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Summary

In this paper, we set out general principles and develop geostatistical methods for the analysis of 

data from spatio-temporally referenced prevalence surveys. Our objective is to provide a tutorial 

guide that can be used in order to identify parsimonious geostatistical models for prevalence 

mapping. A general variogram-based Monte Carlo procedure is proposed to check the validity of 

the modelling assumptions. We describe and contrast likelihood-based and Bayesian methods of 

inference, showing how to account for parameter uncertainty under each of the two paradigms. We 

also describe extensions of the standard model for disease prevalence that can be used when 

stationarity of the spatio-temporal covariance function is not supported by the data. We discuss 

how to define predictive targets and argue that exceedance probabilities provide one of the most 

effective ways to convey uncertainty in prevalence estimates. We describe statistical software for 

the visualisation of spatio-temporal predictive summaries of prevalence through interactive 

animations. Finally, we illustrate an application to historical malaria prevalence data from 1 334 

surveys conducted in Senegal between 1905 and 2014.
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1 Introduction

Model-based geostatistics (MBG) (Diggle et al., 1998) is a sub-branch of spatial statistics 

that provides methods for inference on a continuous surface using spatially discrete, noisy 

data. MBG is increasingly being used in disease mapping applications (e.g. Hay et al., 2009; 

Gething et al., 2012; Diggle & Giorgi, 2016), with a particular focus on low-resource 

settings where disease registries are geographically incomplete or non-existent.
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We consider data obtained by sampling from a set of potential locations within an area of 

interest A, repeatedly at each of a sequence of times t 1,..., t N. At each sampled location, 

individuals are then tested for the disease under investigation. The data format can be 

formally expressed as

D = xij, ti, yij, nij :xij ∈ A, j = 1, …, mi, i = 1, …, N , (1)

where x ij is the location of the j-th of m i sampling units at time t i, n ij is the number of 

tested individuals at x ij and y ij is the number of positively identified cases.

The methodology described in this paper can be equally applied to longitudinal or repeated 

cross-sectional designs. For this reason, we rewrite (1) as

D = xi, ti, ni, yi :xi ∈ A, i = 1, …, N∗ ,

where N∗ = ∑i = 1
N mi and either or both of the x i and t i may include replicated values.

An essential feature of the class of problems that we are addressing in this paper is that the 

locations x i are a discrete set of sampled points within a spatially continuous region of 

interest. Another possible format for prevalence data, which we do not consider in the 

present study, is a small-area data set. In this case, locations x i are reference locations 

associated with a partition of A into n subregions. Disease registries in relatively well-

developed countries often use this format, both for administrative convenience and, in 

associated publications such as health atlases, to preserve individual confidentiality; see, for 

example, López-Abente et al. (2007) or Hansell et al. (2014). In low-resource settings, this is 

also often the format of data from demographic surveillance systems, such as Demographic 

and Health Surveys (dhsprogram.com), which are nationally representative surveys 

conducted about every 5 years to collect information on population, health and nutrition 

indicators; see, for example, Mercer et al. (2015) for an analysis of data of this kind.

A geostatistical model for data of the kind specified by (1) is that, conditionally on a spatio-

temporal process S(x, t) and unstructured random effects Z(x, t), the outcomes Y are 

mutually independent binomial distributions with number of trials n and probability of being 

a case p(x, t). Using the conventional choice of a logistic link function, although other 

choices are also available, we can then write:

log p xi, ti
1 − p xi, ti

= d xi, ti ⊤β + S xi, ti + Z xi, ti , (2)

where d(x i, t i) is a vector of spatio-temporally referenced explanatory variables with 

associated regression coefficients β. The spatio-temporal random effects S(x i, t i) can be 

interpreted as the cumulative effect of unmeasured spatio-temporal risk factors. These are 

modelled as a Gaussian process with stationary variance σ 2 and correlation function:

corr S x, t , S x′, t′ = ρ x, x′, t, t′; θ , (3)
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where θ is a vector of parameters that regulate the scale of the spatial and temporal 

correlation, the strength of space–time interaction and the smoothness of the process S(x, t). 
Finally, the unstructured random effects Z(x i, t i) are assumed to be independent zero-mean 

Gaussian variables with variance τ 2, to account for extra-binomial variation within a 

sampling location. In particular applications, this can represent non-spatial random variation, 

such as genetic or behavioural variation between co-located individuals, spatial variation on 

a scale smaller than the minimum observed distance between sampled locations, or a 

combination of the two.

The model (2) can be used to address two related, but different, research questions.

Estimation: what are the risk factors associated with disease prevalence? In this case, the 

focus of scientific interest is on the regression coefficients β.

Prediction: how to interpolate the spatio-temporal pattern of disease prevalence? The 

scientific focus is, in this case, on d(x, t)⊤ β + S(x, t) at both sampled and unsampled 

locations χ and times . In some cases, the scientific interest may be more narrowly 

focused on S(x, t), in order to identify areas of relatively low and high spatio-temporal 

variation that is not explained by the available explanatory variables.

Modelling of the residual spatio-temporal correlation through S(x, t) is crucial in both cases: 

in the first case, in order to deliver valid inferences on the regression relationships by 

accurately quantifying the uncertainty in the estimate of β (Thomson et al., 1999); in the 

second case, to borrow strength of information across observations y i by exploiting their 

spatial and temporal correlation.

The use of explanatory variables d(x, t) can also be beneficial in two ways: a simpler model 

for S(x, t) can be formulated by explaining part of the spatio-temporal variation in 

prevalence through d(x, t); more precise spatio-temporal predictions between data locations 

also result from exploiting the association between disease prevalence and d(x, t).

Here, we focus our attention on spatio-temporal prediction of disease prevalence. Our aim is 

to provide a general framework that can be used as a tutorial guide to address some of the 

statistical issues common to any spatio-temporal analysis of data from prevalence surveys, 

especially when sampling is carried out over a large geographical area or time period, or 

both. More specifically, we provide answers to each of the following research questions. 

How can we specify a parsimonious spatio-temporal model while taking account of the main 

features of the underlying process? How can we extend model (2) in order to account for 

non-stationary patterns of prevalence? What are the predictive targets that we can address 

using our model for disease prevalence? How can we effectively visualise the uncertainty in 

spatio-temporal prevalence estimates? These issues have only partly been addressed in 

current spatio-temporal applications of MBG for disease prevalence mapping. Some of these 

are as follows: Clements et al. (2006) on schistosomiasis in Tanzania; Gething et al. (2012) 

on the worldwide distribution of Plasmodium vivax; Hay et al. (2009) and Noor et al. (2014) 

on the worldwide and Africa-wide distributions of Plasmodium falciparum; Snow et al. 
(2015b) on historical mapping of malaria in the Kenyan Coast area; Bennett et al. (2013) on 

the mapping of malaria transmission intensity in Malawi; Kleinschmidt et al. (2001) on 
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malaria incidence in KwaZulu Natal, South Africa; Kleinschmidt et al. (2007) on human 

immunodeficiency virus in South Africa; Soares Magalhaes & Clements (2011) on anaemia 

in preschool-aged children in West Africa; Raso et al. (2005) on schistosomiasis in Côte 

d’Ivoire; Pullan et al. (2011) on soil-transmitted infections in Kenya; and Zouré et al. (2014) 

on river blindness in the 20 participating countries of the African programme for 

onchocerciasis control. In almost all of these cases, the adopted spatio-temporal model is 

only assessed with respect to its predictive performance, using receiver operating 

characteristic curves and prediction error summaries. In our view, a validation check on the 

adopted correlation structure in the analysis should precede geostatistical prediction, as 

misspecification of the spatio-temporal structure of the field S(x, t) can potentially lead to an 

inaccurate quantification of uncertainty in the prevalence estimates and, therefore, to invalid 

inferences. In this paper, we describe the different stages of a spatio-temporal geostatistical 

analysis and provide tools that directly address the issue of specifying a spatio-temporal 

covariance structure that is compatible with the data.

The paper is structured as follows. Section 2 is a review on geostatistical sampling design, 

where we show how this might affect our analysis of the data. In Section 3, we describe 

principles and provide statistical tools for each of the stages of a spatio-temporal 

geostatistical analysis. In Section 3.1, we define the objectives of an exploratory 

geostatistical analysis and show how to pursue these using the empirical variogram. In 

Section 3.2, we outline and contrast likelihood-based and Bayesian methods of inference. In 

Section 3.3, we propose a general Monte Carlo procedure based on the empirical variogram, 

in order to check the validity of the assumed spatio-temporal correlation function for S(x, t). 
In Sections 3.4 and 3.5, we discuss how to define and visualise predictive targets. In Section 

4, we illustrate an application to historical mapping of malaria using data from prevalence 

surveys conducted in Senegal between 1905 and 2014. Section 5 is a concluding discussion.

2 Geostatistical Sampling Design

Different design scenarios can give rise to data of the kind expressed by (1). A good choice 

of design depends both on the objectives of the study and on practical constraints.

In a longitudinal design, data are collected repeatedly over time from the same set of 

sampled locations. This is an appropriate strategy when temporal variation in the outcome of 

primary interest dominates spatial variation and more obviously when the scientific goal is 

to understand change over time at a set of sentinel locations. A longitudinal design is also 

cost-effective when setting up a sampling location is expensive but subsequent data 

collection is cheap.

In a repeated cross-sectional design, a different set of locations is chosen on each sampling 

occasion. This sacrifices direct information on changes in disease prevalence over time in 

favour of more complete spatial coverage. Repeated cross-sectional designs can also be 

adaptive, meaning that on any sampling occasion, the choice of sampling locations is 

informed by an analysis of the data collected on earlier occasions. Adaptive repeated cross-

sectional designs are therefore particularly suitable for applications in which temporal 
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variation either is dominated by spatial variation or can be well explained by available 

covariates; see Chipeta et al. (2016) and Kabaghe et al. (2017).

To explain how the sampling design might affect our geostatistical analysis of the data, let χ 
= {x i ∈ A : i = 1,..., n} denote the set of sampling locations arising from the sampling 

design, S(S(x) : x ∈ A} the signal process and  = {Y i : 1 = 1,..., n} the outcome data.

A sampling design is deterministic if it consists of a set of predefined sampling locations and 

stochastic if the locations are a probability-based selection from a set of candidate designs. 

In the latter case, χ is a finite point process on the region of interest A. Let [·] denote ‘the 

distribution of ’. Our model for the outcome data is then obtained by integrating out S from 

the joint distribution [χ, S, Y], that is,

X, Y = ∫ X, S, Y dS . (4)

From a modelling perspective, the most natural factorization of the integrand in the 

aforementioned equation is as

X, S, Y = S X S Y X, S . (5)

The design is non-preferential if [χ|S] = [χ], in which case (4) becomes

X, Y = X ∫ S Y X, S dS . (6)

Hence, under non-preferential sampling schemes, inference about S and/or Y can be 

conducted legitimately by simply conditioning on the observed set of locations, χ.

The simplest example of a probabilistic sampling design is completely random sampling. 

This can be interpreted, according to context, either as a random sample from a finite, 

prespecified set of potential sampling locations or as an independent random sample from 

the continuous uniform distribution on A. Other examples include spatially stratified random 

sampling designs, which consist of a collection of completely random designs, one in each 

of a number of subdivisions of A, and systematic sampling designs, in which the sampled 

locations form a regular (typically rectangular) lattice to cover A, strictly with the first lattice 

point chosen at random, although in practice this is often ignored.

Here, as in other areas of statistics, the choice of sampling design affects inferential 

precision. If, for example, the inferential target is the underlying spatially continuous 

prevalence surface, p(x, t*) at a future time t*, a possible design goal for geostatistical 

prediction would be to minimise the spatial average of the mean squared error,

∫A
E p x, t∗ − p x, t∗ 2 dx,
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where p(x, t*) is a predictor for p(x, t*) obtained from (2). In contrast, a possible design goal 

for estimation of the relationship between a covariate d(x, t) and disease prevalence would 

be to minimise the variance of the estimated regression parameter, β .

Efficient sampling designs for spatial prediction generally require sampled locations to be 

distributed more evenly over A than would result from completely random or stratified 

random sampling; see, for example, Matérn (1986).

Stratified sampling often provides a more cost-effective design than simple random 

sampling from the general population. In cases where the strata correspond to 

subpopulations associated with different disease risk levels, a geostatistical model should 

account for the stratification through the use of an appropriate explanatory variable. To 

illustrate this, consider, for example, a population consisting of K strata, which correspond 

to a partition of the region of interest, A, into non-overlapping regions Rk for k = 1,..., K. 

We then take a random sample from each region Rk so that each location x ∈ Rk has 

probability of being selected proportional to the population of Rk. If it is known that each of 

the strata Rk is associated with different levels in disease risk, this can be accounted for by 

including a factor variable in (2) with K – 1 levels, or if K is large, using random effects at 

stratum level. In some cases, the strata can also be grouped into subpopulations, which are 

known to differ in their exposure to the disease. For example, let us assume that each stratum 

can be classified as being urban or rural and that these two types of areas are associated with 

different risk levels, that is,

log p xi, ti
1 − p xi, ti

= β + αu xi + S xi, ti + Z xi, ti , (7)

where u(x i) is an indicator function that takes value 1 if x i ∈ Rk and Rk is urban and 0 

otherwise. Under this model, it follows that

Y, S, X = X S Y S, X ;

hence, (7) does not constitute an instance of preferential sampling. This shows that variables 

used in the design should be included in the model when these are associated with the 

outcome of interest so as to ensure that the sampling is non-preferential. For a wider 

discussion on this issue in the context of standard regression models, we refer to Skinner & 

Wakefield (2017) and Lumley & Scott (2017).

Another common design in practice is the opportunistic sampling design (Hedt & Pagano, 

2011), in which data are collected at convenient places, for example, from presentations at 

health clinics, a market or a school. The limitations of this are obvious: opportunistic 

samples may not be representative of the target population and so not deliver unbiased 

estimates of p(x, t). Also, as unmeasured factors relating to the disease in question are likely 

to affect an individual’s decision to present, the assumption of non-preferential sampling is 

questionable. For example, areas with atypically high or low levels of p(x, t) may have been 

systematically oversampled; see Diggle et al. (2010) and Pati et al. (2011) for a discussion 

and formal solution to the problem of geostatistical inference under preferential sampling.
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Giorgi et al. (2015) address the issue of combining data from multiple prevalence surveys, 

with a mix of random and opportunistic sampling designs. By developing a multivariate 

geostatistical model that enables estimation of the bias from opportunistic samples, they 

show that combining information from multiple studies can lead to more precise estimates of 

prevalence, provided that at least one of these is known to be unbiased.

In the remainder of this paper, we shall focus our attention on the case of prevalence data 

obtained from a non-preferential sampling design.

3 Methods

In this section, we provide a general framework for the analysis of data from 

spatiotemporally referenced prevalence surveys. Figure 1 shows the different stages of the 

analysis as a cycle that terminates when all the modelling assumptions are supported by the 

data. In our context, visualisation of the results also plays an important role in order to 

display the spatio-temporal patterns of estimated prevalence and to communicate uncertainty 

effectively.

3.1 Exploratory Analysis: The Spatio-Temporal Variogram

The usual starting point for a spatio-temporal analysis of prevalence data is an analysis 

based on a binomial mixed model without spatial random effects, that is, S(x, t) = 0 for all x 
and t. Let Z̃(x i, t i) denote a point estimate, such as the predictive mean or mode, of the 

unstructured random effects Z(x i, t i) from the non-spatial binomial mixed model. We then 

analyse Z̃(x i, t i) to pursue the two following objectives:

1. Testing for presence of residual spatio-temporal correlation;

2. Formulating a model for (3) and providing an initial guess for θ.

We make a working assumption that S(x, t) is a stationary and isotropic process; hence,

ρ x, x′, t, t′; θ = ρ u, v; θ , (8)

where u = ∥x – x′∥, with ∥·∥ denoting the Euclidean distance, and υ |t – t′|.

The variogram can then be used to formulate and validate models for the spatio-temporal 

correlation in (3). Let W(x, t) = S(x, t) + Z(x, t), where S(x, t) and Z(x, t) are specified as in 

(2); the spatio-temporal variogram of this process is given by

γ u, v; θ = 1
2E W x, t − W x′, t′ 2 = τ2 + σ2 1 − ρ u, v; θ . (9)

We refer to this as the theoretical variogram, because it is directly derived from the 

theoretical model for the process W(x, t).

We use Z̃(x i, t i) to estimate the unexplained extra-binomial variation in prevalence, at 

observed locations x i and times t i. Let n(u, υ) denote the pairs (i, j) such that ∥x i – x j∥ = u 
and |t i – t j| = υ; the empirical variogram is then defined as
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γ u, v = 1
2 n(u, v) ∑

i, j ∈ n u, v
Z xi, ti − Z xj, tj

2, (10)

where |n(u, υ| is the number of pairs in the set.

Testing for the presence of residual spatio-temporal correlation can be carried out using the 

following Monte Carlo procedure:

Step (1) Permute the order of the data, including Z̃(x i, t i), while holding (x i, t i) 
fixed;

Step (2) Compute the empirical variogram for Z̃(x i, t i);

Step (3) Repeat (i) and (ii) a large enough number of times, say B;

Step (4) Use the resulting B empirical variograms to generate 95% tolerance 

intervals at each of the predefined distance bins.

If γ̃(u, υ) lies outside these intervals, then the data show evidence of residual spatio-

temporal correlation. If this is the case, the next step is to specify a functional form for ρ(u, 

υ).

Gneiting (2002) proposed the following class of spatio-temporal correlation functions:

ρ u, v; θ = 1
1 + v/ψ δ + 1exp − u/ϕ

1 + v/ψ ξ/2 , (11)

where ϕ and (δ, ψ) are positive parameters that determine the rate at which the spatial and 

temporal correlations decay, respectively. When ξ = 0 in (11), ρ(u, υ, θ) = ρ 1(u)ρ 2(υ), 

where p 1(·) and p 2(·) are purely spatial and purely temporal correlation functions, 

respectively. Any spatio-temporial correlation function that factorises in this way is called 

separable. In this sense, the parameter ξ ∈ [0, 1] represents the extent of non-separability. 

Stein (2005) provides a detailed analysis of the properties of space–time covariance 

functions and highlights the limitations of using separable families. However, fitting of 

complex space–time covariance models requires more data than, in our experience, is 

typically available in prevalence mapping applications. In the application of Section 4, we 

show that only ψ and ϕ in (11) can be estimated with an acceptable level of precision, while 

the data are poorly informative with respect to the other covariance parameters, in which 

case the parsimony principle favours a separable model. Note that, incidentally, separability 

of the spatio-temporal covariance function does not necessarily imply that S(x, t) can be 

factorised as S 1(x)S 2(t), which would be a highly artificial construction.

A spatio-temporal correlation function is separable if

ρ u, v; θ = ρ1 u; θ1 ρ2 v; θ2 ,

where θ 1 and θ 2 parametrise the purely spatial and temporal correlation functions, 

respectively; in the case of (11), this is separable when ξ = 0. Separable correlation 

Giorgi et al. Page 8

Int Stat Rev. Author manuscript; available in PMC 2020 November 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



functions are computationally convenient when joint predictions of prevalence are required 

at different time points over the same set of prediction locations. Checking the validity of the 

separability assumption can be carried out using the likelihood ratio test for models such as 

(11), where separability can be recovered as a special case.

Once a parametric model has been specified, an initial guess for θ can be used to initialise 

the maximisation of the likelihood function. One way to obtain an initial guess is to choose 

the value of θ that minimises the sum of squared differences between the theoretical and 

empirical variogram ordinates. Section 5.3 of Diggle & Ribeiro (2007) describes the least 

squares algorithm and other, more refined methods to fit a parametric variogram model to an 

empirical variogram. However, in our view, variogram-based techniques should only be used 

for exploratory analysis and diagnostic checking. For parameter estimation and formal 

inference, likelihood-based and Bayesian methods are more efficient and more objective.

3.2 Parameter Estimation and Spatial Prediction

We now outline likelihood-based and Bayesian methods of parameter estimation for the 

model in (2).

3.2.1 Likelihood-based inference—Let λ ⊤ = (β ⊤, σ 2, θ ⊤) denote the set of 

unknown model parameters, including regression coefficients β, the variance σ 2 of S(x, t) 
and covariance parameters θ. We use [·] as a shorthand notation for ‘the distribution of ’. 

The likelihood function is then obtained from the marginal distribution of the outcome y ⊤ = 

(y 1,..., y n) by integrating out the random effects W ⊤ = W(x 1, t 1), … , W(x n, t n)) to give

L λ = y λ = ∫ [W , y ∣ λ]dW . (12)

In general, the integral in (12) is intractable. However, numerical integration techniques or 

Monte Carlo methods can be used for approximate evaluation and maximisation of the 

likelihood function, as required for classical inference (Geyer & Thompson, 1992; Geyer, 

1994; 1996; 1999). See Christensen (2004) for a detailed description of the Monte Carlo 

maximum likelihood estimation method in a geostatistical context.

In our application of Section 4, we use the following approach to approximate (12). Let λ0 

represent our best guess of λ. We then rewrite (12) as

L λ = ∫ W , y λ
W , y λ0

W , y λ0 dW

∝ ∫ W , y λ
W , y λ0

W y, λ0 dW

= E W , y λ
W , y λ0

,

(13)

where the expectation in the aforementioned equation is taken with respect to [W|y, λ0]. 

Using Markov chain Monte Carlo (MCMC) algorithms, we then generate B samples from 

[W|y, λ 0], say w (i), and approximate (13) as
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LB λ = 1
B ∑

i = 1

B w i y, λ
w i y, λ0

.

We maximise L B(λ) using a Broyden–Fletcher–Goldfarb–Shanno algorithm (Fletcher, 

1987), which incorporates analytical expressions for the first and second derivatives of L 

B(λ). Let λ̂
B denote the Monte Carlo maximum likelihood estimate of λ. We then set λ0 = 

λ̂B and repeat the outlined procedure until convergence.

To simulate from [W|y, λ 0], we first reparametrise the model based on W̃ = Σ̂–1/2(W – ŵ), 

where ŵ is the mode of [W|y, λ 0] and Σ̂ is the inverse of the negative Hessian of [W|y, λ 0] 

at the mode ŵ. At each iteration of the MCMC, we propose a new value for W̃, given the 

current value w, using a Langevin–Hastings algorithm with a Gaussian proposal distribution 

having mean

w + ℎ/2 ∇log w y, λ0

and covariance matrix given by hI, where I is the identity matrix and h is tuned so that the 

acceptance rate is 0.574 (Roberts & Rosenthal, 1998).

Other approaches that have been proposed to maximise (12) are based on the expectation–

maximisation algorithm (Zhang, 2002) and the Laplace approximation (Bonat & Ribeiro, 

2016).

Let W* denote the vector of values of W(x, t) at a set of unobserved times and locations. 

The formal solution to the prediction problem is to evaluate the conditional distribution of 

W* given the data y. Although the joint predictive distribution of the elements of W* is 

intractable, it is possible to simulate samples from this distribution.

If we assume, unrealistically, that λ is known, the predictive distribution of W* is given by

W ∗ ∣ y, λ = ∫ W ∗, W ∣ y, λ dW = ∫ W ∣ y, λ W ∗ ∣ W , y, λ dW

= ∫ W ∣ y, λ W ∗ ∣ W , λ dW .
(14)

See chapter 4 of Diggle & Ribeiro (2007) for explicit expressions.

If, more realistically, λ is unknown, plug-in prediction consists of replacing λ in (14) by an 

estimate λ̂, preferably the maximum likelihood estimate. A legitimate criticism of this is that 

the resulting predictive probabilities ignore the inherent uncertainty in λ̂. However, this can 

be taken into account within a likelihood-based inferential framework as follows. Let Λ̂ 

denote the maximum likelihood estimator of λ. We define the predictive distribution of W* 

as
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W ∗ ∣ y = ∬ Λ W ∣ y, Λ W ∗ ∣ W , Λ dW dΛ, (15)

where [Λ̂] denotes the sampling distribution of the maximum likelihood estimator Λ̂. 
Equation (15) acknowledges the uncertainty in Λ̂ by expressing the predictive distribution 

[W*|y] as the expectation of the plug-in predictive distribution (14) with respect to the 

sampling distribution of Λ̂. This can then be approximated using a multivariate Gaussian 

distribution with mean given by the observed maximum likelihood estimation, λ̂, and 

covariance matrix given by

−
∂2logL λ

∂2λ

−1
.

In our experience, the quality of the Gaussian approximation (GA) is improved considerably 

by applying a log-transformation to each of the covariance parameters. If the GA remains 

questionable, a more computationally intensive alternative is a PB consisting of the 

following steps: simulate a number of binomial data sets using the plug-in maximum 

likelihood estimation for λ; for each simulated data set, carry out parameter estimation by 

maximum likelihood. The resulting set of bootstrap estimates for λ can then be used to 

approximate the distribution of Λ̂. We give an example of these approaches in the case study 

in Section 4.

3.2.2 Bayesian inference—In Bayesian inference, λ is treated as a random variable 

and must be assigned a prior distribution, [λ]. Parameter estimation is then carried out 

through the posterior distribution of λ, which is obtained using Bayes’ theorem as

λ ∣ y = λ y ∣ λ
y = λ L λ

y . (16)

All other things being equal, as the sample size increases, L(λ) becomes more concentrated 

around the true value of λ, the impact of the prior is reduced, and the difference between 

likelihood-based and Bayesian parameter estimation becomes less important. MCMC 

algorithms can be used for approximate computation of the posterior in (16). For the 

Bayesian analysis in the application of Section 4, we develop an MCMC algorithm, which 

separately updates β, σ 2, θ and W. Specifically, we use a Metropolis–Hastings algorithm to 

update log{σ 2} and log(θ} and a Gibbs sampler to update β. To update the random effect 

W, we use a Hamiltonian Monte Carlo procedure (Neal, 2011). More computational details 

on this approach can be found in section 2.2 of Giorgi & Diggle (2017).

Non-stochastic analytical approximations of (16) can also be obtained using, for example, 

the integrated nested Laplace approximations (Rue et al., 2009). However, their accuracy 

should be considered carefully in each specific context. Joe (2008) shows that for binomial 

mixed models, the smaller the denominator, the less accurate is the Laplace approximation. 

Fong et al. (2010), in a review of computational methods for Bayesian inference in 
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generalized linear mixed models, also report poor performance of the integrated nested 

Laplace approximation method in the case binary responses.

Bayesian predictive inference about W* uses a second application of Bayes’ theorem to give 

the predictive distribution:

W ∗ ∣ y = ∬ λ ∣ y W ∣ y, λ W ∗ ∣ W , λ dW dλ, (17)

where [λ|y] is the posterior distribution of θ. Comparison of (17) and (15) shows that both 

are weighted averages of plug-in predictive distributions. The difference between them is 

that (17) uses the posterior [λ|y] as the weighting distribution, while (15) uses the sampling 

distribution [Λ̂]. In either case, the weights concentrate increasingly around the maximum 

likelihood estimate of λ as the sample size increases.

In our experience, the difference between plug-in prediction using the maximum likelihood 

estimate λ̂ and weighted average prediction is often negligible, because the uncertainty in 

W* dominates that in λ. An intuitive explanation for this is that for estimation of λ, all of 

the data contribute information, whereas for prediction of W(x, t), only data at locations and 

times relatively close to x and t contribute materially. However, this is not guaranteed, 

especially when the predictive target is a non-linear property of W*; see, for example, figure 

9a of Diggle et al. (2002).

3.3 Diagnostics and Novel Extensions

In order to check the validity of the chosen spatio-temporal covariance function, we modify 

the Monte Carlo algorithm introduced in Section 3.1 by replacing Step (1) with the 

following:

Step (1) Simulate W(x i, t i) at observed locations x i and times t i, for i = 1,..., n, from its 

marginal multivariate distribution under the assumed model. Conditionally, on the simulated 

values of W(x i, t i), simulate binomial data y i from (2). Finally, compute the point estimates 

Z̃(x i, t i) using the simulated data.

In this case, the resulting 95% tolerance band is generated under the assumption that the true 

covariance function for S(x, t) exactly corresponds to the one adopted for the analysis. If 

γ̃(u, υ) lies outside the intervals, then this indicates that the fitted covariance function is not 

compatible with the data. To formally test this hypothesis, we can also use the following test 

statistic:

T = ∑
k = 1

K
n uk, tk γ uk, vk − γ uk, vk; θ 2, (18)

where u k and υ k are the distance and time separations of the variograms bins, respectively, 

n(u k, t k) are the numbers of pairs of observations contributing to each bin and θ is the true 

parameter value of the covariance parameters. Because θ is almost always unknown, it can 

be estimated using either maximum likelihood or Bayesian methods, in which case (18) 

should be averaged over the posterior distribution of θ using posterior samples θ (h), that is,
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T = 1
B ∑

ℎ = 1

B
∑

k = 1

K
n uk, tk γ uk, vk − γ uk, vk; θ ℎ

2 . (19)

The null distribution of T can be obtained using the simulated values for Z̃(x i, t i) from the 

modified Step (1) introduced in this section. Let T (h) denote the h-th sample from the null 

distribution of T, for h = 1,...,B. Because evidence against the adopted covariance model 

arises from large values of T, an approximate p-value can be computed as

1
B ∑

ℎ = 1

B
I T ℎ > t ,

where I(a > b) takes value 1 if a > b and 0 otherwise and t is the value of the test statistic 

obtained from the data.

An unsatisfactory result from this diagnostic check could indicate a need for either or both 

of two extensions to the model: a more flexible family of stationary covariance structures or 

non-stationarity induced by parameter variation over time, space or both.

In the former case, we note that the correlation function in (11) can also be obtained a 

special case of

ρ u, v; θ = 1
1 + v/ψ δ + 1ℳ u

1 + v/ψ ξ/2 ; ϕ, κ , (20)

where M(·; ϕ, κ) is the Matérn (1986) correlation function with scale and smoothness 

parameters ψ and κ, respectively (Gneiting, 2002). Equation (11) is recovered for κ = 1/2. 

However, the additional parameter introduced, κ, is likely to be poorly identified. A 

pragmatic response is to discretise the smoothness parameter {κ} in (20) to a finite set of 

values, for example, {1/2, 3/2, 5/2}, over which the likelihood function is maximised.

In the second case, the context of the analysis can provide some insights on the nature of the 

non-stationary behaviour of the process being studied. For example, if data are sampled over 

a large geographical area, such as a continent, one may expect the properties of the process 

S(x, t) to vary across countries. This can then be assessed by fitting the model separately for 

each country. A close inspection of the parameter estimates for θ might then reveal which of 

its components show the strongest variation. Furthermore, if these estimates also show 

spatial clustering, the vector θ, or some of its components, can be modelled as an additional 

spatial process, say Θ(x). The process S(x, t) is then modelled as a stationary Gaussian 

process conditionally on Θ(x). A similar argument can also be developed if data are 

collected over a large time period in a geographically restricted area. In this case, θ may 

primarily vary across time and, therefore, could be modelled as a temporal stochastic 

process.
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3.3.1 Example: A model for disease prevalence with temporally varying 
variance—We now give an example of how model (2) can be extended in order to allow 

the nature of the spatial variation in disease prevalence to change over time. We replace the 

spatio-temporal random effect S(x, t) in the linear predictor with

S∗ x, t = B t S x, t , (21)

where B 2(t) represents the temporally varying variance of S*(x, t). We then model log {B 
2(t)} as a stationary Gaussian process, independent of S(x, t), with mean –η 2/2, variance η 2 

and one-dimensional correlation function ρ B(·; θ B), with covariance parameters θ B. Note 

that, using this parametrisation, E[B 2(t)] = 1 and, therefore, V[S*(x, t)] = σ 2. The resulting 

process S*(x, t) is a non-Gaussian process with heavier tails than S(x, t) and correlation 

function

corr S∗ x, t , S∗ x′, t′ = exp η2 ρB v; θB − 1 ρ u, v; θ . (22)

The likelihood function is obtained as in (12) but now with W(x i, t i) = S*(x i, t i) + Z(x i, t 

i).

3.4 Defining Targets for Prediction

Let P(W*) = {p(x, t) : x ∈ A, t ∈ [T 1, T 2]} denote the set of prevalence surfaces covering 

the region of interest A and spanning the time period [T 1, T 2]. Prediction of P is carried 

out by first simulating samples from the predictive distribution of W*, that is, the 

distribution of W* conditional on the data y. From each simulated sample of W*, we then 

calculate any required summary, T say, of the corresponding P(W*), for example, means 

or selected quantiles at any (x, t) of interest. By construction, this generates a sample from 

the predictive distribution of T. Computational details and explicit expressions can be found 

in Giorgi & Diggle (2017).

Two ways to display uncertainty in the estimates of prevalence are through quantile or 

exceedance probability surfaces. We define the a-quantile surface as

Qα W ∗ = q x, t :P p x, t < q x, t ∣ y = α, x ∈ A, t ∈ T1, T2 . (23)

Similarly, we define the exceedance probability surface for a given threshold l as

ℛl W ∗ = r x, t = P p x, t > l ∣ y :x ∈ A, t ∈ T1, T2 . (24)

Values of the pointwise exceedance probability r(x, t) close to 1 identify locations for which 

prevalence is highly likely to exceed l and vice versa.

In public health applications, an exceedance probability surface is a suitable predictive 

summary when the objective is to identify areas that may need urgent intervention because 
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they are likely to exceed a policy-relevant prevalence threshold, say l. A disease ‘hotspot’ is 

then operationally defined as the set of locations x, at a given time t, such that p(x, l) > l.

In some cases, summaries by administrative areas can be operationally useful. For example, 

the district-wide average prevalence for a district D at time t is

pt D = 1
D ∫

D
p x, t dx, (25)

where |D| is its area of D. Incidentally, p t (D) can also be estimated more accurately than the 

pointwise prevalence p(x, t), because it uses all the available information within D. Quantile 

and exceedance probability surfaces can be defined for p t(D) in the obvious way.

3.5 Visualisation

The output from the prediction step consists of a set of N predictive surfaces, whether 

estimates, quantiles or exceedance probabilities, within the region of interest A at times t 1 < 

t 2 < … < t N. Animations then provide a useful tool for visualising the predictive spatio-

temporal surfaces and highlighting the main features of the interpolated pattern of 

prevalence. The R package animation (Xie, 2013) provides utilities for writing animations in 

several video and image formats. However, if interactivity is also desired, web-based ‘Shiny’ 

applications (SAs) (RStudio Inc, 2013) represent one of the best alternatives within R.

For the analysis carried out in Section 4, we have developed an SA, which can be viewed at 

http://fhm-chicas-apps.lancs.ac.uk/shiny/users/giorgi/mapMalariaSEN/.

The user interface of this SA is shown in Figure 2. Any of four panels can be chosen in order 

to display predictive maps of prevalence (‘Prediction maps’), exceedance probabilities with 

user defined prevalence thresholds (‘Exceedance maps’), quantile surfaces (‘Quantile maps’) 

and country-wide summaries (‘Country-wide average prevalence’). In the first three panels, 

the user can choose which target of prediction to display from a list and select the year on a 

slide bar. The range of prevalence and exceedance probabilities used to define the colour 

scale can be set to the observed range across the whole time series (‘fixed’) or specific to 

each year (‘dynamic’). The former option is convenient for comparisons between years, 

while the latter gives a more effective visualisation of the spatial heterogeneity in the 

predictive target in a given year.

4 Case-study: Historical Mapping of Malaria Prevalence in Senegal from 

1905 to 2014

We analyse malaria prevalence data from 1 334 surveys conducted in Senegal between 1905 

and 2014. The data were assembled from three different data sources: historical archives and 

libraries of ex-colonial institutes; online electronic databases with data on malaria infection 

prevalence published since the 1980s; and national household sample surveys. In assembling 

the data for the analysis, we only included locations that were classified as individual 

villages or communities or a collection of communities within a definable area that does not 

exceed 5 km2. For more details on the data extraction, see Snow et al. (2015a).
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The outcome of interest is the count y i of positive microscopy tests out of n i for 

P.falciparum, at a community location x i, and year t i. Table 1 shows the number of surveys 

and the average prevalence for each of the indicated time blocks. These were identified by 

grouping the data points so that each time block contains at least 100 surveys. We observe 

that 649 out of the 1 334 surveys were carried out between 2009 and 2014. Also, the 

empirical country-wide average prevalence steadily declines from the first to the last time 

block. Figure 3 displays the sampled community locations within each of the time blocks. 

The plot suggests a poor spatial coverage of Senegal in some years. The use of geostatistical 

methods can therefore be beneficial because it allows us to borrow the strength of 

information by exploiting the spatio-temporal correlation in the data.

Our model for the data is of the form (26), with the following linear predictor:

log p xi, ti
1 − p xi, ti

= β1 + β2a xi, ti + β3 a xi, ti − 5 × I a xi, ti > 5

+β4A xi, ti + β5 A xi, ti − 20 × I A xi, ti > 20
+S xi, ti + Z xi, ti ,

(26)

where a(x i, t i) and A(x i, t i) are the lowest and largest observed ages among the sampled 

individuals at location x i and time t i, respectively. In (26), we use linear splines, each with a 

single knot, at 5 years for a(x, t) and at 20 years for A(x, t). For the spatio-temporal process 

S(x, t), we use a Gneiting correlation function, as in (11), with δ = ξ = 0, that is, a separable 

covariance function.

Using the predictive mean as a point estimate of the random effects from a non-spatial 

binomial mixed model, we carry out the test for residual spatio-temporal correlation, as 

outlined in Section 3.1. The upper panels of Figure 4 show overwhelming evidence against 

the assumption of spatio-temporal independence. We then initialise the covariance 

parameters, ϕ and ψ, using a least squares fit to the empirical variogram, as shown by the 

dotted lines in the lower panels of Figure 4.

We conducted parameter estimation and spatial prediction using both likelihood-based and 

Bayesian inference. In the latter case, we specifed the following set of independent and 

vague priors: β ~ M V N(0, 104 I); σ 2 ~ Uniform(0, 20); ϕ ~ Uniform(0, 1000); τ 2/σ 2 ~ 

Uniform(0, 20); and ψ ~ Uniform(0, 20). Table 2 shows the maximum likelihood estimates 

of the model parameters and their corresponding 95% confidence intervals based on the GA 

and on parametric boostrap (PB), together with Bayesian esimates (posterior means) and 

95% credible intervals. The two non-Bayesian methods give similar confidence intervals; the 

difference is noticeable, although still small in practical terms, only for the parameter ϕ. The 

Bayesian method gives materially larger estimates (see Table 3) of σ 2 and ϕ. Note that for 

both of these parameters, the prior means are substantially larger than the maximum 

likelihood estimates, suggesting that the priors, although vague, have nevertheless had some 

impact on the estimates.

Figure 5 gives a different perspective on the similarities and differences between the results 

obtained by the non-Bayesian and Bayesian methods. The Bayesian posterior density of the 

intercept has heavier tails than the sampling distribution of the maximimum likelihood 
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estimator; the posterior densities of σ 2, ϕ and ψ are shifted to the right of their non-

Bayesian counterparts, while the posterior density of τ 2/σ 2 is shifted to the left. Finally, 

there is some residual skewness in the PB distributions of the log-transformed covariance 

parameters.

Using the Monte Carlo methods of Section 3.3, we checked the validity of the assumed 

covariance model. The lower panels of Figure 4 show that for each of the four time lag 

intervals considered the observed variograms fall within the 95% tolerance region obtained 

under the fitted model; the p-value for a Monte Carlo goodness of fit test using the test 

statistic (18) is 0.548.

Figure 6 shows the profile deviance function:

D ξ = 2 logLp ξ − logLp ξ ,

where L p (ξ) is the profile likelihood for the parameter of spatio-temporal interaction 

parameter ξ and ξ is its Monte Carlo maximum likelihood estimate. The dashed horizontal 

line is the 0.95 quantile of a χ 2 distribution with one degree of freedom. The flatness of D 
(ξ) indicates that data give very little information about the non-separability of the 

correlation structure of S(x, t).

To assess the differences in the spatial predictions obtained using the GA, PB and Bayesian 

approaches, we used each method to predict P.falciparum prevalence for children between 2 

and 10 years of age (P f P R 2–10) in the year 2014, at each point on a 10 × 10 km regular 

grid covering the whole of Senegal. Figure 7 shows pairwise scatterplots of the three sets of 

point predictions and associated standard deviations of P f P R 2–10. All six scatterplots show 

only small deviations from the identity line.

Figure 8(a) shows point and interval predictions of average country-wide P f P R 2–10 We 

observe a steady decline in P f P R 2–10 in the most recent decade. The highest predicted 

value of P f P R 2–10 across the whole of the time series occured in 1960, the year in which 

Senegal gained independence from France. Figure 8(b) shows for each year the predictive 

probability that average country-wide P f P R 2–10 exceeded 5%. Figure 9 shows the surfaces 

of the predictive mean (left panel) and the preditive probability that prevalence exceeds 5% 

prevalence (right panel), for the year 2014. In the right panel, we can identify two disjoint 

areas in the south-west of Senegal, where the probability of exceeding 5% P f P R 2–10 is at 

least 75%. In areas between the contour of 50% and 75% exceedance probability, we are less 

confident that P f P R 2–10 exceeds 5%. These aspects relating to the uncertainty about the 

5% threshold cannot be deduced from the map of prevalence estimates in the left panel, nor 

would a map of pointwise prediction variances be of much help.

5 Discussion

We have developed a statistical framework for the analysis of spatio-temporally referenced 

data from repeated cross-sectional prevalence surveys. Our aim was to provide a set of tools 

and principles that can be used to identify a parsimonious geostatistical model that is 
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compatible with the data. In our view, model validation should include checking the validity 

of the specific assumptions made on S(x, t) rather than be focused exclusively on predictive 

performance, so as to avoid the risk of attaching spurious precision to predictions from an 

inappropriate model.

The variogram is very widely used in geostatistical analysis. We use it both for exploratory 

analysis and model validation but favour likelihood-based methods, whether non-Bayesian 

or Bayesian, for parameter estimation and formal model comparison; an example of the 

latter is our use of the profile deviance to justify fitting a model with separable correlation 

structure to the Senegal malaria data.

In our spatio-temporal analysis of historical malaria prevalence data from Senegal, we have 

shown how to incorporate parameter uncertainty within a likelihood-based framework by 

approximation of the distribution of the maximum likelihood estimator using the GA and 

PB. The results showed that the GA provides reliable numerical inferences for the regression 

coefficients but was slightly inaccurate for the log-transformed covariance parameters. For 

this reason, we generally recommend using PB whenever this is computationally feasible. In 

our view, this gives a viable approach to handling parameter uncertainty in predictive 

inference without requiring the specification of so-called non-informative priors. Non-

Bayesian and Bayesian approaches showed some differences with respect to parameter 

estimation but delivered almost identical point predictions and predictive standard deviations 

for the spatial estimates of prevalence. Our results also illustrate how even large 

geostatistical data sets often lead to disappointingly imprecise inferences about model 

parameters. For this reason, we would favour Bayesian inference when, and only when, an 

informative prior can be specified from contextually based expert prior knowledge of the 

process under investigation.

In Section 3.3, we discussed how to extend the standard model for prevalence data in order 

to let the model parameters change over time, space or both. However, the use of these 

models requires a large amount of the data and good spatio-temporal coverage so as to detect 

non-stationary patterns in prevalence. In the Senegal malaria application, the spatio-temporal 

sparsity of the sampled locations meant that the data could not be used to reliably detect 

spatio-temporal variation in the covariance parameters. For this application, we also 

assumed that the sampling locations did not arise from a preferential sampling scheme. The 

standard geostatistical model for prevalence can also be extended to account for 

preferentiality in the sampling design, based on the framework developed by Diggle et al. 
(2010). However, such a model would require a larger amount of data than was available for 

this application.

Our analysis included data from the Demographic and Health Survey (DHS) conducted in 

Senegal in 2014. These data were collected using a two-stage stratified sampling design 

(ANSD, 2015). In the first stage, 200 census districts (CDs) are randomly selected: 79 

among urban CDs and 121 among rural CDs, with probability proportional to the population 

size. In the second stage, an enumeration list from each CD was used to sample households 

randomly. In the analysis reported previously, we could not account for the sampling design 

of the DHS data because of the lack of information on urban and rural extents for every 
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single year when the surveys were conducted. However, because this variable is available for 

2014, we extracted the DHS data and fitted two geostatistical models with and without an 

explanatory variable that classifies every location as rural or urban. Figure 10 shows the 

plots for the estimated prevalence and associated standard errors obtained from the two 

models. The differences both in the point estimates and standard error of prevalence are 

negligible. Hence, we do not expect the sampling design adopted in the DHS survey to affect 

the results reported in Section 4.

In model (2), spatial confounding can arise when some of the variation in prevalence due to 

the effect of spatially structured risk factors d(x, t) is attributed by the model to the 

stochastic process S(x, t). This phenomenon affects the interpretation of the regression 

parameters β; see, for example, Paciorek (2010) and Hodges & Reich (2010). However, the 

following argument supports our experience that it has a negligible impact on predictive 

inference for p(x, t). Consider, for simplicity, the following purely spatial model:

log p xi
1 − p xi

= β0 + β1D1 xi + β2D2 xi + S xi . (27)

If both of D 1(x) and D 2 x) are observed fitting the model (27) with D 1(x) and D 2 x) as 

covariates, that is, conditioning on both D 1 (x) and D 2(x), would lead to consistent 

estimation of β 1 and β 2. If only D 1(x) is observed, we can only condition on D 1(x). Now, 

assume that D 2(x) = T(x) + D 1 (x), with S(x) and T(x) independent processes, and re-

express (27) as

log p xi
1 − p xi

= β0 + β1D1 xi + β2 T xi + D1 xi + S xi + Z xi

= β0 + β1
∗D1 xi + S∗ xi ,

(28)

where β1* = β1 + β2 and S*(x) = S(x) + β 2 T(x). Provided that we correctly specify the model 

for S*(x), conditioning on D 1 (x) will lead to consistent estimation of β*, which is all that 

we require for prediction of p(x). Now, suppose that T(x) and S(x) are Matérn processes, but 

we specify S*(x) to be a Matérn process. This is incorrect, but we conjecture that it is a good 

approximation. Figure 11 shows an example in which β 2 = 1 and S(x) and T(x) have Matérn 

covariance functions with unit variance, scale parameters 0.1 and 0.07 and smoothness 

parameters 0.5 and 2.5, respectively. The resulting correlation function of S*(x) is f 1(u) = 

0.5{M (u; 0.1, 0.5) + M (u; 0.07, 2.5)}, which can be closely approximated by a single 

Matérn, f 2(u) = M(u;0.109, 0.774), where M(·;ϕ, κ) is a Matérn correlation function with 

scale parameter ϕ and smoothness parameter κ.

For large data sets, it may be necessary to use an approximation of the spatio-temporal 

Gaussian process S(x, t) in order to make inference computationally feasible. One such 

approach is to use a low-rank approximation (Higdon, 1998; 2002) in which S(x, t) is 

represented as a finite linear combination of basis functions with random coefficients; see, 

for example, Rodrigues & Diggle (2010) who develop a class of non-separable spatio-

temporal covariance functions using this approach. Another approach is to formulate S(x, t) 
as the solution to a stochastic partial differential equation. Lindgren et al. (2011) develop a 
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general framework for this approach, in which Gaussian Markov random fields are used to 

obtain a computationally fast solution to a discretised version of the defining stochastic 

partial differential equation. In the case of binary data, the computational burden can also be 

reduced by using data augmentation sampling schemes (Holmes & Held, 2006).

Throughout the paper, we have assumed that the process S(x, t) is isotropic. To diagnose 

anisotropy, a directional version of the variogram can be used in which inter-point distances 

u are replaced by vector differences x i – x j and the results displayed as a three-dimensional 

scatterplot at each time lag. Weller & Hoeting (2016) provides a comprehensive survey of 

non-parametric diagnostic methods used to test specific deviations from the assumption of 

isotropy. A limitation of most of these methods is that they require the spatial process to be 

observed either on a grid or assume that the spatial locations are the realisation of a 

homogeneous Poisson process. Additionally, the properties of these tests have only been 

investigated when the response is continuous. The sample size required to obtain adequate 

power is likely to be higher in the case of binomial data.

In addition to the sampling designs that we discussed in Section 2, cluster sampling is 

another cost-effective alternative to simple random sampling. In households surveys, a 

cluster might correspond to a geographically restricted area, for example, a village or group 

of households, which are randomly selected in a first stage. One of the potential, but still 

unexplored, uses of this sampling design in disease mapping would be to disentangle the 

long-range and small-range spatial variation in disease risk. To pursue this objective, the 

nugget component Z(x, t i) in (2) could be modelled as an additional Gaussian process 

whose scale of spatial correlation is constrained to be smaller than that of S(x i, t i). 
Separating these two spatial scales of correlation would require a large amount of data and 

would be dependent on the spatial arrangement of the clusters.

We have not considered issues of data quality variation across multiple surveys. This has 

been addressed by (Giorgi et al., 2015), who developed a multivariate geostatistical model to 

combine prevalence data from multiple randomised and non-randomised surveys. 

Incorporation of this modelling framework into the methods of Section 3 would be 

straightforward given the required data, because all the different stages of the analysis can 

still be carried out using the same tools and principles.
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Figure 1. 
Diagram of the different stages of a statistical analysis.
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Figure 2. 
User interface of a Shiny application for visualisation of results. The underlying data are 

described in Section 4. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 3. 
Locations of the sampled communities in each of the time blocks indicated by Table 1.
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Figure 4. 
The plots show the results from the Monte Carlo methods used to test the hypotheses of 

spatio-temporal independence (upper panels) and of compatibility of the adopted covariance 

model with the data (lower panels). The shaded areas represent the 95% tolerance region 

under each of the two hypotheses. The solid lines correspond to the empirical variogram for 

Z͂(xi, ti), as defined in Section 3.1. In the lower panels, the theoretical variograms obtained 

from the least squares (dotted lines) and maximum likelihood (dashed lines) methods are 

shown.
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Figure 5. 
Density functions of the maximum likelihood estimator for each of the model parameters 

based on parameteric bootstrap (PB), as black lines, and the Gaussian approximation (GA), 

as orange lines; the blue lines correspond to the posterior density from the Bayesianfit. 

[Colourfigure can be viewed at wileyonlinelibrary.com]
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Figure 6. 
Profile deviance (solid line) for the parameter of spatio-temporal interaction ξ of the 

Gneiting (2002) family given by (11). The dashed line is the 0.95 quantile of a χ2 

distribution with one degree of freedom.
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Figure 7. 
Scatterplots of the point estimates (upper panels) and standard errors (lower panels) of 

Plasmodium falciparum prevalence for children between 2 and 10 years of age, using plug-

in, parametric bootsptrap and Bayesian methods. The dashed red lines in each panel is the 

identity line. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 8. 
(a) Predictive mean (solid line) of the country-wide average prevalence with 95% predictive 

intervals. (b) Predictive probability of the country-wide average prevalence exceeding a 50% 

threshold.
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Figure 9. 
(a) Predictive mean surface of prevalence for children between 2 and 10years of age (P f P R 

2–10); (b) Exceedance probability surface for a threshold of 5% P f P R 2–10. Both maps are 

for the year 2014. The contour lines correspond to 5% P f P R 2–10, in the left panel, and to 

25%, 50% and 75% exceedance probability, in the right panel. [Colour figure can be viewed 

at wileyonlinelibrary.com]
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Figure 10. 
Prevalence estimates (left panel) and standard errors (right panel) based on the Demographic 

and Health Survey conducted in Senegal in 2014. Those are obtained from a model using a 

spatial indicator for urban and rural communities (x-axis) and excluding this explanatory 

variable (y-axis). The dashed line in both graphs is the identity line. [Colour figure can be 

viewed at wileyonlinelibrary.com]
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Figure 11. 
The solid curve corresponds to the function f1(u) = 0.5{M(u; 0.1, 0.5) + M(u; 0.07, 2.5)} 

and the red dashed curve to M(u; 0.109, 0.774), where M(-;ϕ, κ) is a Matérn correlation 

function with scale parameter ϕ and smoothness parameter κ. [Colour figure can be viewed 

at wileyonlinelibrary.com]
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Table 1
Number of surveys and country-wide average Plasmodium falciparum prevalence, in each 
time block.

Time block Number of surveys Average prevalence

1: 1904–1960 180 0.416

2: 1961–1966 109 0.384

3: 1967–1977 104 0.402

4: 1978–1997 101 0.134

5: 1998–2008 191 0.111

6: 2009–2010 187 0.051

7: 2011 140 0.043

8: 2012–2013 157 0.038

9: 2014 165 0.019
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Table 2
Maximum likelihood estimates of the model parameters and their 95% CI based on the 
asymptotic GA and PB.

Parameter Estimate 95% CI (GA) 95% CI (PB)

β 1 –1.830 (–3.180,–0.480) (–3.131,–0.367)

β 2 0.118 (0.017, 0.220) (0.019, 0.226)

β 3 –0.334 (–0.562,–0.105) (–0.585,–0.103)

β 4 0.015 (–0.022, 0.052) (-0.025, 0.052)

β 5 –0.014 (–0.055, 0.027) (–0.056, 0.030)

σ 2 3.650 (2.378, 5.601) (2.272, 5.222)

ϕ 381.022 (225.948, 642.528) (220.593, 568.953)

τ 2/σ 2 0.157 (0.097, 0.253) (0.105, 0.253)

ψ 6.730 (3.571, 12.683) (3.484, 10.669)

CI, confidence intervals; GA, Gaussian approximation; PB, parametric bootstrap.
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Table 3
Posterior mean and 95% credible intervals of the model parameters from the Bayesian fit.

Posterior mean 95% credible interval

β 1 –1.899 (–3.746, –0.275)

β 2 0.116 (0.013,0.212)

β 3 –0.335 (–0.560,–0.115)

β 4 0.013 (–0.023, 0.050)

β 5 –0.013 (–0.054, 0.028)

σ 2 4.649 (2.887, 7.641)

ϕ 504.330 (283.019, 863.198)

τ 2/σ 2 0.137 (0.075, 0.217)

ψ 9.098 (4.443, 16.608)
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