Skip to main content
. Author manuscript; available in PMC: 2021 Aug 1.
Published in final edited form as: Mol Ecol Resour. 2020 Oct 24;21(2):584–595. doi: 10.1111/1755-0998.13265

Table 3. A comparison of Dsuite and a number of other tools in terms of computational efficiency of D statistic estimation.

Dataset Software Options Peak memory Run time
Malawi scaffold_0 Dsuite Dtrios --no-f4-ratio 92MB 74m59s
Admixtools qpDstat blgsize: 0.01 27,212MB 125m2s
HyDe run_hyde.py none 178MB 231m38s
Comp-D -d -H -b10 8,300MB 24hours+
PopGenome do.df=F block.size=1000 1,170MB 24hours+
Simulation small (20 species) Dsuite Dtrios --no-f4-ratio 8MB 28m18s
Admixtools qpDstat blgsize: 0.01 17,100MB 13m59s
HyDe run_hyde.py none 258MB 19m38s
Comp-D -d -H -b10 22,100MB 24hours+
PopGenome do.df=F block.size=1000 440MB 1m50s
Simulation large (100 species) Dsuite Dtrios --no-f4-ratio 223MB 215m52s (×100)
Admixtools qpDstat blgsize: 0.05 1,117,314MB 331m39s (×100)
HyDe run_hyde.py none 18,716MB 576m32s (×100)
Comp-D -d -H -b10 1,000,185MB+ 24hours+ (×100)
PopGenome do.df=F block.size=1000 470MB 274m53s (×100)

Comp-D cannot use allele frequencies calculated across multiple individuals, so only one individual per species included.

Because of the size of the dataset, we divided the analysis into 100 equally sized jobs to run in parallel; the run time and memory requirements are given for the first job