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Functional neuroimaging techniques are widely applied to investigations
of human cognition and disease. The most commonly used among these
is blood oxygen level-dependent (BOLD) functional magnetic resonance
imaging. The BOLD signal occurs because neural activity induces an
increase in local blood supply to support the increased metabolism that
occurs during activity. This supply usually outmatches demand, resulting
in an increase in oxygenated blood in an active brain region, and a corre-
sponding decrease in deoxygenated blood, which generates the BOLD
signal. Hence, the BOLD response is shaped by an integration of local
oxygen use, through metabolism, and supply, in the blood. To understand
what information is carried in BOLD signals, we must understand how sev-
eral cell types in the brain—local excitatory neurons, inhibitory neurons,
astrocytes and vascular cells (pericytes, vascular smooth muscle and
endothelial cells), and their modulation by ascending projection neurons—
contribute to both metabolism and haemodynamic changes. Here, we
review the contributions of each cell type to the regulation of cerebral
blood flow and metabolism, and discuss situations where a simplified
interpretation of the BOLD response as reporting local excitatory activity
may misrepresent important biological phenomena, for example with
regards to arousal states, ageing and neurological disease.

This article is part of the theme issue ‘Key relationships between non-
invasive functional neuroimaging and the underlying neuronal activity’.
1. Introduction
The blood oxygen level-dependent (BOLD) signal in functional magnetic reson-
ance imaging (fMRI) is used as a surrogate measure of neuronal activity.
However, because it is not caused directly by neuronal activity but by the
disruption of the magnetic field by deoxyhaemoglobin in the blood, the
BOLD signal is influenced by several factors beyond neuronal activity. These
factors include the geometry of the vascular bed with respect to the magnetic
field [1], the concentration of haemoglobin in the blood, blood volume and
the oxygenation state of the blood. While the oxygenation state of the blood
can be altered by systemic factors such as cardiac rhythm and breathing [2],
oxygenation state within the brain is set by the balance between the extraction
of oxygen from the blood to fuel increased metabolism (neurometabolic coup-
ling), and the supply of freshly oxygenated blood to an active brain region
owing to the dilation of local blood vessels (neurovascular coupling, producing
functional hyperaemia). In this review, we examine the contribution of different
cell types to these two processes and, therefore, to the BOLD signal to better
understand what a regional change in BOLD reveals about the underlying
neuronal activity.
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2. Neurovascular coupling
(a) Why does neurovascular coupling exist?
The brain is energetically expensive, accounting for 20% of the
body’s resting energy consumption [3]. In the cerebral cortex,
the largest component of this energy is used to fuel the
sodium–potassium ATPase, which reverses passive ion
fluxes during the action and synaptic potentials to maintain
ionic electrochemical gradients [4,5]. Despite this high
demand, the brain stores very low levels of energy substrates
required for ATP production, largely in the form of glycogen.
Compared with other organs, the brain’s glycogen storage
capacity is small, being approximately one-tenth of that of
skeletal muscle and one-thirtieth that of the liver (from
values reported in [6–10]). Therefore, the brain requires a con-
stant supply of oxygen and glucose to drive ATP production,
mostly from oxidative phosphorylation [11]. Neurovascular
coupling is assumed to be necessary to increase the supply
of energy substrates (oxygen and glucose) in the blood when
neurons are active. In fact, the supply of oxygen during neuro-
vascular coupling is substantially greater than that consumed
by active brain regions (e.g. [12–15]), at least in the neocortex,
resulting in the decrease in deoxygenated haemoglobin that
produces the positive BOLD signal commonly measured in
fMRI studies [16]. The reason for this oversupply of oxygen
remains unclear, but may involve a requirement for a large
concentration gradient between the vessel and the tissue for
adequate oxygen delivery [17], and the spread of hyperaemia
(increased blood supply) to vessels in regions that are not
themselves active but that surround and are upstream of
active brain regions (see below). Alternatively, the main pur-
pose of neurovascular coupling may not be to increase
oxygen supply [18,19] but something else, such as the main-
tenance of stable tissue glucose concentrations to support
aerobic glycolysis [20] (but also see [21,22]), washout of
waste products such as CO2 (but see [23]) and lactate (dis-
cussed in [24]), maintenance of appropriate tissue [O2]/
[CO2] ratio [25] or temperature regulation [26]. Whatever its
purpose, the regional increase in oxygenated blood generated
by neurovascular coupling is reliable enough, in healthy
physiology, to generally allow an inference of increased neur-
onal activity from BOLD fMRI signals. However, an
understanding of which cells drive the increase in cerebral
blood flow (CBF, figure 1) and which cells consume oxygen
is required to fully and accurately interpret BOLD signals
and to understand the limits of their utility.

(b) Neuronal subtypes
Neuronal activity is the initiator of the BOLD signal, which is
often assumed to represent the aggregate activity of excit-
atory neurons in a brain region. Indeed, task-associated
BOLD signals increase in areas of the brain where the
excitatory activity is expected to be increasing [27–30]. Fur-
thermore, studies combining electrophysiological recordings
or specific inhibitors of neural activity with BOLD signals
[30] and haemodynamic increases [31,32] have directly
demonstrated that these measures reflect an underlying
increase in net neural activity. Conversely, negative BOLD
responses in human subjects were observed in regions exhi-
biting increased GABAergic tone [33], and thus where
neuronal activity may have decreased below baseline levels.
The idea that increased inhibition, and thus lower net
neural activity, underlies negative BOLD responses is further
supported by experiments in primates [34] and rodents
[35–38], which show that negative BOLD and haemodynamic
signals occur in areas with decreased excitatory activity [39].
While this simple interpretation, that positive and negative
BOLD signals reflect increases and decreases in net activity,
lends itself easily to investigations of cognitive function in
humans, it may not always hold true. Pharmacological
studies blocking both glutamate and γ-aminobutyric acid
(GABA) receptors have shown that both neurotransmitters
are likely involved in neurovascular coupling [32,40,41],
suggesting that haemodynamic responses (and, therefore,
the BOLD signal) are elicited by a combination of signals
from excitatory and inhibitory neurons. Indeed, inhibitory
interneurons may play a more important role in the pro-
duction of BOLD signals than was previously appreciated.
Many classes of interneurons have processes that directly
target blood vessels [42] and can induce or modify neurovas-
cular coupling [43]. Emerging evidence also indicates that
inhibitory neurons can directly alter cerebral haemodynamics
[44–48] in a manner that can be independent of net local
activity [47,49]. In particular, using an optogenetic approach,
Lee et al. [47] demonstrated that neuronal nitric oxide
synthase (nNOS)-expressing interneurons can drive increases
in blood volume with minimal change in net neural activity.
Activity in different interneuron populations might also
generate the negative BOLD response: optogenetic activation
of somatostatin- [47] and parvalbumin- [44,50] expressing
interneurons can elicit ‘negative’ haemodynamic responses.
However, the contribution of these interneurons to the
BOLD response is ambiguous, with studies reporting their
ability to evoke positive [44,46,47], inverted [44,47,50] and
delayed positive [46,48] haemodynamic responses. While
the relative importance of individual subpopulations of
inhibitory interneurons in shaping neurovascular coupling
remains an open question, it is clear that these cells can
directly modulate CBF and that BOLD signals reflect aspects
of both excitatory and inhibitory neuronal activity. Therefore,
although BOLD signals indicate changes in neural activity in
specific brain regions, they cannot distinguish between
increases in inhibitory and excitatory activity (see [51] for
an in-depth discussion). Further, interneuron dysfunction is
emerging as an important contributor to neurological and
psychiatric diseases such as Alzheimer’s disease, epilepsy
and schizophrenia (see [52–56]), which may alter neurovas-
cular coupling and complicate interpretation of the BOLD
response in these patient populations.

Task-induced activations may modulate subjects’ atten-
tion and arousal via the activity of subcortical projection
neurons such as neuromodulatory volume transmission
systems (noradrenaline, acetylcholine, dopamine, serotonin,
etc.), which also modulate neurovascular coupling [57–59]
and the BOLD signal [60–62]. These neuromodulatory
systems can alter, independently, the activity of excitatory
neurons, inhibitory interneurons, astrocytes and even the
vasculature itself, potentially complicating interpretation of
BOLD signals during states of altered attention or arousal,
or during diseases that affect these systems. A key question
is whether the sensitivity of the vasculature to ongoing
neural activity is altered by changes in neuromodulatory
activity. This appears to be the case for the cholinergic
system, as pharmacological or neurotoxic decreases in cholin-
ergic tone weakened the correlation between sensory-evoked
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Figure 1. Multicellular contributions to neurovascular coupling. Activation of excitatory neurons in the brain is believed to initiate the neurovascular signals that cause
increases in cerebral blood flow (CBF). However, inhibitory interneuron activity almost invariably occurs in parallel with excitatory activity and signals from these inter-
neurons appear to be the stronger regulators of CBF. The neural activity also stimulates astrocytes, which can regulate capillary diameter and modulate overall changes in
CBF. Ascending projection systems can further tune the locally generated vasoactive signals, or may directly modulate the vasculature. Once the vascular pericytes or
endothelial cells have sensed vasoactive signals from the surrounding tissue, these signals propagate through the endothelium to contractile pericytes and smooth
muscle cells on upstream vessels and their branches, which may not themselves feed active tissue. VSMCs, vascular smooth muscle cells. Created with BioRender.com.
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neuronal activity and the haemodynamic response [57].
Similar changes may contribute to the impaired neurovascu-
lar coupling [63] and BOLD signals [64–66] in Alzheimer’s
disease, a condition characterized by loss of cholinergic
tone [67].
(c) Astrocytes
Astrocytes are in contact with both neuronal synapses and
blood vessels, ideally situating them to support neuronal
energy demands: either directly through the provision
of metabolites such as lactate (reviewed by [68]; see below)
or indirectly by involvement in neurovascular coupling
(reviewed by [69]).

Neuronal activity can evoke an increase in astrocyte
intracellular calcium, leading to the release of vasoactive
molecules, and altered haemodynamics [70–74]. Optogenetic
stimulation of astrocytes can also increase BOLD without
altering neuronal activity [75], indicating that astrocytes can
act as a bridge between neuronal activity and blood flow.
However, astrocytic calcium signals have been criticized as
being too slow or infrequent to explain the dilations of arter-
ioles that occur in response to neural activity [70,76–78].
Instead, these slow, usually somatic, increases in astrocyte
calcium may: (i) contribute to arteriolar dilation only under
conditions of sustained neuronal activity [77,79], (ii) mediate
vasoconstriction and the return to baseline tone after func-
tional hyperaemia [80] and (iii) modulate basal vessel tone
[77,81,82]. Astrocytes may also facilitate neurovascular coup-
ling, as slow increases in astrocyte calcium may produce
longer duration [79] haemodynamic responses.
By contrast to these slow calcium signals, fast calcium
signals associated with neural/synaptic activity in (predomi-
nantly) astrocytic fine processes and endfeet are increasingly
being reported [80,83–85]. These signals occur shortly after
neural activity [86,87], precede arteriole and capillary dilation
[88] and potentiate the increase in blood volume by almost
threefold [80]. These fast signals may be particularly impor-
tant for controlling flow in the capillary bed, where (unlike
in arterioles) astrocyte calcium signals were found to be
necessary for neurovascular coupling [71,72].

In summary, astrocytes may drive neurovascular coupling
in two ways: fast calcium signals that fine-tune the haemo-
dynamic response by generating molecules that dilate
capillaries, and slow calcium signals that modulate the size
and shape of arterial dilations, and perhaps help terminate
functional hyperaemia when neuronal activity ceases. The
specific features of neuronal activity that drive these different
astrocyte signals are currently unclear, and their discovery
will be key for fully understanding what information haemo-
dynamic and BOLD signals carry about neuronal activity
changes. Furthermore, because spin-echo signals reflect
changes in capillaries more robustly than gradient echo signals,
particularly at higher magnetic fields [89–91], and because
capillary dilations depend on fast astrocyte signals, fMRI exper-
imentsmay differentially reflect certain aspects of neuronal and
astrocyte activity depending on the methodology used.

Lastly, the role of astrocytes in shaping the BOLD
signal in neurological diseases must also be considered. In
Alzheimer’s disease and following ischaemia, subarachnoid
haemorrhage, and traumatic brain injury, impairments in
neurovascular coupling and cerebral haemodynamics have
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been reported in both humans and animal models [92,93].
These same conditions are also characterized by reactive
astrogliosis, a response of astrocytes to alterations in their
microenvironment that includes changes in their morphology
and gene expression. It is conceivable that reactive astrocytes
are, at least in part, to blame for the neurovascular deficits in
these conditions [92,94] and should be the focus of future
research. For example, subarachnoid haemorrhage causes
an inversion of neurovascular coupling, whereby increases
in neural activity are coupled to a decrease in CBF, which is
mediated by pathologically large calcium signals within
astrocyte endfeet causing a large outflux of potassium, via
large conductance calcium-activated potassium (BK) chan-
nels, onto the vasculature [95]. Interpretation of the BOLD
response from patient populations should, therefore, consider
such astrocyte-mediated uncoupling between neural activity
and CBF.

(d) The vasculature
In addition to signals from neurons and astrocytes, properties
of the vasculature itself shape the BOLD response in multiple
ways. While anatomical differences in vascular beds (geom-
etry relative to the magnetic field, vascular density,
proportion of veins and capillaries) can alter the magnitude
of the BOLD signal (see [1,17,96,97]), we focus here on the
contributions of different cell types to the physiological
processes that underpin BOLD.

(i) Vascular mural cells: pericytes and smooth muscle cells
The cells that directly constrict and dilate blood vessels by
contracting or relaxing in response to signals from the par-
enchyma, or the blood, are the contractile vascular mural
cells: smooth muscle cells (SMCs) and pericytes. The defi-
nitions of these two types of cells have been hotly debated
[98,99], but here we consider pericytes as mural cells with dis-
crete soma and processes, and SMCs as cells with a banded
and contiguous morphology [99]. SMCs on arterioles have
long been known to be involved in mediating vascular
dilations that underlie neurovascular coupling, whereas the
role of pericytes on capillaries and precapillary arterioles
has emerged more recently [72,100–102]. Pericyte mor-
phology varies down the vascular bed, as has been
elegantly described [103], from ensheathing pericytes,
whose processes encircle the underlying vessel, to thin
strand pericytes in the middle of the capillary bed, with
long processes that extend along but rarely around the
vessel. It is now well-established that ensheathing pericytes
express smooth muscle actin and can actively constrict and
dilate in response to neuronal activity [98,101,103,104].
More controversial is whether mesh and thin strand pericytes
on smaller capillaries can regulate vessel diameter. Although
some groups find they do not [98,105], neuronal activation
causes calcium to drop in these cells [104], and we and
others have observed capillary dilations in response to neur-
onal activity (up to fourth branching order, diameter ≤ 5 µm
[72,101,102,104,106]), and two recent papers report constric-
tion of mid-capillary pericytes in response to optogenetic
stimulation [107,108]. We suspect that the imaging resolution,
sampling rate and smoothing may be key factors in whether
these small fluctuations in diameter in the mid-capillary bed
can be detected. The evolutionary reason for such local regu-
lation of blood flow is unclear. Perhaps active neurons’
oxygen requirements are best matched by very local modu-
lation of blood flow, or perhaps local regulation is simply a
consequence of local production of vasoactive signalling
molecules with a limited diffusional spread. Alternatively,
capillary-level regulation of flow could optimize tissue
oxygenation by mediating the increase in homogeneity of
red blood cell flux in different capillaries that happens
during functional activation [109,110], which maximizes
oxygen extraction [111,112].

The responses of all of these different types of pericytes are
important for shaping the increase in CBF that occurs following
neuronal activity. Because capillaries represent a higher resist-
ance to flow than arterioles or venules [113], their dilation
produces a larger decrease in resistance than does arteriole
dilation. Therefore, relaxation of capillary pericytes mediates a
larger component of the functional hyperaemia response (capil-
lary dilation contributes to 50–84% of the overall change in CBF,
while arteriole dilation contributes less than 25% [101,104]). The
speed at which different types of pericytes respond to neuronal
activation varies, with ensheathing pericytes on the first and
second branches off an arteriole dilating before downstream
mid-capillary pericytes [101,104,114]. The relative response
times of first-order branches comparedwith upstreamarterioles
is less clear, with different studies reporting that first-order
branches dilate earlier than [101,114], concurrently with [104]
or following [115,116] the upstream arterioles. Regardless of
timing, these dilations are functionally important: using a com-
partmentalized computational model, Rungta et al. [104]
demonstrated that the absence of dilation by either ensheathing
or mid-capillary pericytes profoundly attenuates evoked
increases in CBF. Thus, the BOLD signal is shaped in different
ways by ensheathing pericytes—the likely initiators of capillary
dilation—and mid-capillary thin strand pericytes, whose
dilation mediates the majority of the increase in flow.

These vascular mural cells might also be differentially sen-
sitive to disease. For example, in Alzheimer’s disease, soluble
amyloid β (Aβ) constricts pericytes [117], whereas its effect on
SMCs is more debated [117–119]. Cerebral amyloid angiopa-
thy, on the other hand, in which Aβ aggregates deposit on
vessels, preferentially occurs around the SMCs of larger arter-
ioles [120] and restricts their function [121]. Thus, BOLD
signals in patients with Alzheimer’s disease might be compro-
mised differently depending on the disease state, owing to
effects initially on pericytes by soluble Aβ, and later on
SMCs by aggregates of Aβ that form around arterioles.
(ii) Endothelial cells
The best-established role of endothelial cells in shaping the
vascular response to neuronal activity, and therefore
the BOLD signal, is to propagate vasodilatory signals along
the vasculature, thus amplifying the haemodynamic response
by dilating blood vessels upstream of local neural activity.
Such long-range propagation and modulation of blood flow
has long been known to occur in peripheral vascular beds
[122,123], the retina [124] and the brain [125], although the
mechanisms that underlie this propagation and how this
shapes neurovascular coupling have only recently been
appreciated [126,127]. Vasodilation arising from neuronal
activity local to the mid-capillary bed can be communicated
to upstream vessels by a regenerating hyperpolarizing
current that is mediated by Kir2.1 channels [105] and propa-
gated between endothelial cells via connexin-40-containing
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gap junctions [128], which couple more efficiently and pref-
erentially with upstream vessels during functional
activation [129]. Activation of endothelial NMDA receptors
and endothelial NOS (eNOS) can also evoke dilation in adj-
acent vascular mural cells [130,131]. Given the evidence
discussed in previous sections, it is likely that these signals
first produce vasodilation in ensheathing pericytes of small
arterioles or first capillary branches before being propagated
upstream to dilate larger penetrating and pial arterioles.
Whether dilation of mid-capillary pericytes occurs as a
slowly developing response to the same vasoactive signal
that generates a propagating hyperpolarization of endothelial
cells, or as a secondary passive response to the upstream
dilation, remains to be seen.

Vasoactive signals propagated through the endothelium
shape functional hyperaemia, and therefore BOLD signals.
The haemodynamic response to neural activity (particularly
in the first 10 s of a 12 s hindpaw stimulation) was reduced
when endothelial signalling and, therefore, propagation of
vasodilation, was prevented by light–dye treatment of pial
arteries [132]. Endothelial propagation also gives rise to
another interesting phenomenon: once vasodilation has
spread upstream to pial arteries, it can then propagate down
other vessel branches that feed nearby brain regions that do
not themselves harbour any change in neuronal activity
[133,134], leading to two important features of the BOLD
signal. First, the early haemodynamic response (less than 2 s)
is more spatially confined to the active region of the brain
compared with the later component, as the signal has not
had time to propagate outside the active region [135].
Second, the propagated increase in blood flow is likely to
be a major reason why the positive BOLD signal exists: inac-
tive tissue near activated regions experiences an increase in
blood supply without any oxygen consumption, allowing
the oxygenated haemoglobin levels to increase and deoxy-
haemoglobin levels to fall, thereby generating the positive
BOLD signal. This idea is supported by optical intrinsic ima-
ging and spectroscopic studies that identified a small region
of tissue hypoxia and increased oxygen consumption in the
active region, immediately before oxygenated blood volume
increased in the surrounding area spanning several
millimetres [136,137]. This localized increase in oxygen con-
sumption prior to the CBF increase gives rise to the ‘initial
dip’ sometimes observed in the BOLD signal with a similar
spatial and temporal pattern [135,138–140].

BOLD signals can also be shaped by multiple factors that
modulate endothelial propagation of vasodilation. In the
retina, endothelial conduction is dramatically reduced by the
vasoconstricting hormone angiotensin II [141], and facilitated
by nitric oxide (NO) [129]. In the cortex, neurovascular coup-
ling depends on arterial endothelial cell caveolae, which
may be required to cluster the ion channels needed for propa-
gation [142]. Endothelial propagation may also be modulated
by changes in levels of the membrane phospholipid PIP2
which, when depleted by activation of Gq-coupled receptors,
reduce the activity of Kir2.1 and impair propagation of vaso-
dilation [143]. Many of these pathways are modified by
disease. Loss of endothelial or pericyte–endothelial gap junc-
tion coupling is observed in diabetes [124,129,144], while
angiotensin II levels are raised inhypertension [141] andangio-
tensin II synthesis and its receptor are primary targets of
hypertension treatment [145]. These pathologies, or treatments
thereof, are likely to regulate endothelial cell coupling and thus
the spread of dilation through the vascular network, ultimately
influencing the size and shape of the BOLD response.
Consideration of impaired functioning of pericytes, SMCs
and endothelial cells is, therefore, critical when conducting
BOLD experiments in ageing and patient populations.
3. Contributions of metabolism to BOLD signals
As discussed above, the increase in CBF that irrigates active
brain regions occurs in response to concerted signalling
from several cell types, including excitatory neurons, inhibi-
tory neurons and astrocytes. Haemodynamic responses are
further shaped by modulation from subcortical structures,
and endothelial propagation along the vascular tree. How-
ever, the BOLD response represents not only the increase in
oxygenated blood but its balance with the rate of oxygen con-
sumption by nearby cells. Therefore, it is important to
consider the oxygen consumption of different cell types in
the brain to determine their relative impact on the BOLD
signal. Neglecting any roles in increasing blood flow, highly
oxygen-consuming cells will reduce blood oxygenation and
the positive BOLD signal, so using positive BOLD as a read-
out of neuronal activity will underrepresent these signals
compared with active, but less oxygen-consuming cells.
These cells’ activity will be better detected using calibrated
BOLD methods, which allow the calculation of regional
oxygen consumption rates by disambiguating changes in
CBF from the BOLD response [146].

(a) Excitatory neurons
Energy budgets of neuronal transmission, which calculate the
expected ATP use of different cellular processes based on
membrane conductances, firing rates and sizes of different
cell types, initially suggested that action potentials accounted
for the largest proportion of signalling energy use within
rodent cortical grey matter [4]. However, incorporating ener-
getically efficient action potentials [147,148] into such
calculations results in excitatory synapses being the most
energetically expensive component of neuronal signalling
[5]. This is because of the relatively large ion fluxes that
drive excitatory post-synaptic potentials (EPSPs) compared
with action potentials, which then need to be reversed by
the action of the sodium–potassium ATPase. The proportion
of energy use associated with various cortical signalling pro-
cesses has been suggested to be consistent across mammalian
species and activity levels, with post-synaptic processes being
the largest consumers of neuronal ATP in both rodents (47–
53%) and humans (42–59%) [149]. These findings support
the use of rodent models in fMRI studies informing our
knowledge of human brain function. Careful cross-species
approaches will allow more reliable translation of findings
between preclinical and human fMRI studies [150].

ATP at synapses is proposed to be glycolytically generated
[151], and therefore not to consume oxygen or influence the
BOLD signal. However, measurements of oxygen concen-
trations during inhibition of glutamatergic synapses showed
that most oxygen was consumed by EPSPs at synapses, fol-
lowed by action potentials [11], and that the correlations
between local field potentials and cerebral metabolic rate of
O2 (CMRO2) [152,153] support excitatory synapses as a crucial
determinant of CMRO2. Because there are nine times more
excitatory than inhibitory neurons in the cerebral cortex
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[154] and because excitatory neurons have more excitatory
synapses than do interneurons [155], much of the oxygen con-
sumed by EPSPs and action potentials will be used by
excitatory cells. Hence, it follows that excitatory neurons are
a major consumer of tissue oxygen.
publishing.org/journal/rstb
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(b) Inhibitory neurons
While fewer in number, inhibitory neuronsmay still contribute
to brain oxygen consumption in two substantial ways: first,
by increasing the energetic cost of excitation and second, by
being, on average, more metabolically active than excitatory
neurons [156].

Inhibitory inputs can increase the energetic costs of excit-
atory cells’ firing. Reversal of chloride fluxes at inhibitory
synapses is, in itself, not expected to be energetically expensive
as the reversal potential for chloride is near the resting mem-
brane potential of the cell. However, the co-occurrence of
excitation and inhibition may increase the energetic cost of
excitation in at least two ways. Firstly, inhibition increases
themetabolic cost of excitatory synapses: by holding themem-
brane at more hyperpolarized potentials, inhibition increases
the driving force and inward flux of sodium ions, and more
ATP is required to reverse these ion fluxes [157]. Secondly, in
the presence of inhibition, more excitatory inputs are required
for a cell to reach its threshold for firing an action potential.
This happens because excitation needs to counter both hyper-
polarization of the membrane and shunting inhibition—the
increased membrane conductance caused by the opening of
chloride or potassium channels that impairs the spread of
EPSPs to the axon hillock. The increased sodium driving
force and the requirement for more synaptic inputs both criti-
cally depend on the timing of inhibitory inputs, with increased
temporal overlap between inhibitory and excitatory inputs to a
single cell predicted to dramatically impact the energy cost of
neuronal transmission [157]. In fact, inhibitory and excitatory
inputs to hippocampal and cortical neurons are often
near-synchronous during fast sharp-wave ripple [158,159],
theta-like [160] and slow (less than 1 Hz) oscillations [161],
suggesting that inhibition is likely to increase the energy
used to fuel excitatory neurons in these conditions. This
‘tight balance’ of excitation and marginally delayed inhibition
to individual principal neurons is a common (though not uni-
versal) feature of neural networks, which increases the
precision of spike timing and makes coding more efficient
by reducing the number of spikes needed to accurately rep-
resent information at the population level [162]. Thus, brain
networks may offset increased synaptic energy use caused
by concurrent excitation and inhibition with resultant
decreased energy spent on spiking per unit of information
transmitted.

The degree of overlap of excitation and inhibition is not
constant at a synapse, suggesting that the metabolic cost of
inhibition will also vary. At CA3–CA1 synapses, Bhatia et al.
[163] found no overlap between EPSCs and IPSCs in response
to activation of only a few synapses, while stronger stimuli
evoked faster IPSCs that overlapped with EPSCs. Therefore,
inhibition is expected to disproportionately increase synaptic
energy use for stronger stimuli in this network, potentially
reducing the size of the positive BOLD response to such
stimuli (which would be better represented by CMRO2

measurements from calibrated BOLD). Factors that alter
inhibition, such as alterations in brain state and the
neuromodulators acetylcholine and noradrenaline [164,165],
are also likely to affect the degree of overlap of inhibitory
and excitatory currents, and therefore the synaptic energy
use. The contribution of inhibitory currents to excitatory
synaptic energy use is, therefore, likely to be quite variable
and altered in different arousal states or disease, but requires
quantification before it is possible to estimate its effect on net
CMRO2 or BOLD signal.

In addition to the impact of inhibition on themetabolic cost
of excitatory synaptic inputs, increased energy use due to inhi-
bition may occur as a result of oxygen consumption by
inhibitory interneurons themselves. Fast-spiking parvalbumin
interneurons are probably the main contributor to increased
energy metabolism during inhibition. They are relatively
numerous (around 40% of GABAergic cells in neocortex, for
example [166]) and, relative to other interneurons, they have
higher levels of cytochrome c oxidase, more mitochondria, a
higher density of excitatory inputs and adaptations such as
increased sodium channel density, which allows an extremely
fast firing rate but decreases the energy efficiency of action
potential firing [167–169]. The contribution of other inter-
neuron types to net CMRO2 is less studied, but may also be
significant (although see [170]), as their firing rates and cyto-
chrome c oxidase levels can be higher than those in
pyramidal cells [167,168]. By contrast to excitatory neurons,
interneurons are generally expected to consume more
oxygen to fuel action potentials than synaptic potentials,
because of their lower dendritic complexity but increased
axonal length and branching [171] (but also see [149]). Nota-
bly, the populations of interneurons that are likely to make
the largest contribution to brain oxygen consumption may
not be the same as those that control blood flow: fast-spiking
parvalbumin cells are very metabolically active, but may not
play a major role in the control of blood flow, while nNOS-
positive interneurons can control blood flow but make up
only 20% of all interneurons [42] and 2% of all neurons
[172], and hence are likely to be relatively underrepresented
in CMRO2. Therefore, positive BOLD and calibrated BOLD
CMRO2 measurements provide very different information
about which types of inhibitory cells are active.

Experimentally, inhibition has been shown to have a
significant energetic cost. 2-Deoxyglucose uptake (and by
extrapolation, metabolism) was more correlated with the
degree of inhibition than pyramidal cell firing after the electri-
cal stimulation of hippocampal inputs in rats [173]. Similarly,
in rat dentate gyrus, low-frequency stimulation of the perfor-
ant path decreased EPSP slope and population spike
latency (suggesting increased inhibitory tone), and decreased
BOLD, but cerebral blood volume was relatively preserved.
This indicated that CMRO2was elevated by the increased inhi-
bition [174]. These studies, therefore, suggest that CMRO2 is
not necessarily a good indicator of principal (excitatory)
neuron activity, but also represents inhibitory tone, be it alter-
ing the metabolic cost of information transmission within
excitatory cells and/or the firing of inhibitory neurons
themselves.

The impact of inhibition on CMRO2 should make us
reconsider themeaning of ‘activation’ of a brain region. As dis-
cussed above, a key function of inhibition is thought to
be to increase the precision of spike timing, and it may not
necessarily alter the net firing rate of a neuron. Therefore, fluc-
tuations in inhibition during a cognitive process may alter
coding and oxygen use in a brain region without altering the
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firing rate of principal neurons. From a computational per-
spective, this brain region is, therefore, involved in the
cognitive process but its ‘activity’ in classic terms of the level
of excitatory input or output has not changed. Maybe, then,
would it be better to consider that our aim with functional
imaging is to detect regions of altered processing, rather
than of activation? In this example, where inhibition alters
spike timing but not spike rate, CMRO2 measurements
would allow us to detect the changes in processing. However,
blood flow may not change (depending on whether the inter-
neurons mediating inhibition can dilate vessels) and positive
BOLD signal could be increased, decreased or unchanged,
depending on the level of any increased energy use and any
increase (or not) in CBF.

(c) Glial cells
Metabolism in astrocytes, oligodendrocytes or vascular
cells might also be expected to vary with neuronal activity,
but, in fact, they probably do not contribute much to the
corresponding fluctuations in CMRO2. Astrocytes contain
mitochondria and consume oxygen when depolarized opto-
genetically [75]. However, their metabolism is thought to be
predominantly glycolytic [175], and blocking astrocytic oxi-
dative phosphorylation does not affect net CMRO2 [176].
Indeed, active neurons may actually trigger increased glyco-
lytic ATP production in astrocytes to a degree that inhibits
astrocytic oxidative phosphorylation, in order to boost
oxygen availability for neurons [177]. Lactate produced by
glycolysis in astrocytes may then be shuttled to neurons to
support their oxidative metabolism [175]. The degree of con-
tribution of this astrocyte–neuron lactate shuttle in fuelling
the increased neuronal activity remains controversial [178],
however, in part because astrocytic glycolysis occurs after
neuronal oxidative phosphorylation [179].

Mature oligodendrocytes consume very little oxygen as
their metabolism is predominantly glycolytic, while oligoden-
drocyte precursor cells (OPCs) produce ATP predominantly
via oxidative phosphorylation [180]. However, oxygen use
by OPCs associated with increased neuronal activity is likely
minimal. Although their resting energy consumption in
white matter is similar to that in the grey matter, their
activity-dependent ATP use (synaptic connections from
axons to OPCs) is less than 1% of the total cost of neuronal
signalling in grey matter [181].

(d) Vasculature
The amount of oxygen consumed by the brain’s vasculature
(endothelial cells, SMCs and pericytes) itself is a question that
deserves further study. The maintenance of resting vascular
tone, aswell as changes therein during neurovascular coupling,
are enacted by the movement of ions, particularly calcium and
potassium, across the membrane of these vascular cells. ATP is
required to re-establish these ionic gradients and, therefore, the
vasculature is expected to contribute to metabolism. Exper-
iments performed outside the nervous system suggest that
these cells are highly energy consumptive. Sizeable drops in
oxygen concentration have been recorded across the vessel
wall of mesenteric and pial arteries, and models suggest this
reflects significant oxygen consumption by smooth muscle
and endothelial cells rather than just the existence of a diffusion
barrier [182,183]. Studies in dog and pig aorta have found a sig-
nificantly higher rate of oxygen consumption at the luminal/
endothelial surface compared with the abluminal surface
(0.36 versus 0.016 mMmin−1 [184]), indicating that endothelial
cells contribute significantly tovascular consumption rates. The
drop in oxygen concentration across the vessel wall also
increases with increased wall thickness, or decreasing
branching order of the vessel, suggesting that the number of
layers of vascular mural cells also plays a role [183]. At
1–5 mMmin−1 O2, net CMRO2 of the brain [185,186] is much
higher than the oxygen consumption rate of the vasculature
measured by some groups [184], though others find higher
values (up to 10 mMmin−1 [182]). However, because the
volume fraction of the brain’s vasculature is only 1–3% [187],
the contribution of vascular cells to net CMRO2 is likely mini-
mal compared with that of neurons, though it may
significantly affect O2 concentrations close to vessels.

In summary, brain oxygen consumption is predominantly
due to excitatory and inhibitory neuronal activity, although
glial and vascular cells also contribute. Oxygen consumption
by active neurons reduces positive BOLD signals, confound-
ing the accuracy of positive BOLD response as a readout of
neuronal activity. CMRO2 measurements from calibrated
BOLD studies may be a more accurate readout of the level
of net neuronal activity than positive BOLD, as they are
more spatially localized to active brain regions. However,
because the cells that are the most metabolically active (excit-
atory neurons or parvalbumin interneurons) are likely not the
same cells that signal to blood vessels to dilate (likely nNOS-
positive inhibitory neurons or astrocytes), CMRO2 signals
carry different information about which cells are active
compared with positive BOLD signals.
4. Conclusion
BOLD signals are shaped by the balance between oxygen
supply and its consumption. Extracting the maximum
amount of accurate information from BOLD signals will
require understanding which cells’ activity shapes these two
processes, especially as the same cells are not equally respon-
sible for both processes. The neuronal populations that
consume the most oxygen are likely to be different from
those that drive the largest increases in CBF. Astrocytes can
initiate vascular responses at smaller vessels whilemodulating
the response of arterioles, and vascular mural and endothelial
cells detect and propagate these signals to amplify the haemo-
dynamic response ultimately measured by the BOLD
response, without contributing as much to oxygen con-
sumption. A nuanced understanding of how alterations in
excitatory–inhibitory balance and different interneuron popu-
lations affect oxygen supply and consumption is key to
discovering how BOLD signals relate to circuit activity. Fur-
thermore, the future interpretation of BOLD signals should
also reflect our increasing understanding of how neurons,
astrocytes and vascular cells can be differentially affected
by disease states, and have correspondingly different effects
on the BOLD signal.
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