
Genome-wide methylation profiling in granulosa lutein cells of 
women with polycystic ovary syndrome (PCOS)

E. Makrinoua,1,*, A.W. Drongb, G. Christopoulosc, A. Lernera, I. Chapa-Chordaa, T. 
Karaderid,e, S. Laveryc, K. Hardya, C.M. Lindgrenb,d,f, S. Franksa

aImperial College London, Faculty of Medicine, Institute of Reproductive and Developmental 
Biology, London, W12 0NN, UK

bBig Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of 
Oxford, Oxford, OX3 7LF, UK

cIVF Unit, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, W12 0NN, UK

dWellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK

eDepartment of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean 
University, Famagusta, Cyprus

fProgram in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA

Abstract

Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder amongst women of 

reproductive age, whose aetiology remains unclear. To improve our understanding of the 

molecular mechanisms underlying the disease, we conducted a genome-wide DNA methylation 

profiling in granulosa lutein cells collected from 16 women suffering from PCOS, in comparison 

to 16 healthy controls. Samples were collected by follicular aspiration during routine egg 

collection for IVF treatment. Study groups were matched for age and BMI, did not suffer from 

other disease and were not taking confounding medication.

Comparing women with polycystic versus normal ovarian morphology, after correcting for 

multiple comparisons, we identified 106 differentially methylated CpG sites with p-values < 5.8 

×10–8 that were associated with 88 genes, several of which are known to relate either to PCOS or 

to ovarian function. Replication and validation of the experiment was done using pyrosequencing 

to analyse six of the identified differentially methylated sites. Pathway analysis indicated potential 
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disruption in canonical pathways and gene networks that are, amongst other, associated with 

cancer, cardiogenesis, Hedgehog signalling and immune response. In conclusion, these novel 

findings indicate that women with PCOS display epigenetic changes in ovarian granulosa cells that 

may be associated with the heterogeneity of the disorder.
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1 Introduction

Polycystic Ovary Syndrome (PCOS) is a common, heterogeneous endocrine disorder with 

an estimated prevalence up to 15% amongst women of reproductive age, depending on the 

diagnostic criteria used (Azziz et al., 2004; Franks, 1995; March et al., 2010; Sirmans and 

Pate, 2013). It comprises metabolic and reproductive disturbances, whereas environmental 

influences, such as diet, are known to affect the phenotype. Its main biochemical 

characteristic is the hypersecretion of androgens, predominantly of ovarian origin that is 

associated with, and may be causally related to, infertility (anovulation, menstrual 

irregularities), hirsutism (hair excess), psychological distress (anxiety, depression) and 

metabolic defects (obesity, insulin resistance). Women with PCOS have an increased risk of 

developing type 2 diabetes and cardiovascular disease later in life (Diamanti-Kandarakis and 

Dunaif, 2012; Jayasena and Franks, 2014; Mani et al., 2013; Qu et al., 2012).

The aetiology of PCOS remains unclear. There is, however, evidence for genetic 

predisposition with familial clustering of cases as well as genetic variants of endocrine and 

metabolic markers (Barber and Franks, 2013; Chen et al., 2011; Day et al., 2015; Franks et 

al., 1997, 2008; Hayes et al., 2015; Shi et al., 2012; Vink et al., 2006). It has been proposed 

that PCOS originates in early (possibly fetal) life due to “programming” by exposure to 

excessive androgen production. (Abbott et al., 2002, 2005; Franks and Berga, 2012; Li and 

Huang, 2008; Xita and Tsatsoulis, 2006).

Results of protein and expression profiling experiments in adults support the view that there 

is an important contribution of androgen-dependent genes to the aetiology of PCOS (Adams 

et al., 2016; Coskun et al., 2013; Insenser and Escobar-Morreale, 2011; Li et al., 2016; Lv et 

al., 2017). There are however very few studies regarding the epigenetic changes associated 

with PCOS development, with only a handful of genome-wide studies that were conducted 

mainly on whole blood, or ovarian tissue (Table S1).

The rationale of our study is based on the hypothesis that PCOS can be explained by an 

integrated epigenetic model, whereby environmental factors modify the effect of 

susceptibility genes and therefore, influence the clinical and biochemical heterogeneity that 

is characteristic of the syndrome during adult life. In this investigation, we report results 

from a PCOS case-control, genome-wide methylation study using DNA from granulosa 

lutein cells (GLCs) that are known to be androgen responsive, with the aim to advance our 

understanding of the molecular mechanisms underlying the disease, to provide a novel 
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insight into the role of epigenetic programming in PCOS and ultimately to improve its 

diagnosis and treatment.

2 Materials and Methods

2.1 Patient recruitment and sample collection

GLC samples from consecutive subjects with or without PCOS, were collected from the 

Hammersmith IVF clinic (Wolfson Fertility Centre, Hammersmith Hospital) by follicular 

aspiration of mature oocytes (> 14 mm diameter on the day of HCG administration), during 

routine egg collection.

All participants provided informed consent. PCOS was diagnosed according to the 

Rotterdam Consensus criteria (Rotterdam, 2004). Sample collection was approved by the 

National Research Ethics Service (NRES) (Hammersmith & Queen Charlotte's Chelsea: 08/

H0707/152).

The array-based analysis cohort comprised 32 samples, 16 PCOS women with 

oligomenorrhea and 16 healthy women (controls), who received IVF treatment due to male 

infertility factors. All participants were of similar age and BMI, did not suffer either 

currently, or in the past from other disease and were not taking Metformin medication for 

insulin resistance (Table 1).

The validation cohort using pyrosequencing consisted of two PCOS subgroups, with (n = 

27) and without (n=15) oligomenorrhea and healthy controls undergoing IVF treatment due 

to male infertility factor and/or physical blockage (n = 43, 2 of them apart from male 

infertility, also had salpingectomies). Samples were overlapping with the samples used for 

the genome-wide analysis. All extra samples were from subjects who had same clinical 

characteristics as those included in the array-based study (Table 1).

2.2 Genomic DNA isolation and quantitation

GLCs were isolated by density gradient centrifugation using Percoll (GE Healthcare Life 

Sciences, UK). Genomic DNA was extracted using the QIAGEN DNeasy Blood and tissue 

extraction kit according to the manufacturer’s instructions (QIAGEN Ltd).

Following extraction, DNA was quantified by measuring absorbance on a NanoDrop™ 1000 

Spectrophotometer (Thermo Fisher Scientific) and fluorescence intensity using the Quant-iT 

PicoGreen dsDNA Assay (Life Technologies Limited) on a PHERAstar FS multi-mode 

reader (BMG LABTECH Ltd). Both quantitation methods were considered.

2.3 DNA methylation microarray

Genome-wide DNA methylation profiling was generated using the Infinium 

MethylationEPIC BeadChip array (Illumina, San Diego, CA, USA). 500 ng of DNA were 

bisulfite converted using the EZ-96 DNA Methylation™ Kit (Zymo Research Corporation, 

Irvine, CA), fragmented and hybridised on the BeadChip. Signal intensities were extracted 

using the Illumina iScan Reader (Illumina, San Diego, CA, USA).
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Hybridization, scanning and raw data processing were performed by the Oxford Genomics 

Centre facilities (Wellcome Trust Centre for Human Genetics, Oxford), according to 

Illumina’s protocol (https://support.illumina.com).

2.4 Quality control and data pre-processing

Raw data files and genomic annotation from the EPIC beadchip array were provided by the 

Oxford Genomics Centre service. Raw intensities (.idat) were retrieved and pre-processed 

using the Bioconductor package minfi (version 1.18.6) in R (Fortin et al., 2017).

All samples passed the initial quality assessment, with an intensity detection p-value < 10−16 

and a sample call rate > 98%. Intensity values were quantile normalised using limma (Smyth 

et al., 2005) and converted to β-values, reported as a score ranging from 0 (non-methylated) 

to 1 (completely methylated).

Global correlation patterns and sample relationships for the detection of biological clustering 

and outliers were assessed by Principal Component Analysis (PCA). We included all 

samples in the study and all markers that had no missing data (n = 850,514, prcomp function 

in R with default settings). PCA variance was 9.25% and 7.55% for PC1 and PC2 

respectively. Linear models regressing the case-control status against the first two principal 

components indicated a separation between the two groups by PC1 (p = 0.04) and PC2 (p = 

0.004).

PCA clustering indicated the presence of two potential outliers (1 PCOS; red colour and 1 

control; black colour, Supplementary Fig. S1). However, comparing data of linear regression 

analysis with and without the two samples, we identified 62 overlapping hits within the cut-

off threshold of p < 5.8 ×10−8, whereas 44 hits (out of 106) had p-values very close to the 

ones identified including all samples, ranging from 5.0×10−08 to 2.9× 10−07. The remaining 

10 hits, identified when we excluded the two outliers, were not associated with any genes, 

and mainly had intergenic locations. Since neither sample deviated from the clinical 

phenotype that characterises the two study groups to which they belonged, they were 

considered not as biological, but rather as technical outliers, and were included in the 

analysis (Supplementary Table S2).

2.5 Statistical analysis

Downstream statistical analysis of the data was performed using the CPACOR 

(incorporating Control Probe Adjustment and reduction of global CORrelation) methylation 

analysis pipeline (Lehne et al., 2015) in R (http://cran.r-project.org, version 3.3). The 

analysis was corrected for multiple comparisons (Bonferroni correction for multiple testing; 

0.05/853,307 = 5.8×10−8).

To improve data quality and adjust for technical variations introduced by the use of two 

probe types (I and II) with distinct differences, data were normalised as raw data (beta 

values) without preprocessing, and using Illumina Genome Studio (reverse engineered and 

implemented in minfi), Subset-quantile within array (SWAN), Quantile, Functional 

(FunNorm) and Noob normalisation methods (Fortin et al., 2017) (Supplementary Table S2). 

The highest correlations between paired methylation measurements were observed after 
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quantile normalisation. Therefore, we based our analysis on a general linear regression 

model with quantile normalised data.

The distribution of p-values under the null hypothesis was determined by randomly re-

assigning a case-control status to all 32 samples of the study and performing a linear 

regression analysis for each marker, using normalised data, with and without adjusting for 

the two control probes. 1000 permutations were performed each time, to obtain 2 x 1000 p-

value sets under the assumption of no association.

For comparison of our data with the Xu et al. study (the only previously published study 

using granulosa-lutein cells), we considered a “hit” in the Xu et al. study as replicated if 

there was directional consistency between the effect sizes, with p < 0.05. We then compared 

how many hits were replicated versus the total number of published hits, in each category, 

using a one-sided binom. test () with unadjusted cut-off p = 0.05.

2.6 Pyrosequencing

Validation of the selected gene-associated CpG sites was performed using the Q96 MD 

Pyrosequencing platform (QIAGEN Ltd). Primers for the pyrosequencing assays were 

designed using the Pyromark Assay Design Software. The PCR and sequencing primers, 

PCR amplification conditions, and sequence that was analysed, are listed in Supplementary 

Table S3. Any CpGs overlapping common SNPs were excluded from the analysis as they 

can represent a source of discrepancy.

All assay runs included standard DNA controls with 0%, 25%, 50%, 75% and 100% 

methylation status. Standards were prepared by diluting 100% methylated DNA (CpGenome 

Universal Methylated DNA, Millipore, UK) to 0% Whole Genome Amplified genomic DNA 

(Illustra GenomiPhi V2 DNA Amplification Kit, GE Healthcare Life Sciences). Whole 

genome amplified product was purified using the MinElute PCR Purification Kit (QIAGEN 

Ltd). 500 ng of the mixed standards were bisulfite converted using both the EZ methylation 

and EZ-Lightning methylation kits (Zymo Research Corporation, Irvine, CA), according to 

the manufacturer’s instructions. Each assay analysed two to six CpG sites. All the CpG sites 

within the assay, indicated the same directional effect on methylation levels.

Bisulfite treated DNA (1 μl) was amplified in 25 μl of PCR reaction mixture, containing 0.8 

μM of primers and 1U of Taq (FastStart DNA Polymerase, Roche). DNA was amplified in a 

heated-lid thermocycler as follows; 95 °C for 5mins (x 1), 95 °C for 30sec, annealing for 30 

s at temperature corresponding to each set of primers, 72 °C for 30sec (x 36), 72 °C for 

5mins (x 1). Single PCR products corresponding to the expected product size were 

confirmed by 2% agarose gel electrophor-esis.

Sample preparation and pyrosequencing reactions were performed according to the 

manufacturer’s instructions. Methylation values were quantified as percentage of methylated 

cytosine over the sum of methylated and unmethylated cytosines applying formula (C/C + T) 

× 100, as determined by the Pyro Q-CpG™ software (QIAGEN).

Sample normality was checked using D’Agostino & Pearson omnibus K2 test; results with p 

< 0.05 were considered statistically significant and determined using unpaired, parametric t-
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test and one-way ANOVA analysis for samples with normal distribution and non-parametric 

Kruskal Wallis for skewed sample distributions. One-way ANOVA results were corrected for 

multiple testing using Bartlett’s test, assuming a Gaussian distribution with similar standard 

deviations between populations (run automatically by Prism). Graph analysis is presented as 

mean with 95% CI (confidence interval).

2.7 Data annotation and bioinformatics analysis

Annotations for the Infinium MethylationEPIC BeadChip were provided by Illumina 

(https://support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-kit/

downloads) and were based on GRCh37/hg19 build (Feb. 2009). Repeat Masker (Institute 

for Systems Biology, repeatmasker.org) was used to exclude repeat elements within primer 

sequences. Gene predictions were based on data from GENCODE v24 (currently hosted by 

the Ensembl Genome Browser), as well as RefSeq, Genbank, CCDS and Uniprot (Known 

Genes dataset).

Information on the 106 differentially methylated CpG sites and their associated genes was 

retrieved through mining the following databases; NCBI (www.ncbi.nlm.nih.gov), UCSC 

Genome Browser (genome.ucsc. edu, both GRCh37/hg19 and GRCh38/hg38 builds), 

meQTL database (http://www.mqtldb.org/) GeneCards suite (http://www.genecards.org/), 

EnSEMBL (www.ensembl.org), EMBL-EBI (www.ebi.ac.uk), The ReproGenomics viewer 

(rgv.genouest.org), Ovarian Kaleidoscope (okdb.appliedbioinfo.net), The Human Protein 

Atlas (www.proteinatlas.org) and the Polycystic Ovary Syndrome database (pcosdb.net). 

Gene predictions were based on data from GENCODE v24 (currently hosted by the Ensembl 

Genome Browser), as well as RefSeq, Genbank, CCDS and Uniprot (Known Genes dataset).

2.8 Pathway and gene ontology analyses

Pathway and gene ontology analysis were carried out using the Ingenuity Pathway Analysis 

(IPA) software (https://www.QIAGENbioinformatics.com/products/ingenuity-pathway-

analysis, (Kramer et al., 2014)). A right-tailed Fisher’s exact test was used to estimate 

statistical significance (p < 0.05) for the network analysis.

3 Results

3.1 EWAS approach and classification of differentially methylated CpG sites

We performed a genome-wide, case-control epigenome profiling (EWAS), using the 

Illumina Infinium MethylationEPIC BeadChip that covers > 850,000 methylation sites 

(Moran et al., 2016) and DNA from GLCs, a known ovarian cell target for androgen action. 

Statistical analysis of the EPIC array was performed using the CPACOR (incorporating 

Control Probe Adjustment and reduction of global CORrelation) pipeline (Lehne et al., 

2015), with several covariates.

Our EWAS sample population comprised a total of 32 participants (their clinical 

characteristics are presented in Table S2). Age, smoking and body mass index (BMI) have 

been known to affect global DNA methylation (Ashapkin et al., 2017; Bell, 2017; Sundar et 

al., 2017). However, our study population comprised women of reproductive age, who were 
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predominantly non-smokers, and whose age and BMI were adjusted within a narrow range, 

with around 4 years mean age difference between patients and controls, and very similar 

normal BMI, in agreement with the eligibility criteria for receiving In Vitro Fertilisation 

(IVF) treatment (National Institute for Health and Care Excellence guidelines (NICE) 

https://www.nice.org.uk, last update-September 2017).

By using the presence or absence of PCOS ovarian morphology to compare datasets, we 

identified 106 differentially methylated CpG sites between PCOS and controls (p < 

5.8×10−8). Correction of the analysis for one (CP1), or both (CP1 + CP2) internal control 

probes identified 76 and 11 CpGs, respectively, that were largely overlapping with the 106 

CpGs originally identified (Supplementary Table S2). Since our study was based on a 

relatively small sample size (16 cases vs. 16 controls), we decided to consider all potential 

differentially methylated CpG sites.

Using the follicular maturation trigger as an independent predictor of outcome, we identified 

6 CpG sites with altered methylation. The type of trigger typically differs between women 

with and without PCOS and so is a potential confounding variable, influenced by the PCOS 

status. Women with PCOS typically require lower doses of FSH for ovarian stimulation; 

thus, the cumulative dose of follicle-stimulating hormone (FSH) used during IVF treatment 

is another possible confounder (our analysis identified two CpG sites that could be FSH 

dose-dependent and therefore merit further investigation). Although the possible impact of 

age and BMI was minimised by the selection criteria for IVF treatment, we also adjusted for 

these, as well as for the total number of eggs collected, using all three covariates as negative 

controls. In all cases we found no effect on methylation status.

Overall, amongst the 106 identified hits, the percentage of hyperand hypo-methylated sites 

was similar, with 52% of them appearing to be hypermethylated and 48% hypomethylated 

(Supplementary Table S2). Apart from 18 CpGs that had intergenic locations (within either 

repetitive elements, or regions with no annotated genes), the remaining 88 were localised in 

the promoter regions and the body of validated and predicted genes, non-coding RNAs, and 

some pseudogenes (Figs. 1 and 2).

Database search indicated that these 88 genes were predominantly involved in gene 

regulation, endocrine and metabolic functions, immune response, cell signalling, cell death 

and survival and structural integrity (Supplementary Table S2). Of those, 36 genes are part 

of pathways relevant to PCOS phenotype, such as metabolic, cardiovascular, circadian, 

neurological and endocrine systems, or have an ovary related function (Fig. 3, 

Supplementary Table S2). Although there is a certain degree of complexity regarding the 

effect of methylation status on gene expression (Khalaf et al., 2013; Louwers et al., 2013; 

Yang et al., 2014), the identification of differential methylation in genes like BMPR1A, 

FERMT2 and HMGA2 that have been directly associated with the PCOS phenotype is very 

encouraging.

Of the106 identified CpGs, results from 6 were validated using pyrosequencing, with the 

addition of extra cases and control samples with similar clinical characteristics as those 

included in the microarray experiment (see Materials and Methods, Tables 1 and 2). These 
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targeted selections were based on the degree of statistical significance (all target p-values 

were ≤1.66e−08), genomic location, relationship with ovarian functions and PCOS 

involvement.

Pyrosequencing was also used to assess the methylation of a PCOS sub-group, comprising 

patients with regular cycles and compare the pattern with PCOS patients with 

oligomenorrhea, as well as healthy controls. There were no significant differences between 

the two PCOS groups, indicating that the two sub-phenotypes appear, at least for the 

examined CpGs, epigenetically similar (Fig. 4).

3.2 Pathway and network analysis

To assess the biological relevance and potential functional interactions of our findings, we 

carried out a core pathway analysis, using the Ingenuity Pathway Analysis software (IPA). A 

comparative review indicated 20 potentially disrupted canonical pathways with p-values 

ranging from 5.9 × 10−4 to 5.0 × 10−2. The most statistically significant pathways that were 

identified included molecular mechanisms of cancer, cardiogenesis, Sonic Hedgehog 

signalling, immune response and mitochondrial dysfunction, with some genes being present 

in more than one pathway (Fig. 5).

4 Discussion

PCOS is a polygenic disorder with a complex mode of inheritance. To date, the PCOS 

phenotype has been associated with 241 genes ((Joseph et al., 2016), http://

pcoskb.bicnirrh.res.in) and 16 PCOS susceptibility loci, encompassing genes involved in 

neuroendocrine, metabolic and reproductive functions (Brower et al., 2015; Chen et al., 

2011; Day et al., 2015, 2018; Hayes et al., 2015; Li et al., 2012; Louwers et al., 2013; Shi et 

al., 2012). Nevertheless, the complexity and heterogeneity by which the disease appears 

amongst the female population remains elusive.

To our knowledge, this PCOS epigenome wide association (EWAS) study is the first 

documented that uses GLCs, an ovary specific cell type, in combination with Illumina’s 

EPIC array that screens > 850,000 methylation sites, doubling the number from their 

previous version of 450 K. A similar study from Xu et al. (2016), also utilised GLCs for 

their analysis but on the 450 K array platform and without adjusting for multiple 

comparisons. In contrast, our study is based on data that have been thoroughly interrogated, 

corrected for genome-wide multiple comparisons and adjusted through the application of 

several normalisation methods and linear prediction models. Nevertheless, since both studies 

were performed using GLCs and overlapping Illumina arrays, we were able to directly 

compare the Xu et al. findings with our data (Supplementary Tables S3 and S4), identifying 

several CpGs in our study that were replicated in all three Xu et al. group analyses, as 

follows; 1) Controls versus PCOS obesity; 108/1472 replicated (p-value = 6.6 × 10−5), 2) 

Controls versus PCOS non-obesity; 155/2471 replicated (p-value = 0.003), 3) PCOS non-

obesity vs. PCOS obesity; 45/1089 replicated (p-value = 0.9).

Overall, we identified 106 CpGs with differential methylation between PCOS patients and 

healthy controls. Of these, 88 were associated with genes, several of which are implicated in 
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endocrine, metabolic and reproductive processes found to be associated with PCOS. In 

addition, 16 of the identified CpGs were mapped within 6 known PCOS susceptibility loci 

and of those, 5 were overlapping with known methylation quantitative trait loci (meQTLs) 

(Fig. 6, Supplementary Table S2) that may affect gene expression levels in a cis- or 

transacting fashion, strengthening the notion of a plausible environmental contribution to the 

genetic basis of PCOS (Schalkwyk et al., 2010; Shoemaker et al., 2010).

We validated our results using pyrosequencing targeted analysis of 6 specific CpG sites from 

the same patient-control cohort used in the genome wide approach, with the addition of extra 

samples from both patients and controls (see Methods and Materials, Table 1). Overall, the 

results from both experimental platforms were in agreement, having the same direction of 

effect, but with lower significance levels for the pyrosequencing experiment (Fig. 4). A 

possible explanation would be the use of two different experimental platforms and multiple 

batches of bisulfite treated DNA for each sample, both of which can add layers of technical 

bias and introduce a degree of variability in the replication of results.

In addition, using pyrosequencing, the CpG site associated with FLJ4034, the selected target 

with the most significant p-value, failed to replicate. FLJ4034 is a potential pseudogene and 

determination of its methylation status can be ambiguous due to the high methylation levels 

that pseudogenes usually exhibit in order to be silenced. Indeed, our analysis indicated > 

95% methylation for FLJ4034 in both cases and controls.

A prominent feature of PCOS is its clinical heterogeneity that can easily result in a complex 

or inaccurate diagnosis. The main reason for such heterogeneity is that PCOS development 

and progression are controlled by several mechanisms and environmental factors, involving 

genes expressed at various degrees, in a multitude of ovarian cell types. Significantly, we 

found the methylation profile of PCOS patients with and without menstrual irregularities to 

be similar, suggesting a shared epigenetic and potentially genetic architecture between 

distinct sub-phenotypes (Fig. 4). This mirrors findings in a recent meta-analysis of GWAS 

studies in which there was lack of genetic heterogeneity between women with PCOS 

irrespective of the diagnostic criteria that were applied (Day et al., 2018).

Pathway analysis identified CpG-associated genes from our panel, as part of potential 

molecular synergies that could shed some light to the disease heterogeneity (Fig. 5, Table 3).

The top five identified signalling pathways include cardiogenesis, Sonic Hedgehog, Nur77, 

mitochondrial dysfunction and cancer, with pathologies like endometrial cancer (shown to 

be more common in women with PCOS), cardiovascular disease, oocyte growth and 

maturation, and immune response, all of which have been associated with the development 

of PCOS. It is not surprising that “Molecular mechanisms to cancer” was identified as the 

most important pathway, with the involvement of seven genes from our dataset. It is well 

known that epigenetic alterations can affect gene expression and create genetic instability, 

disrupting signalling cascades and predisposing not only to malignant phenotypes, but also 

to a wide spectrum of pathologies. Of significance is also the fact that a potential 

involvement of immune response to the PCOS development is - further to pathway analysis - 

supported by data mining of our dataset, where we identified a total of 16 CpG-associated 
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genes involved in immune and inflammatory response (Supplementary Table S2). Given that 

the GLC purification procedure has removed any carry-over cells, including lymphocytes 

that could bias the results, our findings suggest that immune response may play an important 

role in the diversification of PCOS.

5 Conclusion

Over the past decade our view has shifted from the dogma of “genetic determinism” to a 

more flexible and interactive scenario of constant and dynamic relationship of our genome 

with the environment. It is therefore becoming increasingly evident that epigenetic 

modification is a crucial component of our genetic make-up and plays a critical role in key 

regulatory processes, genome stability and organismal adaptation to environmental exposure 

(Bjornsson, 2015).

These 106 differentially methylated CpGs present the opportunity, through further 

investigation, to be developed into diagnostic, as well as prognostic landmarks and risk 

indicators, since epigenetic changes can precede disease manifestation. Most importantly, 

epigenetic changes are environmentally dependent; hence, altering environmental exposure 

can reverse the effect, making them candidates for therapeutic agents (Cole et al., 2017; 

Kanwal et al., 2015; Nicoll et al., 2001; Teruel and Sawalha, 2017).
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Fig. 1. 
Localisation of the 106 identified CpGs within the genome and their association (numbers 

and percentages) with types of genes (validated, predicted, pseudogenes, non-coding RNAs), 

repeat units and random non-annotated genomic locations.
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Fig. 2. 
Distribution within the genome of the 106 CpG sites identified in our study (outside ring) 

and the published EPIC design coverage (Moran et al., 2016) (inside ring). Genomic 

locations are categorised as gene related (promoter, body, 3′UTR) and intergenic (no 

annotated genes in close vicinity). Promoter related sites are further sub-categorised 

depending on the CpG site location (island, shore, self).
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Fig. 3. 
Graphical representation of the 36 gene-associated CpG sites identified in our analysis that 

are directly, or indirectly related to PCOS. Some genes are present in more than one 

category; hence percentage calculations are based on a total of 50 entries.
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Fig. 4. 
Box plot graphs of differential methylation levels of 6 differentially methylated CpG sites 

between two sub-groups of PCOS patients and healthy controls. Left hand graphs: 

microarray analysis adjusting for PCOS ovarian morphology; Y-axis: beta values. Middle 

graphs: pyrosequencing analysis using DNA from PCOS patients with oligomenorrhea; Y-

axis: % methylation levels. Right hand graphs: pyrosequencing analysis using DNA from 

patients with regular cycles; Y-axis: % methylation levels. Expts 1, 2, 3, 4; number of 

pyrosequencing assays repeated for the same CpG methylation target.
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Fig. 5. 
Pathway analysis of the 88 gene-associated differentially methylated CpGs. Y-axis; 

significant canonical pathways for the dataset. X-axis; -log (p value), calculated by Fisher’s 

right-tailed exact test. The ratio (orange line) is calculated as number of genes in a given 

pathway that meet cut-off criteria, divided by the total number of genes that make up that 

pathway. Threshold indicates the fraction of false positives among significant functions. 

Pathways that have a –log (p value) greater than the threshold of 1.3 (range 0–3.23) are 
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displayed to the right-hand side of the graph. White bars; z-score at, or close to 0. Grey bars; 

pathways with no current prediction.
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Fig. 6. 
Mapping of 16 gene-associated CpGs within published PCOS susceptibility loci. Table lists 

information regarding the susceptibility loci (chromosomal region, publication, published 

gene/s and ancestry used for the GWAS study) and the number of CpGs from the analysis 

located within these regions, the name of the associated to the CpGs genes and a graphical 

representation of their localisation within the genome.
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Table 1

Clinical characteristics of PCOS patients and controls used for the array-based and the pyrosequencing 

analysis. The pyrosequencing analysis includes all samples used for the genome-wide study, extra samples for 

each group and an extra group comprising women suffering from PCOS, but with regular cycles. Group 

comparisons were performed using a two-tailed, unpaired t-test. Values are mean, ± standard error of means 

(SEM). N: number of patients, GnRHA: Gonadotropin-releasing hormone agonist, hCG: Human chorionic 

gonadotrophin, BMI: Body Mass Index, LH: Luteinizing Hormone, FSH: Follicle-Stimulating Hormone, Hep 

B, C: Hepatitis B, C, HIV: Human Immunodeficiency Virus. Number of * indicate level of significance.

EPIC array cohort Pyrosequencing cohort

PCOS Controls P-value PCOS Controls PCOSreg P-value

Menstrual cycle Irregular Regular Irregular Regular

Ovarian 
morphology

PCO Normal PCO Normal PCO

Mean age [y) 30.19 ± 0.8, 
N=16

34.75 ± 0.9, N=16 0.0009*** 30.2 ± 0.6, 
N=26

35.1 ± 0.6, N=43 32.9 ± 1.1, 
N=10

0.0001****

Mean BMI 
(kg/m2)

24.89 ± 0.8, 
N=16

24.38 ± 0.5, N=16 0.593 24.5 ± 0.6, 
N=26

24.4 ± 0.4, N=43 23.6 ± 1.1, 
N=10

0.714

Protocol Antagonist Long agonist. 
Antagonist

Antagonist Long agonist, 
Antagonist

Antagonist

Gonadotropin 
used

FSH (Gonal-
f)

FSH (Gonal-f) FSH (Gonal-
f)

FSH (Gonal-f) FSH (Gonal-
f)

Maturation 
trigger

GnRHA, 
Kisspeptin

hCG GnRHA, 
Kisspeptin

hCG GnRHA, 
Kisspeptin

No. of antral 
follicles

36 ± 3.4, 
N=16

14 ± 1.4, N=16 <0.0001**** 38.6 ± 2.9, 
N=26

12.2 ± 0.9, N=43 28.4 ± 2.1, 
N=10

0.0001****

Baseline FSH 
(mlU/mL)

5.2 ± 0.8, 
N=15

6.3 ± 0.6, N=12 0.2645 5.3 ± 0.5, 
N=24

6.5 ± 0.5, N=30 4.4 ± 0.7, 
N=9

0.0555

Baseline LH 
(mlU/mL)

5.3 ± 0.9, 
N=15

4.3 ± 0.4, N=10 0.4101 6.8 ± 0.9, 
N=23

5 ± 0.43 N=28 5.1 ± 0.9, 
N=9

0.1114

Days of 
stimulation

11.4 ± 0.8, 
N=16

11.1 ± 0.5, N=16 0.7815 11.1 ± 0.5, 
N=26

11.1 ± 0.3, N=43 11.3 ± 1.3, 
N=10

0.9674

Cumulative 
FSH dose (iu)

1578 ± 198, 
N=16

2986 ± 296, N=16 0.0004*** 1466.3 ± 
132, N=26

3087.2 ± 183, 
N=43

1551.5 ± 
121.4, N=10

0.0001****

No. of follicles 
>14mm

15 ± 1.2, 
N=16

8 ± 0.7, N=16 <0.0001**** 15 ± 1.5, 
N=26

7.6 ± 0.6, N=43 9.8 ± 1.9, 
N=10

<0.0001****

No. of eggs 
collected

20 ± 3.3, 
N=16

12 ± 1.3, N=16 0.0263* 18.8 ± 2.3, 
N=26

10 ± 0.8, N=43 15.2 ± 2.8, 
N=10

0.0002***

Smokers 0 2 0 2 0

Alcohol 
drinking

1 4 2 6 0

Hep B,C, HIV
+ve

1 0 1 0 0

Family history No No No No No

Medical history No Migraines (1), 
asthma (1), 
epilepsy (1), 

hypothyroidism 
(1), Raynaud’s 
syndrome (1)

No Migraines (2), 
asthma (1), 
epilepsy (1), 

hypothyroidism 
(1), Raynaud’s 
syndrome (1)

No
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Table 2

Statistical analysis results and associated gene details on 10 differentially methylated CpG sites chosen for 

pyrosequencing validation. $ denotes closest gene to the CpG of interest, *N_ and S_ denote the upstream and 

downstream end of the island region. P-value corresponds to linear regression analysis of the EPIC array.

Illumina ID $Gene chr p-value Comments Disease Ovary PCOS *CpG 
location

cg11683966 FLJ40434 1p.32 2.09e−14 Pseudogene S_Shore

cg00112465 CCDC48 3q.21 7.04e−13 Predicted gene Island

cg18364576 FERMT2 14q.22 3.44e−10 Scaffold protein related to PCOS 
androgen receptors

Hyper-
androgenemia

Yes Yes N_Shore

cg10821050 SHH 7q36 1.40e−09 Follicle and early embryo 
development, signal mediator 
btw granulosa and theca cells

Cancer, 
developmental 
disorders

Yes N_Shore

cg23044884 RBPMS 8p.12 1.39e−08 Transcriptional regulator S_Shelf

cg12976821 BMPR1A 10q22 1.66e−08 TGF-b pathway downregulated 
by testosterone

Polyposis, Thyroid Yes Yes 5′UTR
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Table 3

List of the top five Identified signalling pathways with CpG-associated genes from our EWAS analysis.

IP A Pathway Genes from 
our dataset

PCOS associated pathology or gene References

# 1 Molecular 
mechanisms of 
cancer

BMPR1A, 
CASP9, 
GNA11, LRP1, 
PRKCA, SHH 
and SUFU

A well-recognised PCOS associated pathology is endometrial cancer Shen et al. (2013)

#2 Cardiogenesis BMPR1A, 
LRP1 and 
PRKCA

BMPR1A is PCOS related and LRP1 is involved in lipid metabolism. 
Also, PCOS is frequently accompanied by an increased risk for 
cardiovascular disease, because of molecular interactions between 
obesity, testosterone and dyslipidemia Couto Alves et al., 2017

#3 Sonic Hedgehog 
(SH) signalling

SHH and SUFU SH is involved in ovarian follicular growth, regulating the 
steroidogenic capacity of endocrine cells like GLCs and signalling 
oocyte maturation, especially towards the final stages of antral 
follicle development. One of the key features of PCOS is the 
production of multiple prematurely arrested follicles leading to 
reduced fertility. Therefore, it is plausible that SH may be implicated 
in the development of anovulation in PCOS

Wijgerde et al., 2005; 
Spicer et al., 2009 
Wang et al., 2014

#4 Nur77, T-
lymphocytes 
signalling

CASP9 and 
CD86

Nur77 is related to autoimmune response prevention. PCOS 
development and progression have been associated with immune 
response. It has been hypothesized that functional autoantibodies lead 
to a higher prevalence of autoimmune thyroiditis amongst PCOS 
patients. Also, several studies have indicated a link between increased 
androgen levels in PCOS patients, and inflammatory conditions, both 
systemic and GLC localised

Gleicher et al., 2007 
Adams et al., 2016 Xu 
et al., 2016

#5 Mitochondrial 
dysfunction

CASP9, 
COX15 and 
TRAK1

Mitochondrial biogenesis is particularly important during oocyte 
growth and its impairment has been associated with poor oocyte 
quality, diminished ovarian reserves and insulin resistance. Although 
patients selected for the study did not suffer from insulin resistance or 
hyperinsulinemia, these findings suggest a potential predisposition to 
insulin signalling disruption that may prove functionally significant 
given that methylation changes can precede clinical manifestation of 
the disease by several years

Wang et al., 2014 
Wang and Moley, 2010 
Brower et al., 2015 
Ding et al., 2017 
Moran et al., 2016
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