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Most physical and other natural systems are complex entities composed of a large number of 

interacting individual elements. It is a surprising fact that they often obey the so-called scaling 

laws relating an observable quantity with a measure of the size of the system. Here we describe the 

discovery of universal superlinear metabolic scaling laws in human cancers. This dependence 

underpins increasing tumour aggressiveness, due to evolutionary dynamics, which leads to an 

explosive growth as the disease progresses. We validated this dynamic using longitudinal 

volumetric data of different histologies from large cohorts of cancer patients. To explain our 

observations we put forward increasingly-complex biologically-inspired mathematical models that 

captured the key processes governing tumor growth. Our models predicted that the emergence of 

superlinear allometric scaling laws is an inherently three-dimensional phenomenon. Moreover, the 

scaling laws thereby identified allowed us to define a set of metabolic metrics with prognostic 

value, thus providing added clinical utility to the base findings.

Biological systems display complex spatially and temporally varying structures that are 

mainly a consequence of their underlying metabolism. Organisms continuously incorporate 

energetic and material resources from the environment, transforming and allocating them 

into different compartments that allow for their growth, reproduction and, hence, survival, 

both as individuals and as species. Metabolism involves random fluctuations and 

hierarchical processes that determine the pace at which organisms live and evolve. In a 

seminal work [1], Kleiber observed that, for a broad variety of species, metabolic rates scale 

to the 3/4 power of the animal’s mass. This result contradicted theories assuming a direct 

proportionality between the animal's volume and its metabolic rate, or other scalings such as 

metabolic rate being proportional to the animal surface. Scaling laws are of the form Z = αV 
β, where Z is an observable quantity, V is a measure of the size of the system -in living 

systems typically their volume or mass- α is a rate constant and β represents the scaling 

exponent [2]. West and coworkers proposed that the exponent β = 3/4 found by Kleiber 

could be the result of principles of minimal energy [3]. Many related studies have explored 

allometric scaling laws in other biological contexts [4–6].

Do human cancers obey metabolic scaling laws? Some evidence obtained from in vitro 
experiments or from xenotrans-plantation of patient-derived cells into immunocompromised 

mice seem to support that cancers also obey the Kleiber's law or similar sublinear dynamics 

[7–9]. However, no works have uncovered scalings laws from large cancer patient datasets. 

Here we addressed this question under the initial hypotheses that malignant tumours would 

scale between the metabolic requirements of coordinated tissues governed by minimal 

energy principles (leading to an exponent α≃3/4) and that of independent uncoordinated 

units (exponent α≃).

Tumour cells exhibit high metabolic requirements to sustain an upregulated proliferation. 

Nutrients such as glucose and, to a lesser extent, glutamine are mostly used to fuel biomass 

formation and macromolecule synthesis [10]. Deregulated glucose uptake by tumour cells, 

known as the Warburg effect, constitutes the basis of positron-emission-tomography/

computed-tomography (PET/CT)-based imaging by means of the radioactive tracer 18F-

fluorodeoxyglucose (18F-FDG), widely used in clinical oncology [11]. To study the 

relationship between tumour metabolic rates and volume we collected data of different 

Pérez-García et al. Page 2

Nat Phys. Author manuscript; available in PMC 2021 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



cancer types imaged at diagnosis with 18F-FDG PET/CT. Tumours were segmented and their 

total lesion activity (TLA) and metabolic tumour volume (MTV) calculated. TLA and MTV 

were computed as the product of each voxel volume within the tumour by its measured 

standardized uptake value (SUV) and as the summed volume of the segmented tumour 

voxels, respectively. Our first goal was to determine whether a dependence of the form TLA 

~ αMTβ could be identified. Figure 1 shows log-log plots of MTV versus TLA for patients 

with: locally advanced breast cancer (LABC), head and neck cancer (H&NC, stages II-IV), 

non-small-cell lung cancer (NSCLC, stages I-III) and rectal cancer (RC, stages III-IV) (see 

‘Methods' for more patient data). The obtained exponents were, β = 1.307 ± 0.069 (R2 = 

0.874, LABC), β = 1.182±0.030 (R2 = 0.954, H&NC), β = 1.248 ± 0.032 (R2 = 0.900, 

NSCLC), β = 1.386 ± 0.152 (R2 = 0.798, RC), as shown in Fig. 1(a,b,d,e). Thus, superlinear 

scalings clustered around the rational number β = 5/4 (Fig. 1(g)). Moreover, all patients 

scanned in the same institution and undergoing an identical protocol, thus providing 

comparable data, followed a common scaling law with β = 1.309 ± 0.030 (R2 = 0.895) [Fig. 

1(h)]. Possible artefacts on the scaling exponents due to the partial volume effect in PET 

images were discarded. Our findings contradicted the hypothesis of metabolic scaling being 

sublinear suggesting a fundamentally different dynamics.

This superlinear glucose uptake could be the result of different mechanisms. The first one 

would be an increase of the Warburg phenotype leading to a less efficient use of glucose. 

Also, the presence of immune cells and inflammation within the tumour region could be a 

contributing factor. However, since glucose is mostly used to satisfy the proliferation 

demands [10,11], we suspected that an increase of the proliferation rate with size was 

probably the main underlying cause.

To clarify this, we gathered data from glioma patients (grades II-IV) imaged at diagnosis 

with 18F-Fluorocholine PET (18F-FCHOL), and from breast cancer patients (stages II-IV) 

imaged at diagnosis with 3’-deoxy-3’-18F-fluorothymidine PET (18F-FLT). These two 

radiotracers reflect choline and thymidine metabolism and are related to cell proliferation 

[12, 13]. The obtained scaling exponents were β = 1.21 ± 0.08 for gliomas and β = 1.188 ± 

0.035 for breast cancers (Fig. 1(c,f)), in agreement with a superlinear activity and providing 

support to the hypothesis of an increased glucose uptake to satisfy the proliferation 

demands.

Superlinear scaling laws have been found in varied scenarios, ranging from urban 

infraestructures and socioeconomic networks to primitive life forms [2]. In contrast with 

sublinear scaling, which leads to stable bounded growth, superlinear scaling produces 

unbounded growth. For biological organisms, whole-body metabolic rates increase with size 

across prokaryotes, protists and metazoans, although each group is characterized by a 

distinctive scaling relationship that is unique to their body size range [14]. In heterotrophic 

prokaryotes the relationship between metabolic rate and body mass has an exponent β > 1, 

whereas for metazoans it is β < 1. Within an evolutionary perspective, the transition from 

simple prokaryotes to complex eukaryotes has shown not only a higher level of multicellular 

organization, but also a trend towards the 3/4 scaling exponent of Kleiber's law. Our results 

suggest that human cancers, as they progress, decrease the efficiency of their local vascular 
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network [15], which would tend to increase their scaling exponents and significantly deviate 

from the 3/4 Kleiber's law.

To further quantify the relationship between tumour size and metabolism, let B ∝ Vβ denote 

the metabolic rate of a tumour, where V is the volume occupied by viable cells. A simple 

mathematical model accounting for energy conservation describing the temporal dynamics 

of tumour growth is B = aV + bdV
dt , where the first and second terms correspond to cell 

maintenance and proliferation, respectively [16]. If most of the energy is used for cell 

biosynthesis, we may write

dV
dt = αV β . (1)

When β > 1, there is a finite time tcrit = t0 + v0
1 − β / α , β − 1,  at which the tumour 'blows 

up', where V 0 is the volume at time t 0. For detais see Supplementary Information (SI) 

Section S1. Thus, the existence of a superlinear scaling law between proliferation and 

volume implies an increasingly accelerated volumetric growth and the formation of a 

singularity in a finite time. In real cancers such dynamics cannot be sustained to the blow-up 

point, since tumours are subject to physical and nutrient-supply constraints. In patients, such 

an accelerated growth in the final stages entails metabolic and spatial requirements 

incompatible with life.

There has long been discussion about the best mathematical model for describing tumour 

growth, most of them assuming different types of bounded dynamics [7,17–20]. The data 

supporting these models comes from patient-derived cell lines cultured in vitro or, else, from 

either allotransplantation of murine cells into syngeneic immunocompetent inbred mice or 

from xenotransplantation of patient-derived cells into immunocompromised mice. These 

models have a number of shortcomings when compared with their human counterparts. They 

display loss of genetic heterogeneity and irreversible changes in gene expression due to 

long-term in vitro propagation [21] and exhibit a rapid non-autochthonous growth that 

results in a perturbed tissue architecture with alterations in the vascular, lymphatic and 

immune compartments.

To investigate whether explosive tumour growth could be observed in cancer patients, we 

looked for longitudinal imaging datasets of untreated tumours. Data of this type is scarce 

since growing tumours are typically either treated or -as in the case of palliative care 

patients- not followed up by imaging. Most available datasets had either incomplete 

information, no volumetric imaging and/or very few time points. Mandonnet and colleagues 

[22] studied the growth dynamics of untreated WHO grade II gliomas, Van Havenbergh [23] 

analysed petroclival meningiomas, and Heesterman et al [24] head and neck 

paragangliomas. Growth dynamics consistent with sublinear scalings were observed for 

those slowly growing tumours. To further confirm this idea, we collected longitudinal 

volumetric growth data from a set of lung hamartomas, the most frequent benign lung 

tumour type, and found a best fit of Eq. (1) with β = 0.5 ± 0.2 (Fig. 2(d)). Hence, not all 

human tumours manifest an explosive growth.
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We also collected imaging datasets of patients bearing tumours that were either malignant 

initially or became malignant over the course of the disease (see ‘Methods' for a description 

of the patient datasets). The first one was a set of brain metastases in which one of the 

lesions was either below target definition or left without therapy due to medical reasons. A 

second set comprised initially WHO grade II gliomas that underwent surgery and then 

received no other treatment for long periods. The third was a set of patients enrolled in a 

lung cancer screening program. After detection of lung nodules with no signs of malignancy 

they where followed up by low-dose CT scans. Many of these tumours accelerated their 

growth until a point at which further therapeutical actions were taken. Finally, we included a 

subset of petroclival meningiomas that showed signs of atypical behaviour (cases 5, 6, 9, 11 

of Fig. 7 and cases 14, 18 of Fig. 8 in Ref. [23]). For each patient we fitted the longitudinal 

volumetric growth data using different power-law models expressed by Eq. (1). We tested 

the exponents β = 3/4 (size-limited Kleiber's law), β = 1 (exponential growth law) and then 

superlinear β = 5/4. Subsequently, we searched for the exponent that minimised the mean 

square error (MSE) for all patients within each tumour type. In all these examined cases, the 

existence of an explosive growth dynamics was confirmed [Fig. 2(b,c,e,f)]. A comparison of 

the MSEs for the different exponents and tumour types is shown in Fig. 2(g). We also 

performed a least-squares fitting of the α,β parameters for each patient and computed the 

mean and standard deviation for patients of each pathology. The results obtained were 

1.493±0.0197 (BMs), 1.360±0.2922 (NSCLC), 1.466±0.269 (LGGs) and 1.690±0.452 

(AMs) respectively. Thus, exponents obtained using the two methodologies were compatible 

between them and superlinear.

To determine whether animal models could also provide evidence of super-exponential 

tumour growth dynamics, we performed experiments on two animal models chosen because 

of their close relationship to their human counterparts. First, we injected the human lung 

adenocarcinoma brain tropic model H2030-BrM [25] into the heart of nude mice in order to 

induce the formation of brain metastasis from systemically disseminated cancer cells. The 

exponent best fitting the dynamics of the brain metastasis measured using bioluminiscence, 

assuming a dynamics ruled by Eq. (1), and data from all the mice was β = 1.3. The total 

tumour load in the animals showed similar behaviour, with β = 1.25 (Extended Data Fig. 

S1). In a second set of experiments, we injected primary glioma cells closely resembling the 

dynamics observed in patients [26] and expressing the luciferase reporter gene into the 

brains of nude mice. One month after the injection, weekly monitoring of the animals was 

started, measuring the total flow to assess tumour growth. The optimal exponents obtained 

were also β = 1.25.

Thus, a sustained increase in proliferation is supported both by the allometric scaling laws 

and the morphological longitudinal growth data during the tumour's natural history. We 

suspected that evolutionary dynamics could be the underlying process. Via genomic 

instability, driver gene mutations can confer, to subpopulations of clonal cells, somatic 

fitness advantages over other cells within the same tumour, and contribute to higher 

proliferation rates. Mutational events are expected to occur locally in space and time. 

However they require time to consolidate over the whole population [27], thus leading to an 

effective continuous change in the tumour's global proliferation rate. Phenotypic variability, 
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manifested as trait fluctuations within identical genotypes, also leads to further selection of 

more proliferative cells [28].

The phenomenological model given by Eq. (1) lacks key hallmarks of real cancers. We 

explored in silico increasingly sophisticated spatio-temporal models incorporating cell 

migration and competition among different cell subpopulations. The first mathematical 

model that we put forward was a nonlocal Fisher-Kolmogorov equation (NLFK), 

encompassing random diffusive tumour cell motion and proliferation with saturation when 

reaching the local carrying capacity. The NLFK reads as

∂u
∂t = D∇2u + ρ0 + ρ1N t 1 − u

K u, (2)

where u = u(x, t) denotes the tumour cell density, being a function of space x and time t. The 

model parameters are: the cell diffusion constant D > 0, the size-independent ρ0 > 0 and 

size-dependent ρ1 ≥ 0 proliferation rates and K the local carrying capacity of the medium. 

The proliferation term in Eq. (2) includes a dependence on the total number of tumour cells 

N(t) = ∫ u(x, t) d 3x on the grounds that, as total tumour size increases, there will be a higher 

probability of accumulated mutational events leading to more aggressive clones (see SI 

Section 2 for a derivation of the NLFK). The proliferation activity of the tumour, in the 

context of this model, is given by M(t) = dN/ dt and yields the scaling laws.

To quantify the role of spatial dimensionality d on the tumour growth scaling laws, we 

performed a mathematical analysis of Eq. (2) [see SI Section S2]. If ρ1 = 0, one recovers the 

local FK equation for which the scaling exponent of M (t) is β = (d − 1)/d < 1, thus resulting 

in a sublinear growth. When ρ1 > 0, the proliferation activity exhibits a superlinear scaling 

β= 2 − 2/d, leading to an explosive tumour growth only if d = 3. The tumour radial velocity, 

which is a relevant metric in the clinic, can also be obtained in closed form as vd(t) = M(t) / 
CdN (d − 1)/d(t), where C 1 = 2 (1D), C 2 = (4π)1/2 (2D), and C 3 = (36π)1/3 (3D). Hence, 

dimensionality plays an essential role in the emergence of superlinear allometric laws within 

the NLFK model Eq. (2).

To further elucidate the contribution of different interacting cell subpopulations to the global 

tumour dynamics, we developed a stochastic mesoscale tumour growth simulator enabling 

cells to undergo replication, apoptosis, migration to neighbouring voxels and genotypic/

phenotypic transitions (see SI Section S3). By mesoscale we refer to a coarse-grained 

approach that can reach computationally clinically relevant tumour sizes (~ 102 cm3) by 

working at the population level rather than on individual cells. Extensive in silico 
simulations showed superlinear scaling in broad regions of the parameter space, matching 

both the volume range and time kinetics observed in patients (Fig. 3). Superlinear behaviour 

was present in so far as there was a persistent overtaking of cell subpopulations by more 

aggressive ones. The dynamics of uniform populations, without in silico evolutionary 

dynamics, displayed sublinear scalings (Fig. 3). Other mathematical models incorporating 

short-range dispersal and cell turnover have reported changes in spatial growth due to the 

underlying evolutionary dynamics [29,30].
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Scaling laws are very intriguing properties of physical and biological systems that shed light 

on their dynamics. They have a fundamental value but are often of limited applicability. We 

hypothesized that, once a scaling law of the form Z = αVβ is set as a reference for a specific 

cancer type, those with radiotracer uptake higher than the reference level, as defined by the 

scaling law, could be more aggressive than those with lower activity. Thus, we computed the 

distance with respect to a reference scaling law (DSL) for each tumour j and dataset for 

which survival information was available, via DSLj = TLAj − αMTVj
β, and compared two sets 

with different DSL for the whole range of values of the prefactor α, as described in 

Methods. Figure 4 summarizes our results for a fixed exponent β = 5/4 in four patient 

cohorts with distinct cancer types. We found ranges of threshold values classifying patient 

subpopulations into DSL groups with survival differences as measured by the Harrell's c-

index.

The classical metabolic variables MTV and TLA classified gliomas (MTV: c-index = 1.0, p 
= 0.013; same for TLA) and breast cancer patients (MTV: α = 0.824, p = 0.098; TLA: c-

index = 0.87, p = 0.01) but neither lung cancer nor head and neck patients. Hence, the 

superlinear metabolic scaling laws provided prognostic metrics that were more robust than 

other classical PET-based indices.

The observation of superlinear metabolic scaling laws and explosive behaviour of malignant 

tumours opens up many avenues of research. Our stochastic mesoscopic framework showed 

how evolutionary dynamics leads to superlinearity through the competition and 

consolidation of different tumour subpopulations. However, evolutionary steps could be 

based on mutations or phenotypic variability. When an initial driver mutation appears locally 

in space, even when it is more advantageous, it requires some time to consolidate. During 

this time window our simulations showed a continuous acceleration due to the fact that an 

increasing number of cells bear this new genotype. However, once this mutation is 

consolidated, a plateau could develop, provided no new driver mutations have appeared in 

the meantime. For our choice of parameters the effective dynamics resulting from our 

discrete simulations was in general superlinear, in agreement with our observations based on 

patient and animal experimental data.

The specific mechanisms leading to an increase in the proliferation with the tumor physical 

size could differ between types of cancers. Some of them could be of evolutionary nature 

related to genotype or phenotype changes as discussed before, involve the random selection 

of higher fitness values [31], as well as to the possibility of acquiring drivers before 

deleterious passengers [32], etc. Other potentially relevant processes arise in the interplay of 

glycolysis and tumour vascularization and oxygenation, such as the onset of the Warburg 

effect induced by hypoxic episodes. Others could be related to changes in the interaction 

between the tumour and the surrounding tissue, the action of the immune system, alterations 

in the tumour microenvironment such as acidosis [33]. Some of these effects, while possibly 

driven by mutational alterations, may in fact be ecological in nature. It is interesting to point 

out that small tumors below the spatial scale studied here, may have superlinear behaviour 

due to different reasons: Allee effect models in ecology have decreased growth rates at 

smaller tumor sizes, and these produce growth curves that are potentially indistinguishable 
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from superlinear growth laws when fitting a few points from data. Other size-related effects 

for small tumors may involve the interaction with the immune system: small tumors may 

struggle to outgrow the immune system at first, but once they creep up to a large enough 

size, the immune death would become negligible.

Our results emphasise the need to gain a better understanding of the evolutionary steps in 

different tumour histologies and to target these transformations to avoid growth acceleration. 

They also raise the question of whether working with experimental tumour models that show 

slower than superexponential growth could miss essential features of cancer dynamics. 

Finally, the role played by allometric scaling laws in human cancers under different 

therapies and the ultimate development of resistances has not yet been explored.

In summary, we have found superlinear metabolic scaling laws in human cancers. These 

laws differ substantially from the Kleiber's law governing many life forms, and point to 

accelerated growth due to underlying evolutionary dynamics selecting more aggressive 

subpopulations. Longitudinal volumetric data from malignant tumours shows explosive 

growth beyond classical growth-limited or exponential laws. Our mathematical models, 

assuming intrinsic evolutionary dynamics, put forward a mechanistic explanation for the 

observed phenomenology and predict that the emergence of superlinear scaling laws is an 

inherently three-dimensional phenomenon.

Methods

Patients and image acquisition

Several patient datasets were included in our study. Patient subgroups 1-6 were used for the 

construction of the scaling laws (1,2,4,5 also for the survival studies). Patient subgroups 

7-10 were used for the study of the longitudinal tumour volumetric dynamics. Overall 

survival (OS) was determined as the time from pretreatment imaging to death or last follow-

up.

Breast Cancer Patients (subgroup 1)

Patients were participants of a multicenter prospective study approved by the Institutional 

Review Board (IRB). Written informed consent was obtained from all patients. The 

inclusion criteria were: (1) newly diagnosed locally advanced breast cancer with clinical 

indication of neoadjuvant chemotherapy, (2) lesion uptake higher than background, (3) 

absence of distant metastases confirmed by other methods previous to the request of the 

PET/CT for staging, and (4) breast lesion size of at least 2 cm. 54 patients (18% lobular 

carcinoma, 82% ductal carcinomas, 100% women, age rank 25-80, median 50 years) were 

included in this dataset. The TNM data were: 54% T2, 18% T3, 28% T4; 28% N0, 55% N1, 

6% N2, 11% N3; 100% M0.

PET/CT examinations were performed on the same dedicated whole-body PET/CT scanner 

(Discovery DSTE-16s, GE Medical Systems) in three-dimensional (3D) mode. The 

acquisition began 60 minutes after intravenous administration of approximately 370 MBq 

(10 mCi) of 18F-FDG. The image voxel size was 5.47 mm x 5.47 mm x 3.27 mm, with a 

slice thickness of 3.27 mm and no gap between slices.
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Head & Neck cancer patients (subgroup 2)

These patients were obtained from The Cancer Imaging Archive (TCIA) [34] Head-Neck-

PET-CT collection (H&N1 data set) [35]. This cohort was composed of patients with 

primary squamous cell carcinoma of the head-and-neck (stages I-IV). 76 consecutive 

patients from this subset satisfying the inclusion criteria (availability of pretreatment PET 

studies, well-defined primary tumour and lesion size larger than 2.0 cm) were included in 

our study. Data for the cohort were: age rank 18-84, median 62 years; 63 male, 13 female; 

13 cancers of larynx, 3 hypopharynx, 11 nasopharynx, 49 oropharynx. Staging data are 3 

stage II, 1 stage IIB, 26 stage III, 44 stage IVA, 2 stage IVB. TNM data were 11 T1, 19 T2, 

34 T3, 12 T4; 11 N0, 16 N1, 7 N2a, 27 N2b, 13 N2c, 2 N3; 72 M0, 4 Mx.

Eligible patients had FDG-PET scans obtained on a hybrid PET/CT scanner (Discovery ST, 

GE Healthcare) within 37 days before treatment (median: 14 days). A median of 584 MBq 

(range: 368-715) was injected intravenously. Imaging acquisition of the head and neck was 

performed using multiple bed positions with a median of 300 s (range: 180-420) per bed 

position. The slice thickness resolution was 3.27 mm for all patients and the median in-plane 

resolution was 3.52 x 3.52 mm2 (range: 3.52-4.69).

Rectal cancer (subgroup 3)

A retrospective observational study (SCALAWS: Scaling laws, shape factors and fractal 

measures in human cancers) was designed and approved by the IRB of the participating 

institutions. Inclusion criteria were: histological confirmation of advanced rectal cancer 

diagnosis, availability of pretreatment PET/CT and lesion size larger than 2 cm. A total of 23 

rectal cancer patients (16 male, 7 female, age rank 54-80, median age 72 years) from the 

period October 2007 to October 2009 were included in the study. PET protocol and machine 

were as in subgroup 1.

Lung cancer (subgroup 4)

175 patients (153 men, 22 women, age rank 41-84, median 65 years) were included in the 

SCALAWS study from a dataset of lung cancer patients that received surgery in the period 

June 2007 to December 2016. Histologies were 63 squamous cell carcinoma and 112 

adenocarcinoma. Staging information was: 69 stage I, 70 stage II, 33 stage III, 3 stage IV. 

The N staging was 107 patients N0, 46 N1 and 22 N2. All patients had M0. PET protocol 

and machine were as in subgroup 1. We set the inclusion criterion that minimal lesion size 

should be larger than 2.0 cm.

Gliomas (subgroup 5)

A prospective multicenter and non-randomized study was designed (FuMeGA: Functional 

and Metabolic Glioma Analysis), and approved by the IRB of the participanting institutions. 

Informed consent was obtained from all patients. Patients were included consecutively. A 

basal 18F-fluorocholine PET/CT was performed in patients suspicious of glioma after 

magnetic resonance imaging (MRI) with an operable brain lesion and a good performance 

status (ECOG≤2). Patients with pathologically confirmed brain glioma, and unifocal lesions 

of size larger than 2.0 cm were included. Our study included 44 patients from the period 

20172019 (15 women, 29 men), age rank 23-79, median 60 years. Histologies were 32 
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glioblastoma IDH1wt, three glioblastoma IDH1mut, two oligodendroglioma, four difuse 

astrocytoma and three anaplastic astrocytoma.

PET machine was as in subgroup 1. PET adquisition was initiated 40 min after the 

intravenous administration of 185 MBq of 18F-Fluorocholine. A brain scan was performed 

starting with a low-dose CT transmission study (modulated 120 kV and 80 mA) without 

intravenous contrast followed by 3D emission study with an acquisition time of 20 min (one 

single bed), voxel size of 2.3 x 2.3 x 3.3 mm in a matrix of 128 x 128 and reconstructed 

using the CT images for attenuation correction and applying an iterative reconstruction 

algorithm.

Breast cancer patients (subgroup 6)

Pretreatment 18F-FLT PET/CT scans of patients of the ACRIN 6688 observational study 

available in the TCIA (ACRIN-FLT-Breast) were included in the study [36]. This dataset 

included histologically confirmed breast cancer patients (100% women), of them 46.8% 

premenopausal and 52.2% postmenopausal. TNM were 3% TX, 1% T1, 47% T2, 34% T3 

and 14% T4; 3% NX, 29% N0, 51% N1, 11% N2, 6% N3; and 100% N0.

Inclusion criteria were: (1) primary breast cancer measuring 2.0 cm or more, (2) being a 

candidate for neoadjuvant chemotherapy (NAC) and surgical resection of residual primary 

tumour after chemotherapy, and (3) no evidence of stage IV disease. Patients received a 

baseline pretreatment 18F-FLT PET/CT study within 4 weeks before NAC initiation. After 

the injection of 2.6 MBq/kg (mean, 167 MBq; range, 110-204 MBq), a whole-body image 

(5-7 bed positions) was obtained at 60 min (mean, 70 min; range, 50-101 min). 75 patients 

were included in the study (100% female, age rank 22-83 y, median 50 y).

Brain metastasis patients (subgroup 7)

Patients were participants in the study METMATH (Metastasis and mathematics), a 

retrospective multicenter and non-randomized study approved by the IRB of the 

participanting institutions. Five patients (four women, one man; age rank 38-67, median 52 

years) diagnosed of brain metastasis of a primary lung cancer with an untreated lesion with 

three or more consecutive MRI studies before treatment were included. Primaries were four 

non-small cell lung cancer and one breast luminal b cancer. A total of 16 imaging studies 

were included, the range of studies per patient being 3-4.

Postcontrast T1-weighted sequence was gradient echo using 3D spoiled-gradient recalled 

echo or 3D fast-field echo after intravenous administration of a single-dose of gadobenate 

dimeglumine (0.10 mmol/kg) with a (6-8)-min delay.

All MRI studies were performed in the axial plane with either a 1.5 T Siemens scanner, a 3 

T Philips scanner and a 1 T Philips scanner. Imaging parameters were no gap, slice thickness 

of 1 - 1.6 mm, 0.438-0.575 mm xy resolutions, and 0.8 - 1.3 mm spacing between slices.

Lung cancer patients (subgroup 8)

Patients included were participants in the study SCALAMATH. Five patients (3 men, 2 

women) were included. Three of them were diagnosed as adenocarcinoma and two as 
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squamous cell carcinomas. Age rank was 60-72 years (median 68). All of them were 

initially stage I tumours and progressed without treatment.

We drew from the database of follow-up screenings in I-ELCAP between 2008 and 2019, 

which were performed according to a common protocol [37] using low-dose CT (LDCT). 

Enrollment was limited to those aged 50 years or older, with a smoking history of at least 10 

pack-years, no previous cancer and general good health. Participants harboring parenchymal 

solid or part-solid non calcified nodule with at least three or more follow-up CTs were 

identified according to specified criteria in the protocol. A total of 22 imaging studies were 

used (range of studies per patient 3-6).

Thoracic CT scans used a 16 acquisition channels multidetector computed tomography 

(Siemens Emotion 16, Erlangen, Germany) with maximum section collimation of 1 mm, 0.7 

mm of spacing between slices, 1 mm of slice thickness and a range of xy resolution of 0.584 

- 0.783 mm. The CT scans were done at 120 kVps y 30 mAs, and less than 1 s tube rotation 

time. Contiguous images were reconstructed in the trans-axial plane using 1 mm thickness. 

Lung image sets were reconstructed with a high frequency algorithm and mediastinal image 

sets were reconstructed with an intermediate frequency algorithm.

Lung cancer diagnosis was made by histopathological examination of needle core biopsy or 

resection specimens, or by cytopathological examination of bronchoscopic or needle 

aspiration biopsy samples. Resected tumours were classified using the WHO classification 

of lung neoplasms. Adenocarcinomas were classified according to the International 

Association for the Study of Lung Cancer American Thoracic Society European Respiratory 

Society classification of lung adenocarcinoma. All lung cancer diagnoses were centrally 

reviewed. The tumours were staged using the International Association for the Study of 

Lung Cancer Staging Guidelines [37].

Low-grade glioma patients (subgroup 9)

82 patients diagnosed of grade II gliomas (biopsy/surgery confirmed astro-cytoma, 

oligoastrocytoma or oligodendroglioma according to the WHO 2007 classification) and 

followed at the Bern University Hospital between 1990 and 2013 were initially included in 

the study. The study was approved by Kantonale Ethikkommission Bern (Bern, 

Switzerland).

Of that patient population, we selected patients receiving either no treatment or only surgery 

for which at least five post-surgery consecutive images showing tumour growth were 

available. Six patients initially diagnosed as grade II gliomas (age rank 29-50, mean 37 

years, 4 astrocytomas and 2 oligodendrogliomas) satisfied our inclusion criteria. A total of 

34 imaging studies were used, the range of studies per patient being 4 to 7 (mean 6).

Lung hamartoma patients (subgroup 10)

Six patients (five men, one woman; age rank 51-63, median 58 years) diagnosed of lung 

hamartomas participants of the protocol SCALAMATH with longitudinal follow-up were 

included in the study. Imaging methods were the same as in subgroup 8. A total of 46 

imaging studies were used, the range of studies per patient being 5 to 12 (mean 8).

Pérez-García et al. Page 11

Nat Phys. Author manuscript; available in PMC 2021 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



PET image analysis (patient subgroups 1-6)

At least an experienced nuclear medicine physician and an imaging engineer independently 

assessed the PET scans in an Advantage Windows station (v.4.). In case of discordance a 

third evaluator revised the images. In the visual evaluation, a PET scan was considered as 

positive if any uptake, higher than normal tissue background, was detected. Only positive 

PET scans were considered for tumour segmentation, i.e. those having a SUVmax larger 

than twice the background activity readings.

PET images in DICOM files were imported into the scientific software package Matlab 

(R2018b, The MathWorks, Inc., Natick, MA, USA). The tumour PET images were manually 

placed in a 3D box and then semi-automatically delineated using a grey-level threshold 

chosen to identify the metabolic tumour volume. Segmentations were corrected manually 

slice by slice as in [41].

All segmentations were performed by at least a nuclear medicine physician and an imaging 

engineer, both with more than 5 years of experience in tumour segmentation. In many cases 

one or two additional segmentations by imaging engineers were performed to verify the 

robustness of the methodology and to obtain consensus segmentations. Physiological activity 

contiguous with tumour uptake, as e.g. choroid plexus or skull in the brain, was manually 

excluded from the tumour segmentations. To avoid observer dependent biases, for those 

tumour histologies well separated from surrounding structures with physiological uptake an 

automatic segmentation algorithm was developed (see SI Section S5).

The radiotracer standardized uptake values (SUV) were computed for each voxel using the 

formula

SUV = Sv × RS × W

RTD × DF × eln 2 Et/HF
. (3)

Where is the stored value, RS the rescaled slope, W is the patient weight, RTD is the 

radiopharmaceutical injected dose and HF its half-life, DF is the decay factor, and Et is the 

elapsed time for each slice processed.

Global metabolic parameters were obtained, specifically the metabolic tumour volume 

(MTV, the volume of the VOI after segmentation) and the total lesion activity (TLA, the sum 

of all local SUV values over the VOI). Also relevant local metrics such as the maximum 

value of the SUV over the segmented lesion was stored (SUVmax). Since radiotracer uptake 

is very low in necrotic areas, they typically do not contribute to TLA and MTV.

MRI image analysis (patient subgroups 7 & 9)

Brain metastasis T1-weigthed images were collected in DICOM format and analysed by the 

same image expert (OLT, 2 years of expertise on tumour segmentation) as described for 

patient subgroups 1-6. An experienced radiologist (EA) revised and validated the tumour 

delineation.
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For subgroup 9, T2/FLAIR MRI studies were used to define the tumour volume. 

Radiological glioma growth was quantified by manual measurements of tumour diameters 

on successive MRI studies (T2/FLAIR sequences). For older imaging data available only as 

jpeg images we computed the volume using the ellipsoidal approximation [39].

CT image analysis (patient subgroup 8, 10)

Patients included were participants in the study SCALAMATH. CT images of lung cancer 

nodules were obtained in DICOM format. An experienced radiologist (EA) localized the 

lesion and then an image expert (OLT) performed the segmentations following the same 

methodology as with subgroups 1-7.

Glioma cells

Primary glioma cells (L0627) were kindly provided by Rosella Galli (San Raffaele Scientific 

Institute, Milan, Italy) and were grown in complete medium: Neurobasal (Fisher) 

supplemented with B27 (1:50) (Fisher); Glutamax (1:100) (Fisher); Penicillin-streptomycin 

(1:100) (Lonza); 0.4 % heparin (Sigma-Aldrich); 40 ng/ml EGF and 20 ng/ml bFGF2 

(Peprotech). Cells were passaged after enzymatic disaggregation using Accumax (Milipore). 

In order to monitor tumour growth, cells were infected with lentiviral particles expressing 

Fluc (pLV-Hygro-EF1A-Luciferase) (Vector-Builder) and selected in the presence of 

Hygromycin.

Mouse glioma xenografts

Animal care and experimental procedures were performed in accordance to the European 

and

National guidelines for the use of animals in research and were approved by the Research 

Ethics and Animal Welfare Committee at Instituto de Salud Carlos III, Madrid (PROEX 

244/14). Stereotactically guided intracranial injections in athymic nude Foxn1nu mice were 

performed by administering 1x105 L0627 cells (expressing the luciferase reporter gene) 

resuspended in 2 μl of culture media. The injections were made into the striatum 

(coordinates: A-P, ±0.5 mm; M-L, +2 mm; D-V, -3 mm; related to Bregma) using a 

Hamilton syringe. One month after the injection we started monitoring the reporter 

expression in the tumours. For that, animals received and intraperitoneal injection of 

Luciferin (Fisher) (150mg/Kg) and the Luciferase activity was visualized in an IVIS 

Spectrum in vivo imaging system (Perkin Elmer). The total flux (in photons per second) was 

measured to assess tumour growth.

Animal studies with H2030-BrM3 cells

The human lung adenocarcinoma brain tropic model H2030-BrM [25] was injected into the 

heart of nude mice in order to induce the formation of brain metastasis from systemically 

disseminated cancer cells. Brain colonization and growth of metastases were followed using 

non-invasive bioluminescence imaging since BrM cells express luciferase. Upon 

administration of the substrate D-luciferin, bioluminescence generated by cancer cells was 

measured over the course of the disease. The increase in photon flux values is a well 

established correlate of tumour growth in vivo [25,40].The experiments were performed in 
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accordance with a protocol approved by the CNIO, Instituto de Salud Carlos III and 

Comunidad de Madrid Institutional Animal Care and Use Committee. Athymic nu/nu 

(Harlan) mice of 4-6 weeks of age were used. Brain colonization assays were performed by 

injecting 100 μl PBS into the left ventricle containing 100,000 cancer cells. Anesthetized 

mice (isofluorane) were injected retroorbitally with dluciferin (150 mg/kg) and imaged with 

an IVIS Xenogen machine (Caliper Life Sciences). Bioluminescence analysis was 

performed using Living Image software, version 3.

Cell culture

H2030-BrM3 (abbreviated as H2030-BrM) was cultured in RPMI1640 media supplemented 

with 10% FBS, 2 mM l-glutamine, 100 IU ml-1 penicillin/ streptomycin and 1 mg ml-1 

amphotericin B.

Statistical analysis

Linear regressions of the log (MTV) versus log (TLA) to construct the scaling laws were 

performed using the Matlab Statistics and Machine Learning toolbox command fitlm. In 

Figure 2, the nonlinear fittings were carried out by fixing the optimum β for all patients of 

the same cancer type allowing only for the personalization of the growth parameter β. Thus, 

for every set of N patients with the same cancer type having a total of M(> 3N) data points 

we fitted the N values of β. For each cancer type, the value for fi that was used was the one 

providing the smallest mean squared error. To fit the longitudinal tumour volumetric 

dynamics to the model (1) with different values for β = 3/4,1, 5/4 and optimum we used the 

Matlab function fmincon.

The Harrell's concordance index (c-index) [42] was computed to evaluate the model's 

capacity to discriminate patient subgroups with different survival. We computed the c-index 

for each possible threshold α in the scaling law TLA = log α + 5
4 log MTV or the metabolic 

variables (TLA, MTV) splitting the patient population into two groups (values above and 

below the line) and searched for the nonisolated significant values (p < 0.1) obtaining the 

highest value of the c-index. Kaplan-Meier curves were constructed to compare both 

populations and the log-rank two-tailed test used to compute the c-index. When either no 

curves with p < 0.1 were found or the best c-index obtained was below the value 0.7, the 

variable under study was considered to be unable to classify patients accurately in terms of 

survival.
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Extended Data

Extended Data Fig. 1. Two human cancer animal models display superlinear growth dynamics
Two human cancer animal models display superlinear growth dynamics. Group 1 (G1) data 

correspond to untreated nude mice injected with the human lung adenocarcinoma brain 

tropic model H2030-BrM (see methods). Group data (G2) correspond to primary glioma 

cells (L0627) expressing the luciferase reporter gene injected into the brain of nude mice 

(see methods). Bioluminiscence images for G1 for some mice are shown in panel A. Total 

tumour mass growth curves for G1 showed superlinear dynamics with best fitting exponent 

$\beta$ = 1.25 (for G2 it was $\beta$ = 1.3). (B, upper panel). Errors relative to best fit were 

found to be substantially smaller with the optimal superlinear fits than for both the linear and 

sublinear fits (exponents 1 and 0.75 respectively) (B, lower panel).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A superlinear scaling law governs glucose uptake and proliferation in human cancers
Log-log plots of 18F-FDG uptake (TLA) versus metabolic tumour volume on diagnostic PET 

for breast cancer, head & neck cancer, non-small-cell lung cancer and rectal cancer display 

superlinear (β > 1) allometric scaling laws. Diagnostic PET with proliferation radiotracers, 

either 18F-FLT for breast cancer or 18F-FCHOL for glioma, shows the same dependence 

pointing to the use of glucose mostly as a resource for biosynthesis. The fitted exponents 

cluster around β = 5/4. Joint records of patients imaged in the same institution with identical 

protocol (breast-FDG, lung and rectal cancers), show that a common scaling law governs the 

dynamics. Error bars in (g) correspond to the standard error in the fitted parameter β 
obtained using fitlm.
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Figure 2. Explosive longitudinal volumetric dynamics of untreated malignant human tumours
Longitudinal volumetric data for cancer patients with untreated brain metastases (BM), low 

grade gliomas (LGG), non-small-cell lung carcinomas (NSCLC), atypical meningiomas 

(AM) and lung hamartomas (LH). Solid curves show the fits with the optimal exponents 

(values provided in each subplot) giving the smallest mean square errors. The longitudinal 

3D reconstruction of a BM and representative axial slices highlighting tumour location at 

three time points are displayed in the left panel together with the fitting curves obtained for 

different exponents. Mean square errors (MSE) for the five datasets and exponents 3/4, 1, 

5/4 (taken as a reference) in comparison with the optimal exponent, are depicted in the lower 

right subplot.
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Figure 3. Stochastic mesoscale models with evolutionary dynamics lead to superlinear scaling 
laws in silico.
a, Schematic representation of the evolutionary dynamics included in the mesoscale tumour 

growth simulator model. Random time-local discrete events accounting for either mutations 

and/or phenotypic changes provide a competitive advantage to newly arising subpopulations. 

b, When a single tumour population is present, it grows continuously and displays a 

sublinear scaling law (blue line). In contrast, the evolutionary dynamics of a heterogeneous 

tumour (here consisting of four subpopulations, see SI section S3) yielded superlinear 

growth dynamics (red line). c, Isosurfaces of four interacting cell subpopulations at different 

points in time showing the dynamics of dominance by the most aggressive cells (higher 

indices correspond to more aggressive clones as described by the model parameters).
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Figure 4. Scaling laws allow for cancer patient classification into prognostic groups
Patient tumours were classified as hyperactive (TLA > aV5/4; DSL > 0) or hypoactive (TLA 

< αV5/4; DSL < 0) using the metabolic scaling law as a reference. Survival differences 

between groups were compared using Kaplan-Meier analysis and the c-index. Shown are 

Kaplan-Meier survival curves and the best c-index values obtained for: (a) Gliomas (p 
=0.001, c-index = 0.832, α = -0.24867). (b) Head and Neck cancer (p =0.05, c-index = 1.0, a 
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= -0.0041776). (c) Stage III and IV resectable lung cancer patients (p=0.09, c-index = 0.742, 

α = -0.40334). (d) Breast cancer (p =0.019, c-index = 0.849, α =-0.65034).
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