density Functional Theory, the access to excited states is given by the 

electronic response, based on the time-dependent Kohn-Sham equation

i ∂φj r, t
∂t = − 1

2 Δ + vKS ρ r, t φj r, t (51)

The linear response TD-DFTB was originally developed by Niehaus et al. [134] as a DFTB 

analogue of the linear response TD-DFT [135,136]. Excitation energies are given as the 

eigenvalues ΩJ of the following matrix equation

A B
B A

X
Y = ΩJ

I 0
0 −I

X
Y (52)

where I is the identity matrix, A and B are matrices with the following elements

Aik, jl = ϵj − ϵk δijδkl + 2Kik, jl (53)

Bik, jl = 2Kik, jl (54)

where indices i, j and k, l label occupied and virtual orbitals respectively, with energies ϵ i, ϵ 
j and ϵ k, ϵ l. The coupling matrices K, depending on the spin configuration, are determined 

within the DFTB scheme [134] using the Mulliken approximation to compute transition 

dipoles. The first application of the linear response TD-DFTB was reported in ref [134]. 

Absorption spectra were computed for neutral polyacenes ranging in size from naphthalene 

to heptacene and compared with experimental as well as TD-DFT data. Vibrationally 

resolved UV/Vis spectra of various aromatic and polar molecules were calculated using TD-

DFTB excitation energies and analytical gradients in ref [137]. The results of TD-DFTB 

were found in a very good agreement with the TD-DFT calculations using local functionals.

Several extensions were developed in the framework of the linear response TD-DFTB. Spin-

unrestricted TD-DFTB [138,139] has been implemented in order to study absorption spectra 

of open-shell systems. Conventional TD-DFTB fails to properly describe PES for charge 
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transfer states. TD-DFTB was combined with LC-DFTB [140–142] to benefit from the 

range separation improvement for excited states that, in particular, leads to the recovering of 

a correct -1/r behaviour of the potential. Also, incorporation of intra-atomic exchange 

integrals [139,143] was shown to improve the transitions energies both towards triplet and 

singlet TDDFTB states. Calculation of spin-orbit coupling was interfaced by Gao et al. [144] 

for TD-DFT approaches, including TD-DFTB. From a computational efficiency point of 

view, intensity-selected TD-DFTB has been introduced by Rüger et al. [145], delivering 

similar accuracy as the linear response TD-DFTB, but at a lower computational cost. More 

details about the TD-DFTB method as well as some other examples of applications can be 

found in the review paper of T. A. Niehaus [146].

Further improvements were done in order to derive intermolecular excitonic transfer 

couplings according to the Förster mechanism, implying a formulation of the interaction 

integral between the transition dipoles of the interacting molecules A and B

JAB
m = ∬ < ΨA

0 ρ(r) ΨA
m > < ΨB

m ρ r′ ΨB
0 >

r−r′ drdr′ (55)

where ΨA
m is the intramolecular excited state on A correlated with the exciton band. Within 

the DFTB formalism this integral becomes [147,148]

JAB
m = ∑

a ∈ A
∑

b ∈ B
Qa

mγabQb
m

(56)

where quantities Qa
m are atomic many-body transition charges determined within the TD-

DFTB scheme.

Another extension has also been opened for charged molecular clusters in the framework of 

the DFTB-CI scheme (see above). Initially developed to investigate the ground state, it also 

delivers excited states as higher roots of the CI matrix. The formalism has been extended in 

order to provide a better description of the ionic excited states considering in the basis of 

charged localized configurations, not only the removal of an electron from the HOMO of the 

charged fragment, but also electron removal from sub-HOMO occupied orbitals φiA, yielding 

a more general wavefunction [149]

Ψ0
+ = ∑

A, i ∈ occ
cAiaAi

† aHOMO ΨA
+ = ∑

A, i ∈ occ
cAi ΨAi

+
(57)

This improvement vs the simple initial scheme restricted to the HOMO orbital becomes 

important for clusters or stacks of large molecules, presenting a small orbital separation 

below the HOMO. Moreover, it allows to incorporate not only the excited states of the 

charge transfer band, but also those correlated with local excitations on the fragment ions, 

and their coupling. This scheme has been applied to ionic clusters of polyaromatic 

hydrocarbon molecules and shown to yield satisfactory excited states potential energy 

surface in the full geometry range up to intermolecular dissociation [149].
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3.7 Global exploration of the energy landscape and dynamics

Global exploration of the potential energy surface (PES) or energy landscape is now 

standard either using Monte Carlo (MC) or molecular dynamics (MD) evolution schemes. 

While MC only requires the knowledge of the total DFTB energy, the energy gradient is 

needed in MD. In the widely used DFTB2 approximation, the expression of the gradient is

Fa = − ∑
b

∂uab
rep

∂Ra
− ∑

i
∑

aμ, bv
nicaμi cbv

i ∂Haμ, bv
0

∂Ra
− ϵi − Haμ, bv

1

Saμ, bv

∂Saμ, bv
∂Ra

−

Δ qa∑
b

γab
∂Ra

Δ qb

(58)

Note that ground state PES gradients are also available in various extended versions of 

DFTB such as DFTB3 [55], spin-polarized DFTB [99], CI-DFTB [150] or when LDA+U or 

pSIC-corrections are included [110].

In large systems like extended and/or flexible molecules, atomic or molecular clusters, 

structural intuition is delicate, due to the large number of degrees of freedom. Finding the 

most stable structure (global minimum) and possibly secondary metastable minima might 

become a challenging task [151] and requires global optimization (GO) schemes with no a 
priori knowledge of the final structure. A variety of them have been coupled with DFTB and 

often require the computation of millions of single point energies and possibly gradients for 

various geometries. A first family of GO schemes rely on genetic algorithms [152] often 

used to search for atomic cluster structures [63,153–157]. Simulated annealing [158] as well 

as basinhopping schemes [159,160] have also often been used either in their standard form 

[161–163] or improved versions like the modified basin hopping [164,165] or the Tsinghua 

global minimum algorithms [166]. Other approaches rely on the exploration of the complex 

potential energy surface (PES) with either MC or MD simulations, which are combined with 

regular local optimization of the visited geometries as done for ammonium/water clusters 

[167]. Reaching the bottom of the lowest energy PES basin requires low temperature 

exploration, but, in such case, the system might be trapped in local minima with vanishing 

possibility to overcome barriers. An alternative consists in running several simulations at 

different temperatures [168] and to allow for replica exchange (RE) between the latter 

following a Boltzmann criterion leading to Parallel Tempering (PT) schemes for MC [169] 

or MD [170,171]. In the context of DFTB, Parallel-Tempering schemes have appeared quite 

powerful in finding local minima for atomic and molecular clusters [172–175].

Obviously, MD is also be used to follow the dynamical aspects of the system, for instance to 

simulate a reaction, collision and/or fragmentation (see section 4.7). A Car-Parrinello 

version of DFTB molecular dynamics was also implemented [176] as well as biased 

dynamics schemes like metadynamics [177–179]. Thermodynamical quantities can also be 

calculated. For instance, DFTB has been combined with the multiple histogram method of 

Labastie and Whetten [180] to derive the entropy and the heat capacity curves of finite 

clusters and complexes [181].
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IR spectra can be determined in the harmonic approximation, calculating the eigenmodes of 

the mass-weighted Hessian matrix. However, MD allows to go beyond the harmonic 

approximation, integrating the IR absorption spectra at finite temperature on-the-fly via the 

Fourier transform of the autocorrelation function of the electric dipole μ along the 

trajectories [182]

I ω ∝ ω2∫
−∞

+∞
dt μ 0 ⋅ μ t eiωt (59)

where < > indicates a statistical average to minimize spurious correlations. Let us mention 

that anharmonic effect can also be obtained from a posteriori treatment of cubic and quartic 

derivatives of the PES [183,184]. However, the quartic constant can only be obtained at the 

DFT level for small systems, whereas their computation at the DFTB level could allow for 

the application of such approaches to larger molecules [185,186].

Finally, recent advances concern the dynamics of excited states. In order to propagate the 

classical trajectory on a given excited PES, the TD-DFTB excited states energy gradients 

were developed. The derivation relies on the so-called Z-vector method, which was initially 

introduced by Furche and Ahlrichs [187,188] to compute analytical forces for the TD-DFT 

excited states. The procedure was further used to derive TD-DFTB gradients by Heringer et 

al. [189,190] and led to the final expression published in ref [137].

Non-Adiabatic Molecular Dynamics (NAMD) coupling electronic and nuclear motions has 

been implemented in the framework of mixed approaches within a DFTB/TD-DFTB 

quantum description of the electrons and classical nuclei.

Mostly two directions have been followed. In the first approach, the electronic motion is 

described by the explicit propagation of electronic wavepackets mediated by the time-

dependent Schrödinger equation (or equivalent schemes) while the nuclei are propagated in 

a mean timedependent electronic potential E[ρ(R, r, t] (Ehrenfest-like propagation of 

nuclei).

Ma
d2Ra
dt2

= − ∇aE ρ R t , r, t (60)

where ρ(R(t),r,t) is now the time-dependent electronic density corresponding to molecular 

orbitals φ i(R(t),r,t) obeying the time-dependent DFTB equation. A version of mean 

potential non-adiabatic dynamics with DFTB was first derived by Niehaus et al. via a 

variational treatment of the equation of motion (EOM) and the definition of a Lagrangian 

from which the time-dependant equations can be derived [191]. Mean potential NAMD 

schemes can also be derived based on the Liouville-von Neumann equation

i ∂ρ R t , r, t
∂t = HKS, ρ R t , r, t (61)

One may cite the NAMD scheme derived by Jakowski [192] and other developments made 

in the context of electronic transport [193,194].
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The second approach relies on the Tully’s Trajectory Surface Hopping (TSH) scheme 

[195,196]. Here, the motion is propagated on the adiabatic PES of the TD-DFTB excited 

states, with probabilities to hop between states Ψm and Ψn determined by the non-adiabatic 

couplings

< Ψm | ∂
∂Q | Ψn > (62)

along some relevant coordinate Q (possibly a generalized coordinate along the trajectory).

The first article describing methodological as well as development aspects of TSH (in the 

fewest-switches or FSSH version) coupled with TD-DFTB electronic structure calculation 

was published by Mitrić et al. [197]. DFTB, as a density functional method, is not initially 

designed to use wavefunctions to compute properties. Nevertheless, the most common 

practice is to use the excited state wavefunctions associated with the single excitation 

configuration interaction (CIS) approximation spanning the TD-DFTB excited states to 

determine the non-adiabatic couplings presented above [197–201]. This can be achieved 

through the calculation of the overlap of the CIS electronic wavefunctions between nuclear 

time steps t and t Δt. This procedure is described within the framework of TD-DFTB by 

Humeniuk and Mitric [200]. Several implementations of FSSH are available within various 

open-source DFTB codes, such as DFTBaby [200], DFTB+ coupled with the NewtonX or 

PYXAID packages [201,202] and DeMonNano [203].

4 Applications

4.1 Small molecules

Small and medium size molecules can be treated safely via DFT or wavefunction methods. 

Nevertheless, determination of their ground state properties (structure, energetics, dipole 

moments, binding energies, vibrational spectra, proton affinities, hydrogen bonds, proton 

transfer barriers) provides benchmarks for checking the accuracy of DFTB vs DFT, 

wavefunction calculations (MP2, MP4, Coupled-Cluster or multi-reference CI) or 

experimental data. Moreover, generic small molecules are often building blocks of larger 

and/or new systems for which one may expect some transferability. Finally, since reference 

data are available they also allow to evaluate the various DFTB improvements including the 

parametrization issues.

In the early DFTB2 versions, the average performances for a set of small organic molecules 

[204] were found to be 0.017 Å for bond lengths, 2 degrees for bond angles, 5 kcal/mol for 

dissociation energies and relative errors in the range 6–7 percent on harmonic vibrational 

frequencies. Recent studies focused on the barrier heights and energetics of reactions with 

organic molecules [205,206]. The description of the isomers (epimers) of glucose at the 

DFTB level has also been compared with DFT and wavefunction results: the agreement 

between structural parameters was shown to be good except when hydrogen bonds are 

present [207]. The goal was to study large carbohydrate networks which would be out of 

reach with DFT approaches. Very systematic benchmarks were produced recently to assess 

the accuracy of the DFTB3 and LC-DFTB2 methods [24,208] covering reference molecule 

sets. So far, the DFTB3 level appears as the DFTB reference, including benchmarks of 
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proton affinities and hydrogen bonding in organic and biological molecules [209]. 

Systematic benchmarks of DFTB3 (with the corresponding OB3 parametrization and 

possibly completed by the addition of the D3 dispersion), LC-DFTB2 with re-optimized 

parametrization (named OB20.3) and DFTB2 (with the mio parameters set), have been 

recently performed in particular for about 70 neutral closed shells molecules containing C, 

H, N, and O including the G2/97 set [210]. Structural reference data originate from DFTB-

B3LYP/6-31+G(d,p) calculations while the G3B3 data [211] are the reference for energetics. 

All DFTB methods perform quite well for geometries. The mean absolute deviations (MAD) 

of bond lenghts vs B3LYP calculations are around 0.01 Å with DFTB2, and around 0.005 Å 

with DFTB3 and LC-DFTB2, deviations for bond angles are in the range 0.6–0.7 degrees for 

all methods, while deviations for dihedral angles are within 2–3 degrees. Atomization 

energies have been compared with the reference data G3B3/MP2 [211]. A net improvement 

is observed for DFTB3 and LC-DFTB2 methods with a mean deviation of 5–6 kcal/mol vs 
20 kcal/mol for the initial DFTB2 scheme. Conversely, all DFTB methods provide 

deviations of reaction energies in the range 8–10 kcal/ mol. Frequencies of selected stretch 

vibrations show a much better accuracy with DFTB3 and LC-DFTB2 methods, with MADs 

of 35 and 42 cm−1 respectively, than with DFTB2 (MAD of 156 cm−1). Comparisons against 

the experimental molecular data of the Jorgensen set [212] for geometries and energetics 

show deviations with the same order of magnitude as above, while the dipole moments 

deviations are in the range 0.3–0.4 Debye, whatever the DFTB level.

Other benchmarks have been done for molecule subsets (closed shells including C, H, O and 

N atoms only) of the GMTKN0 database [213–216] dedicated to main group 

thermochemistry and non-covalent interactions of small molecules and even proteins. Errors 

on a set of reaction energies obtained with DFTB2 and LC-DFTB2 are in the range 0.5–14 

kcal/mol, while DFTB3 performs slightly better. Hydrogen binding energies show mean 

deviations of 3.5 kcal/mol with DFTB3 and 5–6 kcal for LC-DFTB2. Deviations for proton 

affinities of acidic oxygen (nitrogen) species are 3.7 (17.4) kcal/mol with DFTB2, 3.7 

kcal/mol (6.9 kcal/mol and 2.9 kcal/mol, respectively, with modified NH parameters) for 

DFTB3 and around 8.5 kcal/mol with LC-DFTB2, while proton transfer barriers are in the 

range 2–3 kcal/mol with DFTB2 and LC-DFTB2 instead of 1 kcal/mol for DFTB3. Finally 

non-covalent interactions in molecular complexes corresponding to the S66 set [217] were 

benchmarked against the CCSDT/CBS limit, showing a deviation of 0.82 kcal/mol and 

around 2.3 kcal/mol for LC-DFTB2 with dispersion.

Other families of molecules outside the above sets have been investigated. Geometries and 

relative energies were determined for organometallic complexes, the electronic structure of 

which may be delicate to describe [218–221]. Investigating a series of organometallic 

complexes with SDFTB2, Zheng et al. [220] estimated an average accuracy of 0.1 Å for 

bond lengths, 10 degrees for bond angles, finding significant average errors on dissociation 

energies (25–50 kcal/mol) and on transition energies between spin isomers (10–40 kcal/

mol). More recently, it was shown on the example of zinc and manganese complexes [219], 

that the DFTB3 level (here with l-dependent Hubbard integrals) strongly reduces the mean 

errors down to 0.03 Å for the bond lengths and 2–5 kcal/mol for the energetics, referencing 

to B3LYP and even G3B3/MP2 data, the largest errors corresponding to interactions of the 

metal ions with highly charged or polarizable ligands.
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One can also cite the specific case of halogens. Kubar et al. [222] benchmarked SDFTB2 

parametrization against the experimental CCCBDB database [223] for a series of halogen-

containing organic molecules and found absolute errors of 0.045 Å for bond lengths, below 

3.6 degrees for bond angles, and 26 and 16 cm−1 for stretching and bending modes 

respectively. Conversely, reaction energies could present significant errors, in the range 3–30 

kcal/mol depending on the type of rearrangement. Kubillus et al. [224] benchmarked 

DFTB3+D3(X) results against the specific X40 halogen database of Rezac et al. [225] and 

showed that, depending on the halogen atom, DFTB3+D3 could provide mean absolute 

errors smaller than 0.035 Å and 3 degrees for bond lengths and bond angles respectively, and 

25–45 cm−1 for vibrational frequencies with a larger error (≈ 108 cm−1) for bromine. 

Atomization energy errors were found in the range 5–17 kcal/mol, significantly large, 

however somewhat better than PBE/def2-sv results for Cl and F.

The performance of DFTB regarding the computation of ionization potentials and electron 

affinities has also been evaluated. Darghouth et al. achieved DFTB3 calculations on a set of 

small and medium size organic molecules with potential photovoltaic interest [226], 

comparing with experimental data. Determination of total energy differences (ΔSCF) gave 

deviations within ± 0.75 eV and ± 0.49 eV for IPs and EAs respectively, while somewhat 

better results were obtained when using Koopmans’s theorem, namely IPs and EAs errors 

within ± 0.45 eV and ± 0.33 eV, respectively.

Let us finally mention the case of pure individual carbon clusters, for which the electronic 

structure, the relative energies and vibrational spectra have been investigated [227–230]. 

Such systems have sustained a lot of interest due to their relevance in the astrophysical, 

atmospherical and nanomaterial domains. One can cite for instance the important case of 

buckminsterfullerene C60 which has been detected in space. The interest of DFTB for small 

and medium size molecules is that its efficiency allows the description of large populations 

of isomers. For instance, an automatic search of benzene isomers has led to the identification 

of 7000 isomers and 26229 transition structures [231]. DFTB was also used to explore 

hundreds of thousands of carbon clusters isomers containing 24 to 60 carbon atoms, 

allowing a classification into structural families and a statistical characterization of their 

spectroscopic properties (see Figure 2) [232].

4.2 Large molecules and biomolecules

One of the main goals behind the development of DFTB was the possibility of modeling 

systems much larger than those accessible in DFT, while maintaining an electronic scale 

description of the systems studied. In this framework, many studies have focused on the 

modeling of nucleic acids and proteins [86,233]. In the case of nucleic acids, most DFTB 

studies are concerned with the interaction of DNA fragments with different systems. 

Examples include investigations of the interaction between small DNA fragments and 

anticancer drugs [234–236], and also between a DNA basis and a carbon nanotube [237]. 

Charge transport through a short DNA oligomer has also been investigated [238]. It should 

be noted that some authors have reported that the DFTB2+D method fails to adequately 

describe deoxyribose and ribose sugar ring pucker [239,240]. In the case of enzymes, studies 

involving DFTB mainly concern reaction mechanisms carried out using the QM/MM 
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method, with DFTB making it possible to include in the QM reactive zone much more 

reactive groups than the DFT/MM calculations [24]. The implementation of the DFTB 

method in codes widely used in hybrid DFT/MM calculations has considerably facilitated 

access to this method for such hybrid studies. Very different enzymatic mechanisms have 

been explored, such as proton transfer reactions or proton storage [241,242], histone 

methylation [243], C-terminal residue cleavage [244], amide hydrolysis [245], 

glycosylation/deglycosylation [246,247], inactivation of a new tuberculosis target [248], 

hydrolysis of organophosphorus [51] or proton-coupled electron transfer reactions [249]. 

One can also cite DFTB studies aimed at investigating substrate promiscuity [250], ion 

binding and transport by membrane proteins [251], proton distribution over multiple binding 

sites of a membrane protein [252] or evaluating the pKa of protein residues [253]. The 

efficiency of the DFTB/MM method also allows the comparison of catalytic pathways 

[254,255] and the contribution to protein design [256]. Note that it has been reported that, 

although the DFTB2 method is accurate with regard to protein structure, it sometimes differs 

from more precise calculations with regard to the electronic states on which it converges 

[132]. Even the DFTB3 level does not allow a good evaluation of vertical transition energies 

in the case of the Red Fluorescent protein [257]. Some studies focus on other biologically 

relevant systems, such as drug [258] or plasma species [259]. To further reduce the 

computational cost of such biochemical processes studies, different research groups are 

working at coupling DFTB with linear scaling methods, such as the fragment molecular 

orbital (FMO) one [260,261].

4.3 Clusters and nanoparticles

DFTB has been used to investigate various clusters including sodium [262], ceria [295], 

cadmium sulfides [233,264], boron [166], silver and gold [155,157,165,172,173,267–272], 

ZnO [273], molybdenum disulfide [274], iron [154,275] or nanodiamond [276,277]. In 

addition to the necessary work dedicated to specific DFTB parametrization for these systems 

[155,156,172,173,268–270,278], a number of studies have been devoted to their structural 

characterisation [63,153,154,157,161,165,268,278]. Figure 3 illustrates examples of 

investigated structures for silver cluster Ag561 [172]. An interesting question is the evolution 

with size of the competition between ordered and disordered structures [157,165,173,272]. 

For instance, global exploration performed at the DFTB level followed by local optimization 

at the DFT level, suggested that Au55 presents cavities [173] (recently confirmed by two 

other DFT studies [63,279]), and showed that the amorphous forms of Au147 are expected to 

be more stable than the regular icosahedral ones, or at least very competitive with this latter 

at low temperature [272] (see Figure 4). Shi et al. evidenced the presence of a core/shell 

structuration in Pt-Ru alloys [155].

Let us also mention the original approach based on machine learning to correlate the 

structure/morphology of silver NPs (with diameters up to 4.9 nm) and their electron transfer 

properties [280]. The magnetic properties of clusters have also been investigated evidencing 

strong changes with the number of atoms for small iron clusters [154,275].

In addition to atomic clusters, molecular clusters have also been investigated within the 

DFTB framework. This requires to go beyond simple second order DFTB for a proper 
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treatment of intermolecular interactions including various corrections as describe in section 

3. The characterisation of the most stable structures for water clusters provide a picture of 

the isomer excitation spectra strongly depending on the number of molecules. The ordering 

found for those isomers with DFTB turn out to be essentially correct. For instance in the 

DFTB studies of Simon et al., the most stable water octamer is a cube, the next isomer lying 

20 kJ.mol−1 above, whereas the most stable hexamer is a prism followed by 4 other isomers 

within 9 kJ/mol [281,282]. Interestingly, this structural size dependence induces different 

thermodynamic behaviors with higher melting temperatures for the octamer than for the 

hexamer (180K vs 80K [181]). The evolution of water clusters IR spectra with temperature 

was also investigated [282].

Understanding the interactions between water clusters and molecules is of prime interest as 

it can be regarded as a step towards the understanding of solvation. Besides, the interaction 

of water clusters with carbonaceous particles, and in particular polycyclic aromatic 

hydrocarbons (PAHs), has sustained a lot of interest lately due to their relevance in both 

atmospherical science and astrochemistry. The PES of water clusters in interaction with 

planar PAHs was explored with MD [281,282] and PTMD [181] simulations. The lowest 

energy structures of PAH-(H2O)n clusters were determined for planar PAHs [281–283]. 

Figure 5 reports the lowest energy structures of corannulene (non planar PAH) in interaction 

with small water clusters C20H10-(H2O)n (n = 1–8) obtained after PTMD simulations using a 

similar GO procedure as for C16H10-(H2O)n clusters [96]. The interaction of the water 

clusters with the concave face of corannulene is the most energetically favorable, as 

previously shown for a single water molecule [284]. Interestingly, the water trimer tends to 

linearize, this is due to its interaction with the edge hydrogens, and such an effect is due to 

the finite-size of the systems [281,283]. Finite-temperature conformational dynamics of 

water clusters adsorbed on PAH were also studied [281,282] as well as the influence of PAH 

adsorption on the IR spectra of water clusters [281–283] and on their thermodynamic 

properties (heat capacities) [181].

Water clusters containing impurities, such as ammonium [167] or hydroxyde group [162] 

have also been considered within DFTB. New isomers were reported in the case of sulfate 

containing clusters (H2O)SO4
2 −  and (H2O)H2SO4

2 −  [174]. The application of DFTB to 

model protonated water clusters was first reported by Goyal et al. [285]. Korchagina et al. 

[175] showed that the cluster H2O 21H+ is particularly stable, in agreement with reference 

calculations [286,287], and present a specific behavior of the heat capacity curves also 

observed experimentally. The main differences between the IR spectra of pure and 

protonated water clusters have also been studied [288].

When molecular clusters are singly ionized, alternative DFTB-CI schemes (see section 3.3) 

may be considered to properly describe the charge and excitation resonance over the 

different units. Its combination with global exploration schemes allowed to identify the most 

stable structures of cationic pyrene (Py) clusters, showing that the charge is delocalised over 

a dimer or trimer core [150], and to compute their electronic spectra [149]. This model was 

further used to interpret various experiments concerned with thermal evaporation of Py2
+
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clusters [289], photodissociation of Py2
+ [290], combined photoionisation and dissociation of 

Py2 [291] and the determination of Pyn ionisation potentials (see Figure 6) [292].

Finally, let us note that the ability of DFTB for describing ionic clusters (clusters of ion 

pairs) and nanoparticles has recently been reported [293,294].

4.4 Functionalized clusters

The accuracy of the DFTB approach to model bare metal systems, inorganic particles [295–

297] as well as organic molecules [205,209] combined with the transferability of the DFTB 

potentiel over different chemical systems, makes it a valuable tool to describe functionalized 

clusters and hybrid organic-inorganic systems. Hence, over the last 15 years, this strength of 

the DFTB approach has led to a number of studies devoted to functionalized clusters.

A number of them focused on metal particles, in particular gold and silver. In the case of 

gold, the study of thiolates has been of utmost importance as they are often used to stabilise 

gold particles. In this context, attachment of thiolates on gold clusters were first studied at 

the DFTB level by Mäkinen et al. [298]. The authors first validated the DFTB approach 

against experimental and DFT data for three systems: Au25 SMe 18
− , Au102 (SMe)44 and 

Au144(SMe)60 and on Au102(p-MBA)44 (p-MBA = paramercaptobenzoic acid). Then, they 

demonstrated its ability to accurately describe the low-energy structures of Aum(SMe)n 

species as well as qualitatively describe their electronic structure. A similar study was latter 

conducted by Fihey et al. who developed a new set of DFTB parameters for AuX (X = Au, 

H, C, S, N, O) elements in order to better describe the interaction of thiolates and other 

molecules with gold particles [269]. Those parameters were validated by considering two 

species: Au3SCH3 and Au25SCH3 for which structural, energetic and electronic properties 

were calculated and compared to DFT results. Castro et al. also applied the DFTB approach 

to describe amino-acids grafted on gold clusters [299]. As for thiolathes, DFTB leads to 

geometries and adsorption energies that are in good agreement with DFT results, which 

allowed the authors to study the electron-acceptor and electron-donor character of several 

amino-acids grafted to gold clusters. In the case of silver, an elegant application of DFTB 

was conducted by Douglas-Gallardo et al. who tried to rationalize the impact of two 

adsorbates, water and 1,4-benzoquinone, on the surface plasmon resonance (SPR) band of 

silver particles of various sizes [300]. This study was a continuation of a previous work 

devoted to bare icosahedral silver nanoparticles undergoing strong laser pulses [301]. The 

characteristic of this SPR band, in particular excitation energy and line width, are key in the 

application of plasmonic particles. However, experiments can have difficulties in probing 

such properties as they strongly depend on size [302,303], morphology [302–304] and 

chemical environment [302] of the particles. Combining real-time excited-state dynamics 

and DFTB, Douglas-Gallardo and coworkers were able to draw a linear relationship between 

the surface plasmon excitation energy and the inverse cube root of the cluster number of 

atoms as well as the impact of the adsorbate molecule by studying five different cluster 

sizes: Ag55, Ag147, Ag309, Ag561 and Ag923. In a similar spirit, using real-time excited-state 

dynamics and DFTB, part of these authors also studied the impact of oxidation on the 

plasmonic properties of aluminum nanoclusters [305]. To do so, they first simulate the 

optical absorption spectra of five bare icosahedral aluminum nanostructures: Al55, Al147, 
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Al309, Al561 and Al923. Then, focusing on Al561, MD simulation were performed to describe 

the structure of Al561 at different stage of oxidation, from which absorption spectra were re-

evaluated. The resulting SPR band displays a red-shift, a broadening and a decrease in 

intensity that get stronger as oxidation state increases. This was shown to result from the 

presence of oxygen and not from the symmetry loss.

DFTB has also been applied to model the behavior of dyes grafted on inorganic particles, 

mainly TiO2, under light excitation to understand charge injection mechanisms in dye-

sensitized solar cells (DSSC) [306– 308]. Indeed, in Grätzel-type solar cells, photoexcitation 

of the grafted dyes leads to the injection of electrons into the conduction band of the 

semiconductor. Understanding this mechanism is thus a key step in developing more 

efficient DSSC. To provide an atomistic-scale description of this process, electron 

photoinjection was described at the DFTB level for various dyes: alizarin, coumarin C343, 

derivatives of aniline, naphthalenediol [306], catechol, cresol [307] on a TiO2 cluster and 4-

nitrophenyl-acetylacetonate and coumarin 343 on a polyoxotitanate particle [308]. Note that 

Fuertes et al. also studied at the DFTB level the optical properties of bare TiO2 particles 

[266]. These various studies allowed to understand the different steps of the electron transfer 

from the dye to the inorganic particles for both type I and type II mechanisms and the 

influence of the excitation wavelength. As a representative example, Figure 7 shows how the 

electronic structure of a naphthalenediol-TiO2 system evolves when subject to a lasertype 

perturbation. The population exchange between the HOMO and an excited state of the dye 

followed by an electron transfer to the conduction band of the semiconductor is 

characteristic of a indirect injection mechanism as opposed to a direct mechanism where the 

exchange directly occurs from the HOMO of the dye to the semiconductor conduction band 

[306].

4.5 Supported or embedded systems

DFTB has been widely used to study the adsorption of organic molecules on oxide surfaces. 

First of all, the adsorption of small molecules such as CO2 or NH3 on ZnO was studied and 

the results were found to be in agreement with both DFT and experimental data [296]. 

Subsequently, the adsorption modes of larger molecules were studied. The grafting of a 

zwitterionic amino acid (glycine) on a germinal hydroxylated silica surface showed a 

domination of the adsorption through the carboxylic acid group vs the NH3
+ one in an 

explicit water environment [309]. The effect of water has been investigated in the case of the 

adsorption on TiO2 of a serine molecule, an amino acid slightly larger than glycine. It was 

found that the presence of water weakens the O-Ti bonds and H-bonds existing between the 

-COO−/-OH groups and the surface [310]. The effect of the grafting of an organic molecule 

on the surface gap has also been explored and was found to be negligible in the case of an 

acetic acid molecule adsorbed either on a crystalline oxide surface (anatase (101), rutile 

(110) and (B)-TiO2 (001)) or on an amorphous one ((a)-TiO2) [311]. More recently, the 

development of new DFTB parameters has also made it possible to study the adsorption of 

organic molecules on metal surfaces. One can for example mention a study of the adsorption 

of a corrosion inhibitor (chalcone derivative) on a Fe(110) surface in which the π molecular 

orbitals were found to play a major role in the adsorption phenomenon [312]. DFTB was 

also developed in order to study adsorption of organic molecules on carbon surfaces, for 
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example transition metal complexes (porphyrin and porphycene) on graphene [313] or small 

molecules (H2O, CH4, NH3) on defective carbon nanotubes which were all found to 

physisorb on the nanotubes, except NH3 which also chemisorbs [314]. Optical properties of 

natural pigments (flavonols) adsorbed on boron nitride nanotubes were also analyzed using 

DFTB (Figure 8) [315]. Some DFTB surface adsorption studies have also given rise to 

reactivity studies, for example water splitting on anatase (001) [316] or H2 dissociation on 

plutonium [317].

The adsorption of a PAH on a water ice surface and its influence on the PAH properties are 

relevant topics for interstellar chemistry. In dense molecular clouds, PAHs are likely to 

condense on grains covered by H2O rich ice mantles with exposure to ionizing radiation 

[318], and a rich heterogeneous photochemistry on interstellar grains is expected to occur 

[319]. This motivated experimental studies where PAHs in an icy environment are irradiated 

with UV-photons leading to the following statements;-(i)-the interaction with the ice leads to 

a decrease of the ionisation energy of the PAH by 1.5 to 2 eV [320,321] and (ii)the photo-

initiated reactions of PAHs with water on the ice surface [322,323], even at low energy, 

could be ion-mediated [324]. In this context, Michoulier et al. [96] determined the effect of 

ice on the ionization energies (IEs) of PAHs using DFTB and constrained DFTB schemes 

[96] for a series of PAHs from naphthalene (C10H8) to ovalene (C32H14) on different types 

of ices, crystalline (hexagonal Ih and cubic Ic) and amorphous (low density amorphous 

LDA). They also observed a correlation between the presence (resp. absence) of dangling 

OH (dOH) bonds interacting with the PAH and the increase (resp. decrease) of the PAH 

ionisation energy [96]. The conclusion is that the small magnitude of the IE variation, that is 

at most 0.8 eV for amorphous ice (the experimental type of ice) cannot account for the 

experimental results. Actually, the electron ejected from the PAH could be transfered to the 

water ice or recombine with impurities such as the OH radicals. A future theoretical 

challenge will be to treat such an electron transfer process.

Furthermore, in the astrophysical context, the IR signature of the adsorption of PAH on 

water ice is an issue of paramount relevance with the imminent launch of the James Webb 

Space Telescope, which will aim at providing high resolution IR spectra from various 

regions of the interstellar medium. Therefore, diagnostics for the presence of PAHs 

condensed on water ice need to be established beforehand. Using the efficiency of DFTB, 

combinations of harmonic IR spectra of several PAH-amorphous ice systems possessing 

various PAH-surface interacting structures was computed. The shifts of the dOH bond 

frequencies induced by the adsorption of the PAH were found to range from −70 to −85 cm
−1 depending on the PAH, in good agreement with experimental results [325]. Further details 

about the description of water based systems with DFTB can be found in a previous review 

[326].

Beyond the adsorption of single molecules, the DFTB method, due to its low computational 

cost, also allows for the study of extended monolayers. In this framework, the impact of an 

organic molecule layer on the tunneling current was studied in the case of a PTCDA 

(3,4,9,9,10-perylene tetracarboxylic dianhydride) monolayer on a 2 × 1 S-passivated GaAs 

(100) surface. The presence of the layer was found to reduce by one order of magnitude the 

current with respect to the free surface, in agreement with experimental data [327]. 
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Monolayers (OH, HS and S) were also added in a DFTB study of the sulfidization-amine 

flotation mechanism of smithsonite in order to model the hydration effect of water and the 

sulfidization effect on the ZnCO3 (101) surface [328]. The structural study of a water 

monolayer on oxide surfaces has led to several DFTB studies, for example on ZnO [329], on 

a TiO2 anatase surface [330] or on an alumina surface on which it has been found that water 

dissociates rapidly, leading to an -OH group coverage of about 4.2 groups/nm2 [331]. 

Finally, one can also find a DFTB study of graphene formation on a surface-molten copper 

surface. In the latter, the authors explains the high quality of a graphene layer grown on Cu 

by the fact that the high mobility and rapid diffusion of surface Cu atoms induce 

defecthealing during graphene growth [332].

The deposition of clusters on surfaces has also led to a few studies at the DFTB level. 

Structural and energetic changes were reported when potassium clusters up to 20 atoms 

adsorb on a potassium surface K(110) or K (100) [333], the interaction energy being found 

to dominate the structural reorganization one. MgO supported Au islands were also studied 

[334,335]. In these islands, the inner atoms were found to remain neutral while the perimeter 

ones were found to be negatively charged. The specific role played by the peripheral atoms 

during adsorption and reaction processes was attributed to this charge accumulation coupled 

with a high density of state.

Finally, structural properties and IR spectroscopy of carbonaceous molecules, water 

molecules and complexes embedded in cryogenic argon matrix were investigated via the 

DFTB-MM model described in section 3.5 [70,131,335]. The structuration of a water dimer/

coronene complex within the argon matrix is illustrated in Figure 9. Fine effects such as the 

modification of the energetic order of the (H2O)6 isomers with respect to the gas phase were 

shown. Besides, MD simulations using the DFTB-MM model allowed to show the influence 

of (even low) temperature (10 K) on the IR spectrum of a single water molecule embedded 

in the Ar matrix: red shifts and broadening experimentally observed with respect to the gas 

phase could be interpreted [335].

4.6 Vibrational spectroscopy

Determining theoretical vibrational spectra of large systems is an important issue as such 

spectra are among the most popular diagnostics for the presence of species in laboratory 

experiments, in the earth atmosphere or in space. The determination of vibrational spectra 

requires the description of charge fluctuation. The use of DFTB2 (possibly with extensions) 

or DFTB3 thus appears as a convenient approach to compute the vibrational spectra of large 

molecular systems or clusters as well as the anharmonic effects due to the PES on the 

spectra.

IR or Raman vibrational spectra can be modeled in the double harmonic approximation. The 

normal modes are obtained by diagonalizing the full weighted hessian matrix while 

intensities are obtained by evaluating the variations of the dipole moments (IR) [336] or the 

changes of the molecular polarizability tensor (Raman) induced by the normal mode 

oscillations [337]. Vibrational spectra at the DFTB2 level were benchmarked on small 

molecules with respect to hybrid DFT methods in particular [338], showing that the 

approach could be used to compute the vibrational spectra of large organic molecules. For 
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instance, the structures of the isomers of oxidized graphene nanoflakes were differentiated 

by their IR spectra and a correlation was established between stability and IR data [339]. 

The IR spectra of carbon clusters, either individual structures [227–230,340], or populations 

(families of isomers) of astrophysical interest [232] have also been determined.

When the internal energy increases or/and when systems exhibit a floppy behaviour, as for 

instance molecular clusters or systems of biological interest, anharmonic effects due to the 

shape of the PES are likely to become non negligible. Anharmonic effects on vibrational 

spectra can be obtained from on-the-fly MD computing the time correlation function of the 

dipole moment (IR) or of the polarizability (Raman) [341]. The DFTB approach is 

convenient because long simulations are possible and convergence of spectra in terms of 

positions and intensities can be reached in reasonable computational time (ns scale) for 

systems of several tens of atoms [177]. This approach allows to describe the expected 

redshift of the modes (when no coupling occurs). The example of the out-of-plane CH mode 

(γ CH) of PAHs is quite illustrative. A linear fit of the shift of the latter mode as a function of 

the internal energy (kinetic temperature) yields the anharmonicity coefficient, the value of 

which determined at the DFTB level was comparable to the experimental one [342]. This 

approach was applied to complexes of astrophysical relevance such as SiPAH and FePAH, 

for which increasing the energy leads to an enhanced motion of the atom (Si, Fe) on the 

PAH surface [221,342]. In the case of Si, this leads to a merging of the γ CH modes, that are 

resonant at two different energies at low temperature and thus induce a deviation from 

linearity of the function νγCH (T) [342]. Using the same approach, it was found that the 

influence of the coordination of water clusters on PAHs led to a modification of the 

anharmonicity of the γ CH mode, and that this could be a fingerprint of the edge-

coordination of the water cluster on the PAH [283]. In the case of a water molecule 

(described at the DFTB level) surrounded by a rare gas matrix (described with a force field 

FF), it was shown from MD// DFTB/FF simulations that at low temperature (∼10 K), the 

water molecule rotates inside the matrix (in agreement with experimental results at low 

concentration of water), and that leads to red shifts and broadening of the water stretching 

modes [335] (for a review, see ref [326]).

4.7 Reactivity and fragmentation

The efficiency of DFTB allows for dynamical reactivity studies that can be achieved either 

through MD/DFTB simulations or through biased molecular dynamics techniques [343] 

such as umbrella sampling [344] and metadynamics [345]. Statistical convergence on 

averaged properties can be reached taking into account explicitly the electronic structure for 

quite large systems. We can cite for instance the unimolecular reactivity of isolated 

molecular systems in the gas phase such as the isomerisation [177] and dissociation at high 

energy [346–348] of PAH radical cations. MD/DFTB simulations provide insights into 

statistical dissociation branching ratios and pathways. The competition between 

isomerisation and dissociation was shown (see as an illustrative example some isomers and 

cationic fragments structures of cationic perylene [C20H12]+ in Figure 10). Comparison with 

experimental results reporting collision induced dissociation of PAHs [348] or competition 

between hydrogenation and dissociation of PAHs [347] gave satisfactory results and allowed 

to cross-benchmark the approaches.

Spiegelman et al. Page 30

Adv Phys X. Author manuscript; available in PMC 2020 November 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The low energy conformational dynamics of water clusters, isolated and adsorbed onto a 

molecular PAH was addressed [181,281,282]. Bimolecular reactions were also investigated 

via collision dynamics simulations, for instance the collision of H with CO adsorbed on 

water clusters [349] or the hydrogen uptake of carbon fullerene cages and boron doped 

heterofullerene [350]. Finally, MD/DFTB simulations at high temperature in simulation 

chambers were performed to study the growth of carbonaceous systems: formation of large 

carbonaceous species with various structural orders formed from mixtures of benzene 

varying the H/C ratio [351–353], growth of carbon nanotubes, possibly catalyzed by a 

metallic clusters (iron [354,355]), on a SiC surface [356], or formation of metallofullerenes 

[357].

4.8 Thermodynamics

Some studies have been concerned with the evolution of structural properties with 

temperature, as well as the determination of the heat capacities of clusters, taking advantage 

of Parallel Tempering strategies. For instance Choi et al. [163]. simulated the caloric curve 

of the water octamer. Note that although the qualitative evolution is expected to be well 

reproduced, one should keep in mind that the simulation results may depend on the type of 

DFTB and parametrization used [163,358]. A subsequent work was published by Oliveira et 

al. who redetermined the caloric curves of the water hexamer and heptamer [181]. They also 

investigated in details the microscopic nature of the phase transition at melting, 

fingerprinting in particular the evolution of the isomer populations. They furthermore 

investigated the effect of depositing water clusters on a graphite type substrate modeled as a 

coronene molecule. Other DFTB thermodynamical studies were concerned with metallic 

systems and in particular silver and gold clusters. The effect of charge on the doubly magic 

(electronically closed shell and geometrically a symmetric pyramid) cluster Au20 was 

investigated [359] as well as the the correlation between the isomer spectra features and the 

nature of the solid-to-liquid transition [360], from the comparison between the caloric curves 

of structurally ordered systems (Au20, Ag55) and those of disordered cases (Ag20, Au55).

4.9 Dynamics in excited states

The TD-DFTB method was successfully used to study the charge migration in the caffeine 

molecule induced by an ionizing XUV pulse [361]. In addition to the simulation of exciton 

dynamics in molecular clusters [200,362–364] reported in section 4.3, the FSSH scheme for 

non-adiabatic dynamics has been used to simulate excimer formation in the pyrene dimer 

[365] or relaxation of excited fluorene oligomers [200]. Relaxation dynamics enhanced by 

transition density analysis has been investigated by Stojanovic et al. for two 

cycloparaphenylene molecules (labelled [8]CPP and [10]CPP) in ref [201]). Other authors 

have studied the intraband electron and hole relaxation as well as nonradiative electron-hole 

recombination in a CdSe quantum dot and the (10,5) semiconducting carbon nanotube [202]. 

The version of FSSH coupled to TD-DFTB in the DeMonNano code was used to investigate 

the relaxation mechanisms in neutral polyacenes (see Figure 11) ranging in size from 

naphthalene to heptacene, showing an alternation in decay times of the brightest singlet state 

with the number of aromatic cycles. More details about the implementation as well as 

discussion about the observed size effect can be found in ref [203].
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Electronic excited states of molecular clusters have also been investigated via DFTB-based 

schemes. The excitation energy transfer in molecular aggregates has been described through 

a Frenkel Hamiltonian whose parameters are computed from TD-DFTB [147,148,366,367]. 

The combination of non-adiabatic dynamics with long-range corrected DFTB [200] has been 

used to simulate the dynamical evolution of excitons in clusters of tetracene [362] and 

perylene diimides [363]. The dynamical coupling between local and charge transfer excitons 

in pentacene clusters was also investigated [364].

Another promising application of DFTB for large metal NPs concerns plasmonics 

[300,301,368]. For instance, the sub-picosecond breathing-like radial oscillations following 

a laser pulse excitation have been evidenced for silver NPs up to 309 atoms [301].

5 Outlines and perspectives

The Density Functional based Tight Binding Theory is now more than 25 years old. With 

respect to many other usual Tight Binding theories, it displays several advantages. One is 

that it is based on a formal expansion of the energy as a function of the density. Thus, it can 

be expanded and improved by considering significant terms at higher orders of the 

expansions, which provides a theoretical basis for upgrade. Being derived from DFT, DFTB 

exhibits the drawbacks inherent to the former, such as being practically a mean field theory 

since the exact exchange-correlation functional remains unknown, or suffering from self-

interaction errors. In the same time, it has also benefited from many methodological 

developments adapted from DFT, such as the long-range/short- range separation scheme or 

the time-dependent version which provides access to excited states, visible/UV spectra and 

non-adiabatic dynamics. Important initial weaknesses, such as poor treatment of non-

covalent interactions, have been cured through various complementary schemes.

DFTB has been now implemented in several packages such as DFTB+ [369], DeMonNano 

[370], ADF [371], Amber [372], Gromacs [373], Gaussian [374], DFTBaby [200], CP2K 

[375] where various functionalities are available. Parameters are now available for a large set 

of elements, even though the problem of the determination and transferability of the 

repulsive form must still undergo further progress. Of course, many applications have been 

made for standard atoms C, H, O, N, P, Si, etc. for which the transferability of various DFTB 

parameter sets has been tested, possibly combined with various versions of DFTB. For other 

elements, for instance transition metals or even heavier elements, transferability is still to be 

fully assessed. Machine learning might be useful to finalize the parametrization work [64].

In the domain of DFTB-MM methodologies, combination of DFTB with polarizable force-

fields for liquids, and in particular water, would certainly yield a desirable advance for 

molecules in liquid phase, and even for chemistry with ice. Multi-spatial shell treatments 

(the active system and a near shell of water molecules treated explicitly with DFTB, the 

other ones addressed via accurate polarizable force fields) may also improve the study of 

reactivity in cases where the solvent is likely to participate in the process.

With the development of TD-DFTB and related formalisms, photochemistry and electron 

transfer processes become feasible for quite large systems. In the field of excited states, an 
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obvious lack concerns Rydberg states which cannot be reached in DFTB, based on valence 

orbitals only. It could be interesting to include diffuse basis functions that would make at 

least the low Rydberg states available. Also, DFTB is based on a LCAO expansion and is 

thus a theory for bound states. As in LCAO-based methods, the continuum is only poorly 

represented by a discrete set of virtual orbitals, even worse with DFTB. Development of 

matrix coupling to the continuum could make it able to describe molecular physics processes 

involving unbound electrons (ionization, electronic attachment).

Many important processes involving light atoms require a quantum description of nuclei 

motion, for instance flexible molecules, reactions associated with proton transfer, water 

dynamics and ice dynamics. Implementation of quantum dynamics of nuclei via the Path 

Integral Molecular Dynamics (PIMD) with DFTB electronic structure was reported recently 

[377]. PIMD yields a system of replicas which multiplies the actual number of degrees of 

freedom by a factor between 8 and 32, depending on the target accuracy. Development of 

PIMD within the DFTB framework for highly parallel computing architectures should make 

nuclei quantum dynamics affordable even for rather large and complex systems in gas phase.

Despite the fact that the present paper is essentially devoted to finite systems, it is important 

to mention that DFTB in various distributions is implemented in periodic version to address 

crystals and condensed matter. DFTB offers the possibility to achieve bulk matter 

simulations using large unit cells (above 103 atoms). This can be of primary importance for 

investigating the dynamics of default propagation in pure metal and alloys at the 

microscopic scale. The detailed interaction of atoms, molecules or clusters with surfaces can 

also be investigated via DFTB within the periodic framework. Deposition of clusters on 

surfaces may drastically change their structural, spectroscopic, chemical or 

thermodynamical properties. Such studies also lead to the conception of nanodevices 

including nanostructuration, nanowires, nanotransport [194]. A neighbouring topic is the 

collision of atoms or molecules with metal surfaces which may exhibit quite complex 

electron-surface dynamical coupling involving phonons, plamons and holeelectron pairs 

excitation. Such complex physics can be addressed by DFTB considering explicitly all the 

atoms of the active systems and of the surface slabs. Methodological developments can also 

be thought by combining classical phenomenological description accounting for electron-

pair excitation and DFTB via a dissipative dynamics in the ground state [378].

Finally, a word can be said about computational efficiency. Standard DFTB2 is 102 to 103 

times faster than even local functionals, and even more if compared with higher-level 

functionals such as hybrid, double hybrid or LC-corrected functionals. Algorithmic schemes 

achieving linear scaling with the number of atoms in solving the DFTB Hamiltonian 

[21,376,379–382] such as the Divide and Conquer techniques [21,381,382] or cluster type 

algorithms [376] have now proved the feasibility of calculations on extremely large systems 

up to one million atoms at least for covalent or intermolecular complexes (see Figure 12: a 

box of 350000 water molecules), even though one should mention that the case of metals 

remains more delicate due to electronic delocalization. Even if large scale dynamical 

simulations on such huge systems are not yet practicable, DFTB certainly stands as a 

promising method to address simulations of systems with up to 10000 atoms on the next 

generation of High-Performance Computing architectures, which would be quite helpful for 
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theoretical investigation of properties and processes involved in the chemistry and physics of 

large molecular systems, possibly biomolecules, or in nanoparticle physics.
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Figure 1. 
Size and time scales of simulation methods used in chemistry and material science.
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Figure 2. 
Distributions of the samples of C60 isomers based on specific order parameters. Left: 

twodimensional distribution as a function of the sp2 hybridization fraction and asphericity 

parameter β. The boxes classify the four structural families, cage, planar polycyclic aromatic 

(PPA), pretzel, and branched. Right: one-dimensional distributions as a function of isomer 

energy (top), number of 6-member cycles (medium), and gyration radius (bottom). 

Reproduced from [232].
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Figure 3. 
Icosahedral and cuboctahedral structures of Ag561.
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Figure 4. 
Core-shell like organization of the lowest energy Au147 isomer (left): surface atoms (middle) 

and core atoms (right) only. Adapted from reference [272] with the permission of AIP 

publishing.
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Figure 5. 
Most stable structures of C20H10-(H2O)n (n = 1–8) obtained after PTMD/DFTB and local 

DFTB optimization following the procedure detailed in ref [96].
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Figure 6. 
Left: DFTB most stable structure of the cationic pyrene heptamer with all-atom relaxation 

[150]. Right: experimental and computed ionization potentials for pyrene clusters. Adapted 

from reference [292] (https://doi.org/10/1021/acs.jpclett.7b01546, further permissions 

should be directed to the ACS).
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Figure 7. 
(a) Schematic representation of the atomic structure of a naphthalenediol-TiO2 complex. 

Superimposed are the corresponding HOMO (red) and LUMO (blue). (b) Timedependent 

population of the HOMO and higher-energy orbitals for naphthalenediol-TiO2 subject to a 

continuous laser-type perturbation. Naphthalenediol-TiO2 undergoes a direct injection 

mechanism where population exchange occurs between the HOMO and a manifold of high-

energy orbitals. Adapted with permission from [306]. Copyright (2012) American Chemical 

Society.
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Figure 8. 
The near site view of the flavonols outside (A) and inside (B) the BNNT surface. The closest 

contact distance is also shown. Reproduced from [315] with permission of John Wiley and 

Sons.
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Figure 9. 
Structure of a water dimer interacting with coronene within an argon rare gas matrix 

subpiece treated via a DFTB-MM scheme [335].
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Figure 10. 
Snapshots retrieved from MD/DFTB simulations describing the evolution of cationic 

perylene [C20H12]+ at high energy (∼24–26 eV of internal energy): the formation of a 

fulvenetype isomer was observed, as well as losses of H, H2 and C2H2, the expected 

statistical dissociation pathways for PAH radical cations [346].
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Figure 11. 
Example of FSSH molecular dynamics simulation for neutral polyacenes [203]. Population 

dynamics averaged over 63 trajectories following excitation to the brightest excited S 10 

state in pentacene (left panel) and hexacene (right panel). Adapted by permission of the 

PCCP owner societies.
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Figure 12. 
Box of 350000 water molecules treated via a DFTB cluster division algorithms [376]. 

Adapted with permission from (J. Chem. Theory Comput. 2014, 106, 2344–2354). 

Copyright (2014) American Chemical Society.
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