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Abstract

Background—Using longitudinal ultrasounds as an improved fetal growth marker, we aimed to 

investigate if fetal growth deceleration followed by rapid postnatal weight gain is associated with 

childhood cardiometabolic risk biomarkers in a contemporary well-nourished population.

Methods—We defined fetal growth deceleration (FGD) as ultrasound-measured 2nd-3rd-trimester 

abdominal circumference decrease by ≥0.67 standard deviation score [SDS] and rapid postnatal 

weight gain (RPWG) as 0-2-year-old weight increase by ≥0.67 SDS. In the GUSTO mother-

offspring cohort, we grouped 797 children into 4 groups of FGD-only (14.2%), RPWG-only 

(23.3%), both (mismatch, 10.7%) or neither (reference, 51.8%). Adjusting for confounders and 

comparing to the reference group, we tested associations of these growth groups with childhood 

cardiometabolic biomarkers: MRI-measured abdominal fat (n=262), liver fat (n=216), 

intramyocellular lipids (n=227), Quantitative Magnetic Resonance-measured overall body fat % 

(BF%) (n=310), homeostasis model assessment of insulin resistance (HOMA-IR) (n=323), arterial 

wall thickness (n=422) and stiffness (n=443), and blood pressure trajectories (ages 3-6y).

Results—Mean±SD birthweights were: FGD-only (3.11±0.38kg), RPWG-only (3.03±0.37kg), 

mismatch (2.87±0.31kg), reference (3.30±0.36kg). FGD-only children had elevated blood pressure 

trajectories without correspondingly increased BF%. RPWG-only children had altered body fat 

partitioning, higher BF% (B=4.26% 95%CI [2.34,6.19]), HOMA-IR (0.28units [0.11,0.45]), and 

elevated blood pressure trajectories. Mismatch children did not have increased adiposity, but had 

elevated ectopic fat, elevated HOMA-IR (0.29units [0.04,0.55]), and the highest blood pressure 

trajectories. Associations remained even after excluding small-for-gestational-age infants from 

analyses.

Conclusions—Fetal growth deceleration coupled with rapid postnatal weight gain was 

associated with elevated childhood cardiometabolic risk biomarkers without correspondingly 

increased BF%.
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Introduction

The first 1000 days of life is a developmentally plastic and nutritionally sensitive period 

which may program future cardiometabolic risk (1). From an evolutionary perspective, poor 

nutritional cues in-utero enable predictive adaptive responses to maximize chances of 

survival in the predicted poor postnatal nutritional environment. However, when the 
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postnatal nutritional environment is richer than predicted, predictive adaptive responses may 

become maladaptive and lead to increased cardiometabolic risk (2–4). This phenomenon is 

known as "developmental mismatch", which has been supported by animal studies 

investigating mismatch between maternal and postnatal nutrition as well as epidemiological 

studies investigating mismatch between fetal and postnatal growth (2–10).

Poor fetal growth, rapid postnatal weight gain (RPWG), and a combination of these two 

growth patterns have been associated with increased cardiometabolic risk (5,8,9,11–14). 

However, earlier studies often used low birthweight or small-for-gestational-age (SGA) as a 

crude proxy of poor fetal growth (5,8). These definitions might incorrectly classify neonates 

who were constitutionally small as having poor fetal growth (15). Hence, we studied fetal 

growth deceleration (FGD), defined as downward crossing of at least one major centile band 

(≥0.67 standard deviation score [SDS]) in fetal abdominal circumference charts between the 

2nd and 3rd trimester. Crossing down by at least one major centile band (0.67 SDS units) has 

been commonly used to assess growth deceleration while crossing up by at least one major 

centile band has been used to assess growth acceleration, in both fetal and postnatal life 

(13,16). In addition, earlier studies on developmental mismatch has focused on extreme 

nutritional stresses in-utero such as famine, intrauterine ligation, or extreme caloric 

restriction in animal models (6,7,9). It is less clear if the adverse cardiometabolic risk 

associated with developmental mismatch manifest even in contemporary, well-nourished 

populations.

We aimed to evaluate the associations of FGD alone, RPWG alone, and a combination of 

these growth patterns with early cardiometabolic alterations in childhood in an Asian 

mother-offspring cohort. We used an extensive panel of childhood cardiometabolic 

biomarkers: adiposity outcomes (anthropometry, BF%, abdominal subcutaneous adipose 

tissue, visceral adipose tissue, intramyocellular lipids, liver fat), metabolic outcomes (fasting 

plasma glucose [FPG], fasting plasma insulin, insulin resistance), and cardiovascular 

outcomes (blood pressure, arterial thickness and stiffness). More sophisticated markers such 

as BF% and body fat partitioning to the abdomen, muscles, and liver have been shown to be 

strong, independent correlates of cardiometabolic risk, above and beyond that of BMI alone 

(17–20). We hypothesize that the mismatch group with FGD followed by RPWG would be 

associated with the greatest alterations in cardiometabolic risk biomarkers, even in early 

childhood.

Materials and Methods

Study population

Children were part of the Growing Up in Singapore Towards healthy Outcomes (GUSTO) 

longitudinal mother-offspring cohort, detailed previously (21). Pregnant women in the first 

trimester were recruited (June 2009-September 2010) from KK Women’s and Children’s 

Hospital and National University Hospital, Singapore. Of 3751 women, 2034 were eligible, 

1247 were recruited (response rate 61.3%), and 797 singletons with both fetal and postnatal 

growth data available were included (Supplementary Fig.S1). Preterm (<37 completed 

weeks gestation) infants were excluded as World Health Organization (WHO) growth charts 

used to derive weight z-scores were not suitable for use in preterm infants. Data for different 
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cardiometabolic assessments were not available for all children due to differential consent 

for measurement, data quality control, and loss to follow-up. Precise sample sizes for 

different cardiometabolic outcomes are reported (Supplementary Fig.S1). Written informed 

consent was obtained. The National Healthcare Group Domain Specific Review Board and 

SingHealth Centralized Institutional Review Board approved the study.

Exposures

Fetal abdominal circumference, a good indicator of fetal growth (22), was measured by 

trained ultrasonographers in the second (mean gestational age (±SD): 20.3±0.8wks) and 

third (32.9±0.7wks) trimesters. SDS were derived using the INTERGROWTH-21st 

standards (23). FGD was defined as a downward crossing of fetal abdominal circumference 

by at least one major centile band (change in SDS by ≥0.67 units) from the second to third 

trimester scan, similar to previous studies (24–26). Crossing down by at least one major 

centile band (0.67 SDS units) has been commonly used to assess growth deceleration while 

crossing up by at least one major centile band has been used to assess growth acceleration, 

in both fetal and postnatal life (13,16).

Birthweights were extracted from hospital medical records and weights (in g) at age 2 years 

were measured (SECA803 Weighing Scale) (27). SDS were derived according to WHO 

child growth standards (28), using the LMS method (29). RPWG was defined as an increase 

in weight by at least one major centile band (change in SDS by ≥0.67 units) from birth to 

age 2 years (13).

Four growth groups were defined, depending on whether the child experienced FGD-only 

(14.2%), RPWG-only (23.3%), both FGD and RPWG (mismatch group) (10.7%), or neither 

(reference group) (51.8%).

Cardiometabolic Risk Biomarkers

At ages 4.5 and 6 years, weight (SECA803 Weighing Scale) and standing height (SECA213 

stadiometer) were measured in 674 children (27). SDS of weight, height, and BMI were 

derived using WHO growth standards (28). At age 6 years, high precision and accurate 

overall fat mass were obtained by Quantitative Magnetic Resonance (QMR) (EchoMRI-

Adolescent Humans Body Composition Analyzer, EchoMRI Corporation, Singapore) in a 

subset of 310 children (30). BF% was calculated by: [fat mass (kg) / total body weight 

(kg)]*100%

At age 4.5 years, abdominal MRI was performed without sedation using a Siemens Skyra 3T 

magnetic resonance scanner to derive volumes of abdominal subcutaneous adipose tissue 

and visceral adipose tissue in cubic centimeters (cc) in 262 children (31,32). 

Intramyocellular lipids and liver fat were assessed by proton magnetic resonance 

spectroscopy (1H-MRS) in 227 and 216 children respectively (33). Intramyocellular lipids 

was expressed as a percentage of the water signal and is proportional to lipid accumulation 

within skeletal muscles. Liver fat percentage by weight was calculated by averaging across 

the right and left liver lobe scans (Detailed MRI and MRS protocols in supplementary 

section).
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At age 6 years, after an overnight fast, venous fasting plasma glucose (FPG) was measured 

using the hexokinase enzymatic method (Abbott Architect c8000 analyzer at KK Women’s 

and Children’s Hospital and Beckman AU5800 analyzer at National University Hospital) in 

429 children. Fasting insulin was measured using a sandwich immunoassay (Beckman 

DXL800 analyzer, Beckman Coulter) in 324 children. In 323 children, Homeostasis model 

assessment (HOMA) of insulin resistance (HOMA-IR) was calculated as follows: HOMA-

IR = [fasting insulin(mU/L)*FPG(mmol/L)] / 22.5 (34).

Peripheral systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured 

from the right upper arm (Dinamap CARESCAPE V100, GE Healthcare, Milwaukee, WI) at 

age 3 (n=639), 4 (n=586), 5 (n=613), and 6 years (n=565) (35). At age 6 years, arterial wall 

thickness was assessed through carotid intima-media thickness (cIMT) using high resolution 

B-mode ultrasound while arterial stiffness was assessed through carotid-femoral pulse wave 

velocity (PWV) by applanation tonometry in 422 and 443 children respectively (Detailed 

cIMT and PWV protocols in supplementary section).

Covariates

Maternal age, ethnicity, educational attainment, household income, parity, and self-reported 

pre-pregnancy weight were collected at recruitment through interviewer-administered 

questionnaires. At ~26-28wk of gestation, venous FPG was measured (36). Height was 

measured using a calibrated stadiometer (SECA213 Stadiometer, SECA Corp, Hamburg, 

Germany). Pre-pregnancy BMI (ppBMI) was calculated using this height and self-reported 

pre-pregnancy weight. Plasma cotinine level was measured by liquid chromatography-

tandem mass spectrometry (37). Total gestational weight gain (GWG) was calculated from 

the difference between last measured antenatal weight (taken within 4 weeks from delivery) 

and self-reported pre-pregnancy weight. Child sex was taken from medical records. 

Gestational age (in weeks) was calculated based on first trimester crown-rump lengths 

assessed by trained ultrasonographers. Size at birth was categorized based on birthweight 

and gestational age using customized birth charts (38). Infants were categorized as low 

birthweight if they weighed less than 2500g. Paternal height (in cm) was measured during 

the year 2 postnatal visits.

Statistical analysis

To compare differences between participants included and excluded in the study (n=450 

families excluded, n=460 children excluded due to 10 pairs of twins), as well as those with 

and without at least 1 MRI/MRS measurement, blood glucose/insulin measurement, and 

outcome measurement at year 6, two-tailed t-tests were performed for continuous variables 

while chi-square tests were performed for categorical variables. Multiple linear regression 

was performed to test associations between growth groups and childhood cardiometabolic 

risk biomarkers (anthropometry, BF%, abdominal fat, intramyocellular lipids, liver fat, FPG, 

fasting insulin, HOMA-IR, cIMT, PWV), with respect to the reference group. To gauge the 

magnitude of effects, adjusted differences between each growth group and the reference 

group were also expressed as a percentage change compared to the reference group (except 

for anthropometry z-scores where negative mean z-scores of the reference group prevent the 

meaningful evaluation of percentage change). Postestimation pairwise comparisons using 
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Tukey’s adjustment for multiple comparisons were also performed. Based on literature 

review, the following confounders which influence both fetal/postnatal growth and 

cardiometabolic outcomes were used: sociodemographic factors (maternal education, child 

sex and ethnicity), in-utero environmental factors (parity, ppBMI, maternal height, 

gestational FPG, GWG, cotinine). To determine longitudinal associations of growth groups 

with SBP and DBP, linear mixed effects (LME) modeling which accounts for correlation 

between repeated measures in the same participant was performed using maximum 

likelihood estimation, assuming outcome data was missing at random (39), and defining 

covariances as unstructured to distinctly estimate all variances and covariances for individual 

growth curves (40). The models included a random intercept, random linear slope for age, 

and an age-growth group interaction term, and the same confounders as the regression model 

above. Using the "margins" command in Stata, adjusted differences in LME-predicted blood 

pressure between each growth group and the reference group, while holding covariates 

constant at their mean values, was reported.

A few sensitivity analyses were performed. First, paternal height (available in 78.3% of 

participants) was added as a covariate in multiple linear regression models, due to its 

contribution to child growth (41). Since GWG and FPG could potentially be affected by fetal 

growth due to the temporal overlap in the collection of these variables, we also ran the 

model after removing GWG and FPG as confounders in multiple linear regression. 

Standardized residuals of blood pressure regressed on sex and height at each time-point was 

calculated and their longitudinal associations with the growth groups was evaluated using 

the same LME model above as blood pressure in growing children is closely related to sex 

and height. We adjusted for the rate of gestational weight gain from 15-35 weeks of 

gestation instead of total gestational weight gain, to ensure that this confounder is 

independent of gestational age. We also additionally adjusted for body fat partitioning at age 

4.5 years as it could be a potential mediator of metabolic and cardiovascular outcomes at age 

6 years. Due to small sample sizes, we conducted multiple linear regression to determine the 

main effects of FGD, RPWG, and their interaction term as a sensitivity analysis rather than 

as a main analysis. Multiple imputation using chained equations was performed to generate 

50 imputed datasets for missing covariates (maternal education: n=6, maternal height: n=15, 

ppBMI: n=63, FPG: n=34, GWG: n=71, cotinine: n=88). The imputation model included all 

exposure, outcome and confounder variables included in this study (42). Multiple linear 

regression and LME models, whether including or excluding SGA infants, were performed 

on imputed datasets where Rubin’s combination rules were used to obtain pooled estimates 

(43). All analyses were performed using Stata16.0 (StataCorp LP, TX).

Results

Cohort description

Of 1247 participants, 797 were classified into 4 growth groups (Supplementary Fig.S1). 

Mothers of excluded children had lower education, household income, and age 

(Supplementary Table S1). Excluded children had lower mean gestational age and 

birthweight but had similar childhood cardiometabolic outcomes as included offspring 

(Supplementary Table S2). Among 797 included participants, those with at least 1 MRI or 
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MRS measurement were more likely to have lower maternal education, lower household 

income, lower proportion of nulliparous mothers, male offspring and Chinese, as well as 

higher maternal ppBMI and BF% at age 6 years than those without (Supplementary Table 

S3). Those with at least 1 child blood glucose or insulin measurement had similar parental 

and child characteristics as those without, except for slightly lower proportion of nulliparous 

mothers (40.5% vs 49.0%) (Supplementary Table S4). Those with at least 1 outcome 

measurement at age 6 years had similar parental and child characteristics as those without 

(Supplementary Table S5).

The mismatch and reference groups had higher maternal education and household income 

than the FGD-only and RPWG-only groups (Table 1). Compared to all other groups, the 

mismatch group had the highest proportion of nulliparous mothers (57.6%), mean plasma 

cotinine levels (4.73±22.12ng/ml), mean height of parents, as well as lowest gestational age 

(38.67±1.01wk) and birthweight (2.87±0.31kg). Groups which experienced FGD (mismatch, 

FGD-only) had lower gestational FPG, GWG, and higher proportion of male offspring. 

Groups which experienced RPWG (mismatch, RPWG-only) had higher proportion of 

Indians. RPWG-only children had the highest mean z-BMI, z-Height, BF%, and abdominal 

fat while mismatch children had the highest mean FPG, fasting insulin, HOMA-IR, and 

blood pressure (Table 2).

Associations of growth groups with adiposity outcomes

Compared to the reference group, the mismatch and RPWG-only groups had elevated z-BMI 

(mismatch: 0.53units [0.19,0.88]; RPWG-only: 0.98units [0.72,1.24]), abdominal 

subcutaneous adipose tissue (mismatch: 210.30cc [52.74,367.85]; RPWG-only: 315.58cc 

[196.23,434.94]), and visceral adipose tissue (mismatch: 40.17cc [5.28,75.06]; RPWG-only: 

38.03cc [11.60,64.46]). However, only the RPWG-only group had increased overall BF% 

(4.26% [2.34, 6.19]) while the mismatch group had elevated intramyocellular lipids (0.13% 

of water signal [0.00,0.26]) and liver fat (0.17% by weight [-0.01,0.35]) (Fig.1A–F, 

Supplementary Table6). In fact, the RPWG-only group had noticeably higher z-BMI, BF%, 

and abdominal subcutaneous adipose tissue than the FGD-only and mismatch group 

(Supplementary Table S12). The FGD-only group was similar in adiposity outcomes as the 

reference group (Fig.1A-F, Supplementary Table6). Relative to the reference group, these 

findings represent large percentage increases of 45%, 22%, 29%, and 32% in abdominal 

subcutaneous adipose tissue, visceral adipose tissue, intramyocellular lipids, and liver fat 

respectively in the mismatch group, compared to a relatively small percentage increase of 

4% in BF%. They also represent large percentage increases of 23%, 67%, 21%, and 21% in 

BF%, abdominal subcutaneous adipose tissue, visceral adipose tissue, and intramyocellular 

lipids respectively in the RPWG-only group.

Associations of growth groups with metabolic outcomes

Compared to the reference group, the mismatch and RPWG-only groups had elevated fasting 

insulin concentrations (mismatch: 9.04pmol/L [0.61,17.47]; RPWG-only: 8.86pmol/L 

[3.15,14.57]) and HOMA-IR (mismatch: 0.29units [0.04,0.55]; RPWG-only: 0.28units 

[0.11,0.45]) without elevated FPG at age 6 years (Fig.1I-K, Supplementary Table6). The 

FGD-only group did not have clear alterations in metabolic outcomes compared to the 
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reference group (Fig.1I-K, Supplementary Table6), and had lower fasting insulin 

(-10.79pmol/L [-22.14, 0.57]) and HOMA-IR (-0.39units [-0.75, -0.04]) than the mismatch 

group (Supplementary Table S12). Relative to the reference group, these findings represent 

large percentage increases of 34%, 33%, 38%, and 36% in fasting insulin (mismatch group), 

fasting insulin (RPWG-only group), HOMA-IR (mismatch group), and HOMA-IR (RPWG-

only group) respectively.

Associations of growth groups with cardiovascular outcomes

From age 3-6 years, mismatch children had the highest SBP and DBP LME trajectories 

(Fig.2). The differences in blood pressure between the mismatch and reference group were 

more marked at age 3 years and were attenuated at age 6 years: age 3 years (SBP: 

6.14mmHg [3.97,8.31]; DBP: 3.04mmHg [1.53,4.54]), 4 years (SBP: 5.13mmHg 

[3.42,6.83]; DBP: 2.75mmHg [1.58,3.92]), 5 years (SBP: 4.11mmHg [2.41,5.81]; DBP: 

2.46mmHg [1.28,3.64]), 6 years (SBP: 3.10mmHg [0.95,5.24]; DBP: 2.18mmHg 

[0.65,3.70]) (Fig.2, Supplementary Table7). Similarly, RPWG-only children had elevated 

SBP (age 3-6 years) and DBP (age 3-5 years) trajectories. The diastolic blood pressure 

trajectory of the FGD-only children was slightly higher than the reference children 

consistently from ages 3 to 6 years. The systolic blood pressure trajectory of the FGD-only 

children started at the same point as the reference children at age 3 years but rose faster than 

the reference children till it converged with that of the RPWG-only children at age 6 years. 

None of the groups had substantial alterations in cIMT and PWV, with percentage changes 

relative to the reference group ranging from -1% to 6% (Fig.1G-H, Supplementary Table6).

Sensitivity analysis

Associations remained similar after additional adjustment for paternal height except that for 

RPWG-only children, magnitude of association with elevated metabolic outcomes at age 6 

years increased slightly (Supplementary Table S8). After removal of GWG and FPG as 

confounders, associations remained similar except that for the mismatch group, magnitude 

of association with elevated metabolic outcomes at age 6 years increased slightly 

(Supplementary Table S9). After using sex- and height-standardized blood pressures, 

mismatch children still had the highest overall SBP and DBP trajectories from age 3-6 years 

with the differences attenuated at age 6 years (Supplementary Fig.S2). Associations 

remained similar after adjusting for rate of gestational weight gain instead of total 

gestational weight gain, except that association with fasting insulin in the mismatch group 

increased slightly (Supplementary Table S11). After additional adjustment for body fat 

partitioning at age 4.5 years, associations of the mismatch and RPWG-only groups with 

elevated fasting insulin and HOMA-IR was greatly diminished (Supplementary Table S13). 

Using an interaction model, we found that there is a marked negative interaction between 

FGD and RPWG for BF% (-4.30% [-7.90, -0.71]), concordant with our finding that a 

combination of FGD and RPWG was linked to lower BF% than a RPWG-only growth 

pattern. (Supplementary Table S15).

After performing multiple imputation to account for missing confounders, associations 

remained similar except that for the mismatch group, magnitude of associations with 

metabolic outcomes increased: higher FPG (0.13mmol/L [0.01,0.26]; excluding SGA 
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infants: 0.18mmol/L [0.03,0.32]), fasting insulin (11.88pmol/L [4.33,19.44]; excluding SGA 

infants: 12.54pmol/L [3.41,21.66]), and HOMA-IR (0.44units [0.20,0.68]; excluding SGA 

infants: 0.48units [0.19,0.77]) (Supplementary Table S10). From LME models after multiple 

imputation, the mismatch group still had the highest SBP and DBP from 3-6 years old 

compared to all other growth groups, whether including or excluding SGA infants from the 

analyses (Supplementary Fig.S3).

Discussion

Poor in-utero growth and accelerated postnatal growth in the developmentally plastic first 

1000 days of life have been linked to adverse cardiometabolic outcomes in adulthood. 

However, the precise pathways through which early life growth patterns influence later life 

cardiometabolic outcomes are not fully known as most of the current results have been 

obtained from retrospective studies in adults. The current study, based on a prospective birth 

cohort, addresses some of these gaps by investigating how fetal growth deceleration, rapid 

postnatal weight gains in infancy, or a combination of these two patterns alter 

cardiometabolic biomarkers in childhood.

We found that rapid weight gain from age 0 to 2 years, whether with or without prior fetal 

growth deceleration, was associated with a cluster of unfavorable cardiometabolic markers 

manifesting as early as age 3 years in an Asian cohort. Compared to the reference group 

which did not experience fetal growth deceleration or rapid postnatal weight gain, the 

RPWG-only group had elevated BF% (+23%) accompanied by elevated HOMA-IR (36%), 

subcutaneous adipose tissue (+67%), visceral adipose tissue (+21%) and intramyocellular 

lipids (+21%). However, it was notable that despite a much lower elevation in BF% (+4%), 

children in the mismatch group also had elevated HOMA-IR (+38%), subcutaneous adipose 

tissue (+45%), visceral adipose tissue (+22%) and intramyocellular lipids (+29%). The 

mismatch group also had a marked elevation in liver fat compared to the RPWG-only group 

(+32% vs +9%). The associations were not attenuated after excluding SGA children from 

the analysis, indicating that the above associations are not driven by children with extreme 

birthweights. The associations of the RPWG-only and mismatch growth patterns with 

HOMA-IR at age 6y, was lost when we adjusted for the body fat partitioning at age 4.5y, 

suggesting that fat partitioning may act as a mediator. Our findings also indicate that 

alterations in fat partitioning and HOMA-IR may emerge even before elevation in adiposity 

in children with the mismatch growth pattern.

Among all the growth groups, the mismatch group had the highest systolic and diastolic 

blood pressure trajectories between 3 to 6 years followed by the RPWG group.The systolic 

blood pressure at age 6 years in the FGD-only children was close to that of the reference 

group at age 3 years, but was comparable to that of RPWG-only group at age 6 years, 

despite FGD-only children being leaner and shorter. Long term blood pressure is regulated 

by the kidney. In humans nephrogenesis (formation of nephrons which are the functional 

units of the kidney) ceases by 34-36 weeks of gestation. Poor fetal growth in the second and 

third trimester therefore can influence both nephron endowment and developmental 

programming of kidney function (44–46). The effects of fetal growth deceleration on blood 
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pressure was amplified with increasing body size (which increases the filtration load) as the 

children grow older, and with rapid postnatal weight gain (47,48).

Children in both the FGD-only group and the mismatch group experienced downward 

centile crossing in-utero. This is likely to be a fetal response to prenatal perturbations like 

maternal undernutrition or placental insufficiency and not due to constitutional factors. 

However, metabolic characteristics, body fat partitioning and BF% in FGD-only group were 

very similar to the reference group. Our results suggest that early alterations in the above 

characteristics in children who experienced fetal growth deceleration require a second hit in 

the form of rapid postnatal growth. Further follow-up of these children is required to 

evaluate if the effects of an adverse intrauterine environment are unmasked as they grow 

older.

Children of all 4 growth groups had similar arterial thickness, and arterial stiffness at age 6y, 

likely due to small inter-individual variability of these measures in early childhood (49,50). 

Thus, increase in arterial thickness and stiffness does not seem to play a role in the 

elevations in blood pressure observed in FGD-only, mismatch and RPWG-only groups. 

Further longitudinal tracking of these children is required to check if alterations in these 

cardiometabolic markers emerge later in life and to understand the development of 

differential cardiometabolic risk.

Although we have detected elevations in cardiometabolic risk markers in the mismatch, 

FGD-only and RPWG-only group, there is limited evidence to conclude whether these 

changes are clinically significant in childhood because of the absence of any hard clinical 

endpoints, which will mainly become evident only in the later stage of life. However, since 

cardiometabolic risk factors tend to track to adulthood (51,52), children in the RPWG-only, 

FGD-only and mismatch groups are likely to be at increased risk of adverse cardiometabolic 

outcomes in adulthood. The alterations in the risk markers in the FGD-only and mismatch 

group emerged even without increased adiposity. Thus these alterations may be further 

accentuated if these children become obese later in life. These findings also highlight the 

importance of monitoring both fetal and childhood growth patterns for early risk 

stratification, as size at birth or overweight/obesity status alone may not be sufficient to 

identify all children who may be at elevated cardiometabolic risk.

Our findings were consistent with literature which reported increased subcutaneous adipose 

tissue, visceral adipose tissue (53,54), total body fat, BF% (13,55), BMI (13,56), and fasting 

insulin (57) associated with rapid weight gain in childhood. Our findings were also 

consistent with literature on the adverse cardiometabolic outcomes of poor fetal growth 

followed by rapid postnatal growth (5,8,9,11–14). For the mismatch group, other studies 

have reported increased android/gynoid fat ratio, fat mass index, abdominal fat, and BMI at 

age 6 years (24), increased visceral fat index and liver fat at age 10 years (25), and elevated 

blood pressure in school-age children and adulthood (12,26). We go on to demonstrate that 

adverse body fat partitioning alterations manifest as early as age 4.5 years, while elevated 

blood pressures manifest as early as age 3 years in Asian children.
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Our findings contrast with some previous reports which have suggested that accelerated 

postnatal growth after poor fetal growth may occur with preferential fat accumulation (4,53). 

The mismatch group, which experienced RPWG after FGD, did not have elevations in 

overall BF%. This could potentially be due to the way mismatch was characterized. In the 

current work, we defined mismatch as having slower growth in-utero and accelerated growth 

in infancy. Older works have used low birth-weight as a proxy for poor fetal growth, which 

cannot separate the effects of constitutional factors from prenatal perturbations (15). 

Furthermore, some studies have also noted the absence of excess fat in the mismatch group 

(58) and reported that catch-up after poor fetal growth might not necessarily involve 

preferential fat mass accretion (59,60). Our findings suggest that the impact of the mismatch 

growth pattern might first be on increased ectopic fat accumulation, rather than on increased 

adiposity. Further investigation is warranted to resolve these conflicting findings on 

phenomenon of preferential catch-up fat accumulation.

One strength of our study is the use of serial ultrasound measures to measure fetal growth 

deceleration even if it did not result in extremes of fetal or birth size. While retrospective 

cohort studies have revealed links between early life growth patterns and cardiometabolic 

outcomes in adulthood, the precise mechanisms are not fully understood. The extensive 

phenotyping of cardiometabolic risk markers like body composition, fat partitioning, insulin 

resistance, blood pressure, arterial thickness and arterial stiffness during childhood in the 

current study provides insights into the potential pathways through which early life growth 

patterns could influence later health outcomes. Identifying early cardiometabolic alterations 

of high-risk growth groups in a large prospective cohort provides evidence for risk-

stratification in children and provides impetus to uncover underlying mechanisms.

Our limitations include the fact that our study included only Asian children and excluded 

preterm infants. Hence, findings from our multi-ethnic Asian cohort might not be 

generalizable to other populations or to preterm children. Participants with MRI/MRS 

measures were of slightly lower socioeconomic status and had slightly higher maternal and 

child adiposity than those without, which might lead to potential bias. We also acknowledge 

that some children might be classified as having undergone RPWG/FGD due to regression to 

the mean. Although we have adjusted for sociodemographic and maternal confounders in 

our analyses, we acknowledge that fetal/postnatal growth and cardiometabolic outcomes 

might be further influenced by unmeasured behavioral, environmental, nutritional and 

genetic confounders. While we have suggested possible etiologies underlying our findings, 

this paper is not focused on the etiologies of the 4 growth groups and further studies are 

needed to understand them.

Conclusion

Rapid weight gain from age 0 to 2 years, whether with or without poor fetal growth, is 

associated with a cluster of elevated cardiometabolic risk markers in early childhood. 

Notably, children with a mismatch between poor fetal growth and rapid postnatal weight 

gain had elevated insulin resistance, ectopic fat accumulation and the highest blood pressure 

trajectory in early childhood, even without a corresponding elevation in BF%. Children with 

fetal growth deceleration in the absence of rapid postnatal weight gain also had elevated 
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systolic blood pressure without having elevated BF%. The emergence of cardiometabolic 

alterations even without increased adiposity in the mismatch and FGD-only groups is 

troubling, as these changes may be further accentuated with later life obesity. Our work 

highlights the role of longitudinal growth monitoring in both the fetal and postnatal period 

for early risk stratification, as screening based on size at birth or BMI at a single time point 

may not be able to uncover all children who may be at increased cardiometabolic risk.
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Refer to Web version on PubMed Central for supplementary material.
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Key messages

• We used dynamic growth information from longitudinal fetal ultrasounds 

rather than birthweight-for-gestational-age as a marker of poor fetal growth.

• Children who experienced 2nd–3rd trimester fetal growth deceleration had 

elevated blood pressure trajectories without a corresponding increase in body 

fat %, arterial thickness, or arterial stiffness, suggesting that poor fetal growth 

might affect blood pressure not through adiposity or changes in arterial 

structure, but possibly through poorer nephrogenesis.

• Children who experienced 0-2-year-old rapid postnatal weight gain, 

regardless of their fetal growth rates, had elevated abdominal fats, 

intramyocellular lipids, insulin resistance, and blood pressure trajectories in 

early childhood (ages 3-6y), which could lead to greater cardiometabolic risk 

if these biomarkers track to adulthood.

• Children who experienced a mismatch of fetal growth deceleration followed 

by rapid postnatal weight gain had the highest blood pressure trajectories and 

multiple elevated cardiometabolic risk biomarkers without a corresponding 

increase in overall body fat %, suggesting that rapid postnatal weight gain 

might act as a "second-hit" and increase cardiometabolic risk in children who 

had experienced poor fetal growth.

• Our findings highlight the importance of monitoring longitudinal growth 

patterns right from the fetal stage.
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Figure 1. 
Associations with childhood cardiometabolic risk markers, according to growth groups and 

with respect to the reference group. Models are adjusted for maternal education, parity, pre-

pregnancy BMI, gestational weight gain, maternal height, pregnancy fasting plasma glucose, 

cotinine, sex, and ethnicity. Regression coefficients with 95% confidence intervals are 

shown. Legend: FGD = fetal growth deceleration; RPWG = rapid postnatal weight gain; 

SDS = standard deviation score; BMI = body mass index; SAT = subcutaneous adipose 

tissue; VAT = visceral adipose tissue; IMCL = Intramyocellular lipid; HOMA-IR = 

Homeostasis model assessment of insulin resistance; cIMT = carotid intima-media 

thickness; PWV = pulse wave velocity
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Figure 2. 
Association with blood pressure from 3-6 years old according to growth group, adjusted for 

maternal education, parity, pre-pregnancy BMI, gestational weight gain, maternal height, 

pregnancy fasting plasma glucose, cotinine, sex, and ethnicity in linear mixed models. 

Predicted blood pressures while holding all other covariates at their mean values at 3, 4, 5, 6 

years old are shown (with 95% confidence intervals). Legend: FGD = fetal growth 

deceleration; RPWG = rapid postnatal weight gain; SBP = systolic blood pressure; DBP = 

diastolic blood pressure
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Table 1

Demographic and clinical characteristics of study subjects in the 4 growth groups. Values in table are 

presented as mean ± SD or n (%). Legend: FGD = fetal growth deceleration; RPWG = rapid postnatal weight 

gain; ppBMI = pre-pregnancy body mass index; FPG = fasting plasma glucose; SGA = small-for-gestational-

age; AGA = appropriate-for-gestational-age; LGA = large-for-gestational-age

Mismatch
n=85

FGD-only
n=113

RPWG-only
n=186

Reference
n=186

Total
n=797

Parental characteristics

Maternal education

< 12yr 26 (31.0%) 55 (48.7%) 75 (41.0%) 146 (35.5%) 302 (38.2%)

≥ 12yr 58 (69.0%) 58 (51.3%) 108 (59.0%) 265 (64.5%) 489 (61.8%)

Monthly household income

High (≥ S$6000) 24 (31.2%) 29 (26.6%) 40 (23.1%) 142 (37.1%) 235 (31.7%)

Mid (S$2000 – 5999) 42 (54.5%) 63 (57.8%) 109 (63.0%) 196 (51.2%) 410 (55.3%)

Low (< S$2000) 11 (14.3%) 17 (15.6%) 24 (13.9%) 45 (11.7%) 97 (13.1%)

Parity

Parous 36 (42.4%) 65 (57.5%) 105 (56.5%) 237 (57.4%) 443 (55.6%)

Nulliparous 49 (57.6%) 48 (42.5%) 81 (43.5%) 176 (42.6%) 354 (44.4%)

Paternal height (m) 1.72 ± 0.05 1.71 ± 0.07 1.71 ± 0.07 1.71 ± 0.06 1.71 ± 0.06

Maternal height (m) 1.60 ± 0.05 1.59 ± 0.05 1.59 ± 0.06 1.58 ± 0.06 1.58 ± 0.06

ppBMI (kg/m2) 22.62 ± 4.77 22.91 ± 4.55 22.87 ± 4.59 22.65 ± 4.21 22.73 ± 4.40

Gestational weight gain (kg) 12.88 ± 4.96 13.02 ± 4.73 13.67 ± 5.67 14.02 ± 5.71 13.68 ± 5.50

Maternal age (yr) 31.03 ± 5.14 31.71 ± 4.99 31.58 ± 4.95 31.57 ± 5.05 31.54 ± 5.02

Maternal cotinine (ng/ml) 4.73 ± 22.12 2.16 ± 11.28 2.46 ± 11.96 1.19 ± 7.94 2.01 ± 11.73

Maternal FPG (mmol/L) 4.28 ± 0.43 4.27 ± 0.42 4.41 ± 0.53 4.37 ± 0.46 4.35 ± 0.47

Child characteristics

Sex

Female 35 (41.2%) 46 (40.7%) 97 (52.2%) 205 (49.6%) 383 (48.1%)

Male 50 (58.8%) 67 (59.3%) 89 (47.8%) 208 (50.4%) 414 (51.9%)

Ethnicity

Chinese 50 (58.8%) 65 (57.5%) 87 (46.8%) 263 (63.7%) 465 (58.3%)

Malay 14 (16.5%) 36 (31.9%) 51 (27.4%) 94 (22.8%) 195 (24.5%)

Indian 21 (24.7%) 12 (10.6%) 48 (25.8%) 56 (13.6%) 137 (17.2%)

Gestational age (wk) 38.67 ± 1.01 38.90 ± 0.91 38.85 ± 1.07 39.25 ± 0.93 39.05 ± 0.99

Birthweight (kg) 2.87 ± 0.31 3.11 ± 0.38 3.03 ± 0.37 3.30 ± 0.36 3.17 ± 0.39

Low birthweight

No 73 (85.9%) 108 (95.6%) 171 (91.9%) 412 (99.8%) 764 (95.9%)

Yes 12 (14.1%) 5 (4.4%) 15 (8.1%) 1 (0.2%) 33 (4.1%)

Birthweight categories

SGA 20 (23.5%) 12 (10.6%) 28 (15.1%) 15 (3.6%) 75 (9.4%)

AGA 65 (76.5%) 85 (75.2%) 140 (75.3%) 303 (73.4%) 593 (74.4%)

LGA 0 (0.0%) 16 (14.2%) 18 (9.7%) 95 (23.0%) 129 (16.2%)
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Table 2

Cardiometabolic characteristics of study subjects in the 4 growth groups. Values in table are presented as mean 

± SD or n (%). Legend: FGD = fetal growth deceleration; RPWG = rapid postnatal weight gain; BMI = body 

mass index; SDS = standard deviation score; SAT = subcutaneous adipose tissue; VAT = visceral adipose 

tissue; IMCL = Intramyocellular lipid; HOMA-IR = Homeostasis model assessment of insulin resistance; 

cIMT = carotid intima-media thickness; PWV = pulse wave velocity; SBP = systolic blood pressure; DBP = 

diastolic blood pressure

Mismatch
n=85

FGD-only
n=113

RPWG-only
n=186

Reference
n=413

Anthropometry & adiposity outcomes

6y z-BMI (SDS) (n=674) 0.18 ± 1.26 -0.16 ± 1.57 0.66 ± 1.59 -0.29 ± 1.06

6y z-Height (SDS) (n=674) 0.50 ± 1.05 -0.33 ± 1.00 0.45 ± 0.97 -0.30 ± 0.85

6y Body fat % (n=310) 19.36 ± 5.47 19.65 ± 8.24 23.57 ± 7.67 18.94 ± 5.36

4.5y SAT (cc) (n=262) 590.32 ± 293.33 503.79 ± 337.84 807.90 ± 595.04 471.77 ± 197.19

4.5y VAT (cc) (n=262) 200.07 ± 53.07 168.24 ± 52.15 220.07 ± 124.48 181.66 ± 51.82

4.5y IMCL (% of water signal) (n=227) 0.48 ± 0.13 0.45 ± 0.20 0.55 ± 0.44 0.44 ± 0.21

4.5y Liver fat (% by weight) (n=216) 0.65 ± 0.40 0.52 ± 0.39 0.58 ± 0.40 0.53 ± 0.37

6y Metabolic outcomes

Fasting glucose (mmol/L) (n=429) 4.64 ± 0.43 4.57 ± 0.34 4.56 ± 0.33 4.51 ± 0.36

Fasting insulin (pmol/L) (n=324) 37.35 ± 23.08 26.56 ± 12.98 35.00 ± 24.66 26.69 ± 14.97

HOMA-IR (units) (n=323) 1.17 ± 0.88 0.78 ± 0.40 1.03 ± 0.74 0.77 ± 0.45

6y Cardiovascular outcomes

cIMT (mm) (n=422) 0.43 ± 0.04 0.42 ± 0.03 0.42 ± 0.03 0.42 ± 0.03

PWV (m/s) (n=443) 4.82 ± 1.10 5.25 ± 2.24 4.91 ± 1.48 4.90 ± 1.58

SBP (mmHg) (n=565) 102.80 ± 8.32 101.90 ± 9.25 101.48 ± 8.48 100.23 ± 8.12

DBP (mmHg) (n=565) 61.98 ± 6.86 59.83 ± 5.39 59.81 ± 5.49 59.16 ± 5.48

Int J Epidemiol. Author manuscript; available in PMC 2021 April 01.


	Abstract
	Introduction
	Materials and Methods
	Study population
	Exposures
	Cardiometabolic Risk Biomarkers
	Covariates
	Statistical analysis

	Results
	Cohort description
	Associations of growth groups with adiposity outcomes
	Associations of growth groups with metabolic outcomes
	Associations of growth groups with cardiovascular outcomes
	Sensitivity analysis

	Discussion
	Conclusion
	References
	Figure 1
	Figure 2
	Table 1
	Table 2

