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Summary

Genome-wide association studies have revealed numerous risk loci associated with diverse 

diseases. However, identification of disease-causing variants within association loci remains a 

major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding 

regions is central to disease susceptibility. We show that integrative computational analysis of 

phylogenetic conservation with a complexity assessment of co-occurring transcription factor 

binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in 

disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct 

homeo-box TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 
expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic 

insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, 

cross-species conservation analysis at the level of co-occurring TFBS provides a valuable 

contribution to the translation of genetic association signals to disease-related molecular 

mechanisms.

Introduction

Recent advances in genome-wide association studies (GWAS) have yielded a plethora of 

loci associated with diverse human diseases and traits (Hindorff et al., 2009). However, 

signals emerging from GWAS, which involve typically dozens of variants in linkage 

disequilibrium (LD), have rarely been traced to the disease-causing variants and even more 

rarely to the mechanisms by which they may increase disease risk (Califano et al., 2012). 

The majority of common genetic variants are located in noncoding regions (1000 Genomes 

Project Consortium et al., 2012), and disease-associated loci are enriched for expression 

quantitative trait loci (eQTLs) (Nica et al., 2010), DNase I hypersensitive sites sequencing 

(DHSseq) peaks, and chromatin immunoprecipitation sequencing (ChIP-seq) peaks 

(Maurano et al., 2012; ENCODE Project Consortium et al., 2012), suggesting that variants 

modulating gene regulation are major contributors to common disease risk.

Experimental DHS, RNA, and ChIP-seq approaches have been used to prioritize candidate 

cis-regulatory variants (Maurano et al., 2012; ENCODE Project Consortium et al., 2012; 

Ward and Kellis, 2012b). However, such functional approaches require access to appropriate 

human tissues and are further hampered by the spatial, temporal, environmental, and 

epigenetic complexity of gene regulation. These limitations emphasize the need for 
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bioinformatics approaches that reliably assess the regulatory role of noncoding variants. So 

far, phylogenetic conservation has been a common denominator in the search for noncoding 

regulatory regions (Waterston et al., 2002; Pennacchio et al., 2006; ENCODE Project 

Consortium et al., 2007, 2012; Visel et al., 2009b; Blow et al., 2010; Lindblad-Toh et al., 

2011). However, intra- and cross-species differences in gene expression are often driven by 

changes in transcription factor binding sites (TFBS), and their rapid evolutionary turnover 

results in lineage-specific regulatory regions that are functionally conserved but have low 

phylogenetic conservation (Ward and Kellis, 2012a), thus challenging the use of these 

algorithms. Importantly, gene regulatory regions in eukaryotes tend to be organized in cis-

regulatory modules (CRMs), comprising complex patterns of co-occurring TFBS for 

combinatorial binding of transcription factors (TFs) (Arnone and Davidson, 1997; 

Pennacchio et al., 2006; Visel et al., 2013). CRMs integrate upstream signals to regulate 

expression of coordinated gene sets, making them a prime target to achieve phenotypic 

changes as a result of adaptive evolution (Junion et al., 2012). Despite the critical 

importance of CRMs, no algorithms have so far been developed to harness the potential 

power of conserved TFBS patterns within CRMs to predict regulatory variants in disease 

genetics.

We show that cross-species conservation at the level of the CRMs—rather than at the level 

of the regulatory sequence that comprises them—identifies cis-regulatory variants within 

disease-associated GWAS loci. Exploiting phylogenetic conservation of TFBS co-

occurrences, we found homeobox TFBS as a cis-regulatory feature of type 2 diabetes (T2D) 

risk loci, for which the specific causal variants have rarely been pinpointed (Stitzel et al., 

2010). Detailed analysis at the PPARG risk locus revealed the rs4684847 risk allele and, by 

changing binding of the homeo-box TF PRRX1, its genotype-dependent effect on PPARG2 
expression and insulin sensitivity.

Results

Cross-Species Analysis of TFBS Modularity Discovers cis-Regulatory SNPs at T2D Risk 
Loci

We developed a method, phylogenetic module complexity analysis (PMCA), which 

leverages conserved co-occurring TFBS patterns within CRMs to predict cis-regulatory 

variants, i.e., variants affecting gene expression (Figure 1A; Extended Experimental 

Procedures available online). To systematically identify cis-regulatory variants at GWAS risk 

loci, we extracted GWAS tagSNPs and consequently all noncoding (nc) SNPs that are in 

high LD with these tagSNPs. PMCA individually tests each nc variant by analyzing the 

flanking region for cross-species conserved TFBS patterns, regardless of global sequence 

conservation. This requires first the extraction of the region surrounding an nc SNP (±60 bp) 

from the human genome and consequent identification of orthologous regions in 15 

vertebrate species. Within each SNP-specific set of orthologous regions, phylogenetically 

conserved TFBS, TFBS modules (a cross-species conserved pattern of two or more TFBS 

occurring in the same order and in a certain distance range), and TFBS in those TFBS 

modules were identified and then counted. SNP-flanking regions with a significant 

enrichment of phylogenetically conserved TFBS modules are classified as complex regions, 
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as compared to noncomplex regions (example in Figure 1B) wherein the occurrence of 

TFBS modules does not exceed expectation by chance. To compute this enrichment 

weestimate background probabilities using randomizations of orthologous sets (details on 

scoring cut-offs in Extended Experimental Procedures).

We applied PMCA to a set of eight GWAS T2D risk loci (MTNR1B, TCF7L2, PPARG, 
CENTD2, FTO, GCK, CAMK1D, and KLF14) (Dupuis et al., 2010; Voight et al., 2010) 

covering strong and weaker GWAS signals and reflecting the different T2D features, i.e., 

insulin resistance and impaired insulin secretion (Doria et al., 2008). Using noncoding 

sequence data, we defined 200 SNPs in LD with the tagSNPs (r2 ≥ 0.7, 1000 Genomes) 

(1000 Genomes Project Consortium et al., 2012) (Figure S1A). PMCA predicted 64 

complex and 136 noncomplex regions (Figures 1C–1G; Table S1). We ranked complex 

regions based on the count of TFBS in conserved TFBS modules (Table S2) and examined 

the allele-dependent cis-regulatory potential of the 25% highest scoring SNPs using in vitro 

electrophoretic mobility shift assay (EMSA) and reporter assays. As predicted, SNPs in 

complex regions significantly differed in allele-dependent cis-regulatory activity compared 

to noncomplex regions (Figures 1H and 1I; Table S3). Indeed, the regulatory variants 

revealed effects ranging from 3.1-to 101-fold change in DNA-protein binding and 1.3- to 

3.5-fold change in reporter activity. Moreover, the identified variants operated in a cell type-

specific manner (Figure S1B).

To examine if the identified cis-regulatory variants in complex regions associate with T2D in 

vivo, we performed look-ups in the MAGIC and DIAGRAM cohorts (Dupuis et al., 2010; 

Voight et al., 2010). The variants in complex regions revealed a similar or stronger 

association compared to the initial GWAS signal (Table S4), and a look-up in a recent fine-

mapping study (Maller et al., 2012) confirmed that our cis-regulatory SNPs belong to the 

predicted T2D-disease SNP set. GWAS signals are enriched for regulatory variants (Nica et 

al., 2010). Comparing random SNPs from the 1000 Genomes Project (1000 Genomes 

Project Consortium et al., 2012) to a limited representation of GWAS signals for 19 human 

diseases (Hindorff et al., 2009) (Table S5A), we found a 1.12-fold overall enrichment of 

SNPs in complex regions (p = 1.9 × 10−4, binomial distribution) (Table S5B and S5C), 

reflecting disease-conferring and low effect cis-regulatory variants. Finally, we applied 

PMCA on reported cis-regulatory SNPs associated with diverse disease-related traits, 

including cancer, myocardial infarction, thyroid hormone resistance, hypercholesterolemia, 

and adiponectin levels (MYC, Pomerantz et al., 2009; MDM2, Post et al., 2010; PSMA6, 
Ozaki et al., 2006; THRB, Alberobello et al., 2011; SORT1, Musunuru et al., 2010; APM2, 
Laumen et al., 2009). Consistent with the reported functional proof, our analysis informed 

on all but one of the cis-regulatory SNPs (Table S6). The highest scores inferred from 

PMCA predicted the myocardial infarction risk variant shown to regulate hepatic SORT1 
expression (Musunuru et al., 2010). Together, these results demonstrate the utility of cross-

species TFBS modularity information within CRMs to elucidate functionality of GWAS 

signals in the noncoding genome.
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Functional Conservation beyond Sequence Conservation

Given that TFBS turnover is characteristic of CRM evolution (Blow et al., 2010; Ward and 

Kellis, 2012a), the utility of sequence conservation in deciphering cis-regulatory variants 

may be limited. To assess the power of harnessing TFBS patterns beyond sequence 

conservation, allowing for sequence variability, we tested complex and noncomplex regions 

for correlations with evolutionary constrained elements detected by the SiPhy-Tc-method 

(Lindblad-Toh et al., 2011). For this analysis, we extended our initial PMCA analysis of 

eight T2D loci to a set of 47 T2D risk loci comprising all GWAS-reported autosomal 

variants (Hindorff et al., 2009) including 487 complex and 978 noncomplex regions (Figure 

S2; Table S7). Noncomplex regions were depleted of constrained elements in their close 

proximity (Figure 2A). Conversely, complex regions were enriched for nearby constrained 

elements, consistent with a 1.37-fold enrichment of GWAS SNPs relative to HapMap SNPs 

(Lindblad-Toh et al., 2011). Although complex regions overlapped 1.88-fold more with 

constrained elements than noncomplex regions (p = 2.4 × 10−9, hypergeometric distribution, 

right sided), strikingly the majority of complex regions lacked an overlap with constrained 

elements (Figure 2B; Table S8). This lack of overlap was true for all variants that we 

experimentally characterized as cis-regulatory (example in Figure 2C). In essence, 

considering sequence conservation helps to prioritize genomic regions that harbor potential 

causal variants, yet seems insufficient to pinpoint them. This underscores the importance of 

exploiting conservation in terms of a complexity assessment of co-occurring TFBS, in the 

search for cis-regulatory variants involved in human diseases.

To further support PMCA predictions at T2D risk loci, we merged our analysis with 

functional genomics data from The ENCODE Project Consortium (2011) (chromatin state 

and TF binding). We found complex regions highly enriched for both DHSseq peaks (p = 

3.52 × 10−10) (Figure 2D) and ChIP-seq peaks (p = 4.68 × 10−6) (Figure 2E; Table S9). 

Additionally, crossing our regulatory predictions for T2D risk SNPs with Reg-ulomeDB, a 

data repository of multiple types of functional ENCODE data (Schaub et al., 2012), 

confirmed that complex regions are significantly enriched for functional annotations (p = 3 × 

10−24, hypergeometric distribution, right-sided) (Table S10).

Clustering of Distinct Homeobox TFBS Is a Specific Feature of T2D-Related Complex 
Regions

TFBS clustering relative to transcription start sites indicates biological significance 

(FitzGerald et al., 2004), and TFBS combination coupled with the TFs recruited to a CRM 

determines CRM function (Zinzen et al., 2009). Thus, we sought evidence for a discerning 

T2D functional feature by exploring TFBS characteristics in evolutionary conserved 

complex regions at T2D risk loci. Given a SNP genomic region we used positional bias 

analysis, scanning 1,000 bp with the SNP at midposition for the occurrence of putative TF 

binding sequences (883 TFBS matrices grouped in 192 TFBS matrix families) (Table S11). 

First, for the set of eight T2D risk loci selected for in-depth analysis above, we observed a 

significant positional bias for distinct TFBS families (−log10(p) > 6) exactly at SNP 

positions of complex contrary to noncomplex regions (Figure 3A). This striking SNP-

directed overrepresentation in T2D complex regions was restricted to specific TFBS in the 

homeobox superfamily, including the matrix families CART (−log10(p) = 6.52) and PDX1 
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(−log10(p) = 6.18) (Table S12A). To test whether these findings could be retrieved in a 

larger set of T2D-associated variants, we extended TFBS clustering analysis to the set of 47 

GWAS T2D risk loci (Hindorff et al., 2009). Indeed, this comprehensive analysis reproduced 

colocalization of T2D risk SNPs exclusively with homeobox TFBS matrices in complex 

regions as opposed to noncomplex regions (Figure 3B; Table S12B). We again found 

specific clustering of the CART (−log10(p) = 13.00) and PDX1 families (−log10(p) = 6.78) 

together with the homeobox matrix families NKX6 (−log10(p) = 8.50), HOMF (−log10(p) = 

8.94), HBOX (−log10(p) = 8.54), and BCDF (−log10(p) = 7.24). No other TFBS matrices 

showed a significant peak in the bias profile at SNP positions. Importantly, when applying 

PMCA on risk loci of T2D nonrelated traits, asthma, and Crohn’s disease (Moffatt et al., 

2010; Schaub et al., 2012) (Figures S3B and S3C; Table S13), we observed disease-

distinctive TFBS at SNP positions (Table S12C and S12D). Both complex and noncomplex 

regions lacked a clustering of homeobox TFBS at asthma risk SNPs (Figure 3C). The 

specific clustering of the early growth response factor matrix family (EGRF) for asthma risk 

SNPs in complex regions (−log10(p) = 8.50; Figure 3D) was in strong contrast to T2D 

(−log10(p) = 3.97; Figure 2E) and Crohn’s (−log10(p) = 2.07; Figure S3D). Of note, the 

EGRF-binding factor EGR1 regulates asthma-related IL13-induced inflammation (Cho et 

al., 2006).

Homeobox TFs are known to be involved in tissue developmental processes including β-cell 

development (Jørgensen et al., 2007). However, except for the MODY gene PDX1 (Fajans et 

al., 2001) and the common T2D-associated loci HHEX1 and ALX4 (Sladek et al., 2007), the 

PMCA-inferred homeobox factors have not been implicated in T2D pathogenesis. T2D is 

marked by insulin resistance and impaired insulin secretion (Doria et al., 2008). To evaluate 

a functional role of the homeobox TFBS matrix families in T2D pathogenesis, we extracted 

data for insulin resistance (HOMA-IR) and impaired insulin secretion (HOMA-B) (Dupuis 

et al., 2010), to compute the enrichment of predicted cis-regulatory T2D risk SNPs that 

localize in close proximity to those homeobox TFBS (±20 bp, permutations on the 

phenotypes, n = 1,000, 95% confidence interval [CI]; Extended Experimental Procedures). 

We verified a significant enrichment of SNPs that localize ± 20 bp at inferred homeobox 

TFBS for both insulin resistance (mean = 1.09 × 10−6; 95% CI: 9.59 × 10−7-9.51 × 10−3, p = 

3.28 × 10−4; mean permutation background) and impaired insulin secretion (mean = 9.45 × 

10−4; 95% CI: 5.37 × 10−4-1.34 × 10−2, p = 1.29 × 10−7). Furthermore, we elucidated a 

potential effect of their binding TFs on impaired insulin secretion. Assessing mRNA levels 

in human islets from 51 healthy and eight T2D deceased donors by RNA-seq (L.G., 

unpublished data), we found a marked expression difference for RAX, PRRX2, BARX1, 
PITX1, EMX2, NKX6-3, BARX2, MSX2, and PDX1 in islets from T2D patients compared 

to healthy controls (7.28 × 10−9 < p < 4.02 × 10−4, false discovery rate [FDR] < 1%) (Table 

S14). By genome-wide coexpression analysis we found significantly coregulated gene sets 

(p < 5.02 × 10−3; FDR < 5%, n = 51 healthy donors) (Table S15). Except for the gene set 

coregulated with PITX1, we found metabolic pathways among the top five significantly 

enriched pathways (hypergeometric test, FDR corrected p < 0.05) (Figure S3E). Other top 

five enriched pathways included insulin signaling, MAPK signaling, notch signaling, 

calcium signaling, and pancreatic secretion. Knockdown of each candidate homeobox TF in 

pancreatic INS-1 β-cells significantly perturbed glucose-stimulated insulin secretion (Figure 
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S3F). Moreover, except for PDX1 and MSX2 (corrected FDR, p = 0.96 and p = 0.89), all 

PMCA-inferred homeobox TFs were significantly coexpressed with the insulin gene in islets 

of 26 hyperglycemic individuals (hemoglobin A1C [HbA1C] > 6) (Table S16). Although the 

result for PDX1 was borderline nonsignificant, it is a well-known regulator of insulin 

expression (Brissova et al., 2002). The other TFs can be regarded as candidates for 

regulation of proinsulin production.

The T2D-Identified Variant rs4684847 Regulates PPARG2 Gene Expression

To establish the informative value of TFBS pattern analysis for pinpointing the cis-

regulatory variant and binding TF underlying GWAS association signals, we chose the 

PPARG locus for detailed study. PPARg is crucial in adipogenesis, lipid metabolism, and 

systemic insulin sensitivity (Rosen et al., 1999; Medina-Gomez et al., 2005) and exists as 

two isoforms: PPARg1 (PPARG1, PPARG3 mRNA) and PPARg2 (PPARG2 mRNA) (Fajas 

et al., 1998), the latter mainly expressed in adipocytes (Tontonoz et al., 1994). There is a 

robust association of PPARG with T2D (Deeb et al., 1998; Heikkinen et al., 2009; Dupuis et 

al., 2010; Voight et al., 2010). The T2D GWAS association comes from an LD region mainly 

tagged by the coding missense mutation Pro12Ala (Figure 4A, upper panel). However, the 

minor 12Ala allele, associated with enhanced insulin sensitivity in humans, paradoxically 

blunts the transcriptional activity of the insulin-sensitizing PPARγ2 TF (Deeb et al., 1998). 

Hypothesizing that the elusive PPARG T2D signal instead arises from a regulatory variant 

that affects PPARG2 expression, we first confirmed—before analyzing variants at the 

PPARG locus with PMCA—a risk allele-dependent 3.8-fold decrease of PPARG2 mRNA in 

human adipose stromal cells (hASCs) (p = 1.0 × 10−3) (Figure 4B). This effect was specific 

for PPARG2, as there was no effect on PPARG1 expression (Figure 4C).

First, to narrow-down the variants that could explain the decrease in PPARG2 expression 

and thereby the underlying T2D association, we applied PMCA to each of the 23 correlated 

noncoding variants at the PPARG locus (r2 ≥ 0.7, 1000 Genomes) (1000 Genomes Project 

Consortium et al., 2012) (Figure 4A). Seventeen variants were ruled out being located in 

noncomplex regions (Figure S4A; Table S17). Among the six variants in complex regions, 

five had either activating or repressing cis-regulatory activity (Figure 4D), which may reflect 

gene regulatory dependency on the tissue/cell-type and the spatial, temporal, environmental, 

and epigenetic context. In fact, while the quantitative PCR (qPCR) data in undifferentiated 

hASCs showed a suppressive effect specific for the PPARG2 mRNA isoform, adipose tissue 

eQTL data showed an upregulation of total PPARG mRNA in risk allele carriers (p = 0.01) 

(Figure S4B).

Second, to pinpoint the functional variants that may explain the GWAS-reported T2D 

association, we scrutinized the complex regions for those TFBS showing a clustering at T2D 

risk SNP positions (drawn from the overall TFBS clustering analysis in complex regions; 

Figure 3), pursuing the variants overlapping a TFBS matrix in the disease-distinctive cluster. 

As shown above, our comprehensive cross-species TFBS pattern analysis of 47 T2D risk 

loci unveiled a clustering of specific homeobox TFBS families as a characteristic feature of 

T2D risk SNPs (Figure 3B). Among the six noncoding variants at the PPARG locus, only 

one variant, rs4684847 (C/T), overlaps with the T2D-distinct clustering of the homeobox 
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TFBS matrix. The TFBS matrix overlapping with rs4684847 belongs to the CART matrix 

family (−log10(p) = 13.00, the highest score among TFBS matrix families), and is predicted 

to bind the homeobox TF PRRX1. The other five noncoding variants showed no homeobox 

TFBS matrix match (Figure 4A, lower panel).

Third—as an independent approach to confirm rs4684847 mediating the PPARG2 
suppression—we examined the cellular context of genotype-dependent PPARG2 
suppression and epigenomic profiling data that allow for temporal chromatin state-

dependent regulatory functional annotations. By allele-specific primer extension analysis in 

heterozygous undifferentiated hASCs genotyped for rs4684847, where each allele serves as 

an internal control for the other, we first confirmed a striking allelic imbalance with 5.4-fold 

lower PPARG2 mRNA expression from the C risk allele (p = 6.0 × 10−4) (Figure 4E). Given 

the role of PPARG2 in adipogenesis, we then tested whether the rs4684847 C risk allele 

might affect PPARG2 mRNA expression during adipogenesis. The allele-specific primer 

extension analyses in hASCs from heterozygous risk allele carriers revealed that the risk 

allele-dependent suppression of PPARG2 mRNA diminished with progression of 

adipogenesis (p< 0.001) (Figure S4C). These data suggest a highly temporal context-specific 

effect of the risk allele on PPARG2 suppression in the undifferentiated state. Given the 

availability of cell-stage-dependent open chromatin data in hASCs reported by Mikkelsen et 

al. (2010), we sought supportive evidence for rs4684847 as the variant underlying the cell-

stage-dependent allelic PPARG2 expression. We integrated all six variants in complex 

regions at the PPARG locus with genome-wide temporal regulatory annotations estimated by 

H3K27ac data. Among those six, only the flanking region rs4684847 (C/T) showed 

consistent cell stage-dependent H3K27ac density distributions (Figure S4D). Thus, the 

rs4684847-specific match with the T2D homeobox TFBS clustering, informed by conserved 

TFBS pattern analysis, could be confirmed by cell-stage-dependent regulatory regions 

estimated by chromatin state data.

Finally, we performed a host of in vitro and in vivo analyses to prove that the rs4684847 risk 

allele (C allele) mediates the suppression of PPARG2 mRNA expression via the 

transcriptional regulator PRRX1. By affinity chromatography and liquid chromatography-

tandem mass spectrometry (LC-MS/MS), we could demonstrate a 2.3-fold increased binding 

of PRRX1 to the rs4684847 risk relative to nonrisk allele (Extended Experimental 

Procedures). Moreover, by EMSA we found rs4684847 risk allele-specific DNA-protein 

binding (Figure 4F), and competition EMSA and supershift experiments confirmed that 

PRRX1 was responsible for this allele-specific DNA-protein binding (Figure 4G). 

Furthermore, consistent with the GWAS signal for insulin resistance rather than insulin 

secretion (Voight et al., 2010), in luciferase reporter assays we observed rs4684847 cell 

type-specific effects in 3T3-L1 adipose cells, C2C12 myocytes and Huh7 hepatocytes, 

whereas pancreatic INS-1 β-cells and 293T cells lacked allelic activity (Figure S4E). 

Luciferase activity in 3T3-L1 preadipocytes was 5.2-fold lower for the C risk allele (p = 1.0 

× 10−4, Figure 4H). This repressive effect was independent of 5′-versus 3′-orientation to the 

reporter gene (p = 0.03) and forward-reverse orientation (p = 0.03) (Figure S4F), suggesting 

enhancer function for the nonrisk allelic complex region. Importantly, perturbing the PRRX1 

consensus sequence without affecting the SNP position itself fully abrogated the C risk 
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allelic repression of reporter gene activity (Figure 4H), whereas overexpressing PRRX1 

enhanced it (p = 2.0 × 10−4; Figure 4I).

We then sought proof that the rs4684847 risk allele—independent of correlated sequence 

variants—causes the suppression of endogenous PPARG2 expression. We used an adopted 

CRISPR/Cas homology-directed repair genome editing approach (Wang et al., 2013a) to 

introduce the rs4684847 non-risk allele in human Simpson-Golabi-Behmel syndrome 

(SGBS) preadipocytes, replacing the endogenous risk allele. Notably, the rs4684847 nonrisk 

allele was sufficient to increase PPARG2 transcript levels 5.4-fold (p = 0.005) (Figure 4J, 

left) (PPARG1 unaffected) (Figure S4G). In parallel experiments, we performed PRRX1 

knockdown and confirmed that (1) risk allele-driven suppression of PPARG2 expression was 

reversed by PRRX1 silencing (p = 0.005), and (2) PRRX1 silencing did not affect PPARG2 
expression in nonrisk allele cells (Figure 4J, right).

rs4684847 via PRRX1 Binding Affects FFA Homeostasis and Insulin Sensitivity

The SNP rs1801282 (Pro12Ala) in PPARG associates with BMI, fasting insulin, and insulin 

sensitivity (Deeb et al., 1998; Voight et al., 2010). rs4684847 is located 6.5 kb upstream of 

the PPARG2-specific promoter and is in complete LD (r2 = 1.0) with rs1801282. Via 

PMCA, we found that PRRX1 binds at the rs4684847 C risk allele and thus inhibits 

PPARG2 expression. On the other hand, the T allele of rs4684847 (minor allele frequency 

6.5% in Caucasians) reduces the binding ability of PRRX1 and thus maintains a higher level 

of PPARG2 expression. Further in vivo evidence was obtained in primary human adipose 

stromal cells (hASCs) isolated from BMI-matched subjects, showing rs4684847-dependent 

PPARG2 mRNA expression (p = 1.4 × 10−20, n = 32). PPARg2 is crucial for maintaining 

insulin sensitivity: adipose-specific Pparg2 knockout mice develop insulin resistance 

independently of affecting body weight (Medina-Gomez et al., 2005), and PPARg is target 

of the thiozo-lidinedione (TZD) class of insulin-sensitizing drugs such as Rosi-glitazone 

(Rosi) (Lehmann et al., 1995). Indeed, we observed rs4684847-dependent association with 

lower T2D risk (Voight et al., 2010) (OR = 0.89, 95% CI = 0.86-0.92, p = 3.75 × 10−11, n = 

80,648). Further, in hASCs we found rs4684847-dependent increase in adipocyte insulin 

sensitivity (p = 1.5 × 10−7, ratio insulin-stimulated/basal 2-deoxyglucose uptake, Pearson’s 

correlation, n = 32). We confirmed a significant interaction between the rs4684847 risk 

allele and adipose PRRX1 mRNA levels to HOMA-IR, independent of BMI (p = 0.044, n = 

38, interaction model; Extended Experimental Procedures). In addition, we observed 

rs4684847-dependent correlations of PRRX1 mRNA levels with BMI, TG/HDL ratio, and 

BMI-adjusted HOMA-IR and with glucose infusion rate (GIR) measured by euglycemic 

hyperinsulinemic clamp in a cohort of 67 BMI- and body fat-matched obese patients (Table 

1; Figure S4H).

To further examine PRRX1 as mediator of the repressive rs4684847 risk allele (C allele) 

effect on PPARG2 expression, we performed knockdown of PRRX1 in primary hASCs and 

found that PRRX1 silencing was sufficient to revert the risk allelic suppression (p = 3.3 × 

10−15) (Figure 5A; Table 2). Then, to inform on the cellular processes by which PRRX1 may 

contribute to T2D, we studied the impact of PRRX1 on PPARγ-regulated genes in hASCs 

from homozygous rs4684847 CC risk allele carriers by microarray analysis (n = 9). We 
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found 2,258 transcripts regulated by PRRX1 knockdown (q < 0.2), 336 of which were 

reversely regulated by concomitant PPARG knockdown (Figure 5B). Gene set enrichment 

analysis (GSEA) highlighted an enrichment of those antiregulated genes among the most 

differentially expressed genes after PRRX1 knockdown (FDR = 0, Figure 5C), revealing that 

PPARg2 mediated the primary PRRX1 effect on global gene expression. Ingenuity pathway 

analysis (IPA) showed the strongest enrichment for lipid metabolism (p = 2.81 × 10−14) 

followed by adipose tissue function, glucose homeostasis, nutritional disease, and insulin 

resistance (Figure 5D). Accordingly, an inverse relationship between PRRX1 and adipocyte 

triglyceride (TG) accumulation was observed in PRRX1-overexpressing SGBS adipocytes 

(Figure 5E).

By qPCR, we confirmed rs4684847 allele-dependent dysregulation of genes in the identified 

biological pathways. Notably, the gene with the strongest risk allele-dependent decrease in 

mRNA levels was PEPCKC (Table 2). The top scoring IPA interaction network reinforced a 

central role for PEPCKC (Figure 5F). PEPCK-C is the enzyme controlling the first 

committed step of glyceroneogenesis, a crucial metabolic process in adipocytes regulating 

the re-esterification of free fatty acids (FFA) to TG (Ballard et al., 1967). Glyceroneogenesis 

limits FFA release from adipocytes in the fasting state thereby controlling systemic FFA 

homeostasis and insulin sensitivity (Millward et al., 2010). In the 67 BMI- and body fat-

matched obese subjects, we confirmed rs4684847 risk allele association with increased 

serum FFAs levels (p = 0.049) and risk allele-dependent association of PRRX1 mRNA with 

FFA levels (p = 0.015, Table 1). To prove that rs4684847, by determining PRRX1 binding, 

affects glyceroneogenesis and subsequent FFA release, we monitored pyruvate incorporation 

in TG (Ballard et al., 1967). We confirmed a PRRX1-dependent suppression of 

glyceroneogenesis in CC risk allele carriers, marked by a robust correlation with PRRX1 
mRNA levels (Figure 5G) and a risk allele-dependent increase in FFA release (Figure 5H). 

In a parallel experiment, we also found that PRRX1 silencing was sufficient to restore 

cellular insulin sensitivity in risk allele carriers (Figure 5I). Importantly, the PPARg ligand 

Rosi pharmacologically promotes insulin sensitivity largely via control of FFA homeostasis 

through glyceroneo-genesis (Cadoudal et al., 2007), and Kang et al. (2005) reported 

impaired Rosi response in risk haplotype carriers. In our analysis of glyceroneogenesis in 

hASCs, we observed an impaired response to Rosi-mediated suppression of FFA release 

dependent on the risk allele (Figure 5J). Strikingly, PRRX1 silencing in CC risk allele 

patient samples was sufficient to abolish the reduced Rosi responsiveness, making PRRX1 a 

potential target for pharmacological T2D intervention.

In summary, by PMCA we demonstrate a clustering of specific homeobox TFBS at T2D risk 

SNPs. We specifically unveil a role of the homeobox TF PRRX1 as a repressor of PPARG2 
via its enhanced binding at the rs4684847 C risk allele, thereby provoking dysregulation of 

FFA turnover and glucose homeostasis (Figure 5K).

Discussion

We have developed a bioinformatics approach, PMCA, which enables the extraction of cis-

regulatory variants that may mechanistically contribute to human disease by dysregulation of 

gene expression. In line with our approach to exploit conservation in terms of co-occurring 
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TFBS patterns, (Visel et al., 2013) has recently shown that combination of TFBS, rather than 

single TFBS, via combinatorial TF binding governs spatial enhancer activity in the 

developing telencephalon. Further, tissue-specific enhancers were accurately detected by in 

vivo mapping of the enhancer-associated proteins p300, in addition to comparative genomics 

approaches (Visel et al., 2009a; Blow et al., 2010).

Using T2D as a showcase, we demonstrate the utility of PMCA for the generic prediction of 

distinct homeobox TFBS at T2D risk SNPs, which is important for understanding disease 

regulatory circuits when we consider that interactions in a regulatory network involve 

numerous genes and a rather small set of TFs (Califano et al., 2012). Pursuing the results 

emerging from our comprehensive T2D analysis, we show that identification of the cis-

regulatory variant rs4684847 at the PPARG locus enabled linking the molecular upstream 

factor PRRX1 to aberrant downstream mechanisms of impaired lipid handling and insulin 

sensitivity, explaining the GWAS association with T2D. Notably, PRRX1 was recently 

implicated in adipogenesis (Du et al., 2013), yet the regulated genes remain elusive.

Here, we restricted the analysis to SNPs in LD with GWAS SNPs. However, the approach 

could be applied to any other kind of variability, such as somatic mutations in cancer, 

without loss of generality. Certain issues will require consideration, e.g., analyzing genomes 

of closely related species to refine scoring criteria, and extending our analysis to whole 

genome sequencing studies, including rare variants data, should further inform on the 

genetic underpinnings of phenotypic diversity in humans. Our in silico scoring results 

predict varying numbers of regulatory SNPs per LD block. Studies have now found evidence 

for allelic heterogeneity (Maller et al., 2012; Schaub et al., 2012), yet the number of causal 

variants within a disease locus is elusive. We propose an integrative framework where 

computational TFBS modularity analysis may be synergistically combined with functional 

genomics and population genetics data.

In sum, our results demonstrate that the extension of sequence analysis to functional 

conservation integrates biological data with statistical signals, and our method should help to 

clarify the role of inherited and somatic variability in altering gene regulatory networks, in 

both mendelian and common human diseases.

Experimental Procedures

See the Extended Experimental Procedures for details.

LD Block Definition

SNPs in close LD (r2 ≥ 0.7) to GWAS tagSNPs (references in Tables S1, S5, S7, and S13) 

from 1000 Genomes Project, Pilot 1, CEU data (http://www.1000genomes.org/).

PMCA

PMCA analyzes the occurrence of conserved patternsof TFBS in a CRM within the genomic 

region flanking a noncoding variant, to predict its cis-regulatory functionality. For each 

variant the PMCA method provides a classification of the region surrounding the variant as 

being either complex or noncomplex. Complex regions are defined as being significantly 
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enriched in conserved co-occurring TFBS (TFBS modules) according to the scoring scheme 

described in Extended Experimental Procedures.

Positional Bias Analysis

Complex and noncomplex regions (SNP ± 500 bp) were scanned for presence of TFBS 

family matches at SNP positions. Positional bias of TFBS families was calculated using 

overlapping 50 bp sliding windows in steps of 10 bp. Positional bias (p) was calculated as 

binomial p value for each TFBS family and each window.

Correlation with Evolutionary Constraint, DHSseq, and ChIP-Seq Regions

Complex/noncomplex SNP regions (SNP ± 60 bp) were correlated to constrained regions or 

DHSseq and ChIP-seq peaks. From midpoint of constrained regions (±500 bp), DHSseq 

(±1,000 bp), or ChIP-seq peaks (±1,000 bp), the overlapping positions (correlation) with 

complex/noncomplex regions were counted and plotted versus position relative to anchor. 

For the calculation of enrichment of DHS and ChIP-seq peak overlaps to complex/

noncomplex SNPs only those SNPs were considered where an overlap was detected within ± 

20 bp from SNP positions.

Primary Human Tissue and hASC

Human islets and adipose tissue were obtained with informed consent from each subject. 

The studies were approved by the local ethics committees of the Technische Universität 

München (Germany), the Haukeland University Hospital (Norway) and the Lund University 

(Sweden). Primary hASCs were isolated from subcutaneous adipose tissue and differentiated 

in vitro. Genotyping was done by MassARRAY (Sequenom), Omni express (Illumina), or 

Sanger Sequencing.

RNA Preparation and Expression Analysis

Total RNA was prepared by TRIzol (Invitrogen) or RNeasy Lipid Tissue Mini Kit 

(QIAGEN), and gene expression was measured by qPCR or microarrays (Affymetrix, 

Illumina). Allele-specific primer extension was performed with SNaPshotKit (ABI Prism).

Cell Culture and Reporter Assays

Huh7, INS-1, 293T, C2C12, 3T3-L1, and SGBS cells were cultured using standard 

protocols. Genomic sequences surrounding SNPs were synthesized (MWG), cloned in 

pGL4.22-TK-promoter (Promega) and transfected in cells by Lipofectamine (Invitrogen). 

Luciferase activity was measured by Luminoscan-Ascent (Thermo).

Gene Knockdown by Small Interfering RNA

All knockdowns were performed with ON-TARGETplus SMARTpool small interfering 

RNA (siRNA) (Dharmacon) and HiPerFect (QIAGEN).

CRISPR/Cas Genome Editing

HDR genome editing was performed in human SGBS preadipocytes by trans-fection of 

CRISPR/Cas9 and single guide RNA (sgRNA) expression vectors (sgRNA targeting a NGG 
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PAM sequence 50 of rs4684847, R. Kühn, Munich) and rs4684847 DNA donor vectors (T 

allele to replace endogenous allele, C allele control). Cell enrichment by MACS selected 

transfected cell selection kit (Miltenyi). rs4684847 genome editing was confirmed by Sanger 

sequencing.

EMSA

Forty-two base pairs of allelic Cy5-labeled-DNAs (MWG) and nuclear protein were used for 

EMSA. Supershift experiments were performed with aPRRX1 or IgG, competition with 

excess unlabeled probe, and protein from pCMV-PRRX1-flag transfected 293T.

DNA-Protein Affinity Chromatography LC-MS/MS

DNA-protein affinity chromatography was performed with streptavidin magnetic beads 

(Invitrogen) and allelic biotinylated DNA-probes (MWG) and Ultimate3000nano HPLC 

(Dionex) LC-MS/MS coupled to LTQ OrbitrapXL (Thermo Fisher Scientific). Data were 

analyzed with Progenesis software v2.5.

Statistical Analysis

Statistical analyses were done using Graph Pad Prism v5.02, R Software v2.14.2 or Perl 

scripts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Discovery of cis-Regulatory Diabetes SNPs
(A) Workflow of the PMCA methodology: (1) the flanking region of a noncoding SNP is 

extracted from the human reference genome; (2) orthologous regions are searched in the 

genomes of 15 vertebrate species; (3) TFBS are identified in each orthologous sequence; (4) 

TFBS modules are identified in the set of orthologous sequences (TFBS modules defined as 

all, two or more TFBS occurring in the same order and in certain distance range in all or a 

subset of the orthologous sequences); (5) phylogenetically conserved TFBS ΩTFBS, TFBS 

modules Ωmodules, and occurrences of TFBS in TFBS modules ΩTFBS_in_modules are counted; 
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(6) repeated counting for different numbers of input sequences weighs the degree of cross-

species conservation and the number of TFBS in modules; computation of conserved TFBS 

with more restricted parameters Ωrestr_TFBS accounts for genomic regions with low numbers 

of orthologs; (7) steps 3-6 are repeated using randomized input sequences (randomization of 

sequences is done using local shuffling in order to conserve local nucleotide frequency 

distributions) to estimate; (8) the probability p-est of observing a given ΩTFBS, Ωrestr_TFBS, 

Ωmodules, and ΩTFBS_in_modules and to calculate the overall scoring criterion; (9) input 

sequences are classified as complex and noncomplex regions; and (10) complex regions 

harboring a trait-related TFBS at SNP position are selected for functional evaluation (trait-

related TFBS are drawn from overall TFBS clustering analysis as described in text related to 

Figure 3). See also the Extended Experimental Procedures.

(B) Representative complex region (rs4684847) and noncomplex region (rs13064760). 

Conserved TFBS and conserved TFBS in modules occurring in more than two vertebrate 

species are shown to illustrate TFBS modularity across species.

(C-G) Classification of SNP regions for a set of eight T2D risk loci (Table S1; Figure S1). 

Box-whisker plots (IQR 50%) show the counts of conserved TFBS ΩTFBS (C), conserved 

TFBS modules Ωmodules (D) and occurrences of TFBS in TFBS modules ΩTFBS_in_modules 

(E) for complex regions (red lines) and noncomplex regions (black lines). Data points 

covered by the interquartile range (IQR) and the whiskers values were added as rug at the 

sides of the plot. Note that values vary over a large range with higher median for complex 

regions for all criteria (at 47 T2D loci we find a median of 354.5/470.46 and 310/382.35 for 

ΩTFBS_in_modules in complex/noncomplex regions). Scoring of SNP regions is illustrated by 

histograms showing the probability p-est of observing ΩTFBS across species (F) and showing 

the overall scoring criterion Sall (G). Blue curve: empirical density function of the histogram 

data. Red dashed line: cut-off scores separating complex from noncomplex regions (— 
log10 p-estTFBS = 1.12, Sall = 6.5); SNP regions with a value to the left of the red line were 

defined as noncomplex.

(H and I) cis-Regulatory activity of SNP regions. Noncomplex regions include regions 

matched for TFBS density of complex regions (TFBS median = 88). The allele-dependent 

change in DNA-binding activity from EMSAs (n = 4) (H) and luciferase reporter activity (n 

= 10) (I) is shown for each SNP. Mean ± SD, p from linear mixed-effects model.

See also Tables S2 and S3.
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Figure 2. Correlations of cis-Regulatory Predictions at 47 T2D Risk Loci with Evolutionary 
Constrained Elements and Functionally Annotated Genomic Regions
(A) Correlation of PMCA results with evolutionary constrained regions. The occurrences of 

487 complex and 978 noncomplex T2D-associated regions within constrained regions from 

SiPhy-p algorithm (Lindblad-Toh et al., 2011). Localization of SNPs relative to transcription 

start site in Figures S2A and S2B.

(B) Venn diagram illustrates the number of complex and noncomplex regions that directly 

map to a constrained element (overlap).
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(C) Complex regions at the PPARG locus (Figure 4E) lack an overlap with constrained 

regions. Zoom-in: the rs4684847 cis-regulatory region does not map to a constrained region 

(393 bp upstream of nearest constrained element). A representative TFBS module 

(UTFBS_in_module = 3) is shown and its TFBS module conservation for a given quorum of 

five species is visualized by a sequence logo.

(D and E) Correlation of complex (red line) and noncomplex (black line) T2D-associated 

SNP regions to DHSseq (D) and ChIP-seq (E) peaks. From the midpoint of 487 complex and 

978 noncomplex regions, 1,000 bp in both directions were scanned for DHSseq and ChIP-

seq peaks (Extended Experimental Procedure). For each position, the sum of occurrences 

was plotted. T2D complex regions were significantly enriched for overlaps with DHSseq 

and ChIP-seq regions, displayed as a central peak (correlations with Crohn’s-associ-ated 

regions in Figures S2C and S2D).

See also Tables S7, S8, and S9.
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Figure 3. Positional Bias of Distinct Homeo-box TFBS Families at T2D Risk SNPs
Distribution of TFBS matrices relative to SNP positions (SNP ± 500 bp) at T2D compared to 

asthma risk loci, calculated using positional bias analysis. One thousand base pair genomic 

regions with SNPs at midposition were scanned for the occurrence of TFBS matches for 192 

TFBS matrix families (sliding 50 bp windows, p from binomial distribution model, 

Extended Experimental Procedures).

(A and B) TFBS family distribution in a set of eight and an extended set of 47 T2D risk loci. 

Complex regions reveal clustering of distinct homeobox TFBS matrix families at T2D risk 
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SNP positions (±20 bp, gray dashed lines). All TFBS families displayed equal distributions 

within T2D non-complex regions (a subset of representative TFBS families is shown).

(C) TFBS family distribution in a set of eight asthma risk loci. Asthma complex and 

noncomplex regions lack a positional bias at SNP positions for the homeobox TFBS matrix 

families clustering in complex regions at T2D risk SNPs (see Figure S3 for details on 

Crohn’s).

(D and E) TFBS family distribution in asthma risk loci revealed a specific EGRF matrix 

family clustering in complex regions at asthma risk SNPs (D). T2D complex regions lack a 

clustering of EGRF matrices at SNP positions (E).
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Figure 4. The Noncoding SNP rs4684847 by Binding the Homeobox Factor PRRX1, Represses 
PPARG2 Expression at the PPARG Diabetes Risk Locus
(A) Top panel: an LD regional plot of the PPARG locus. Diamonds, tagSNP Pro12Ala and 

pairwise correlation of SNPs in LD (MAF ≥ 1%) against genomic position; blue, PPARG 
gene and exons. Middle/lower panel: classification of SNPs in complex regions (red lines) 

and noncomplex regions (gray lines) (PMCA steps 1–9, Figure 1A). Scanning of PPARG 
complex regions for T2D-distinct homeobox TFBS matrix families (CART, HOMF, HBOX, 

NKX6, BCDF, PDX1; Figure 3B) pinpoints rs4684847 (C/T), based on its overlap with the 

CART binding matrix for PRRX1 (step 10, Figure 1A). Zoom-in, human PPARG gene; 
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arrows, transcription start site (TSS) of PPARG1-3 mRNA isoforms; boxes, coding exons 

(filled) and untranslated exons (open); lines, introns. Second zoom-in, CRM at rs4684847; 

the PRRX1 matrix co-occurs with diverse TFBS matrices in consistent orientation and 

distance range across species, exemplarily illustrated by one conserved TFBS module 

(UTFBS_in_modules = 3; TFBS matrices: PRRX1, TEF, LHXF).

(B and C) Genotype-dependent mRNA expression in undifferentiated hASCs genotyped for 

Pro12Ala and rs4684847 (r2 = 1.0). qPCR of PPARG1 and PPARG2 mRNA isoforms 

(standardized to HPRT) homozygous CC risk (n = 9) and CT nonrisk allele carriers (n = 5) 

normalized to mean for CC. Mean ± SD, t test.

(D) Validation of cis-regulatory predictions for complex regions at the PPARG locus. 

Quantified change in reporter activity in 3T3-L1 adipocytes is shown for each SNP, using 

luciferase constructs harboring the risk or nonrisk alleles, representing an activating or 

repressing effect of the risk allele on transcriptional activity.

Mean ± SD, n = 3–14, paired t test.

(E) Allele-specific primer extension analysis in hASCs of heterozygous rs4684847 carriers 

(n = 6) normalized to mean risk allele levels (D). Mean ± SD, Mann-Whitney U test.

(F and G) Increased PRRX1 binding at the risk allele in EMSAs with rs4684847 allelic 

probes and 3T3-L1 preadipocyte nuclear extracts (F), confirmed by competition with cold 

PRRX1 probe (G, left panel) and PRRX1 antibody shift of protein-DNA complex in 293T 

with ectopically expressed PRRX1 (G, right panel).

(H) Reporter assays with constructs harboring the rs4684847 risk and nonrisk allele in 3T3-

L1 preadipocytes. Truncation of the PRRX1 matrix without affecting rs4684847 reveals 

abrogated allelic cis-regulatory activity. Mean ± SD, n = 9, paired t test.

(I) Inhibition of reporter activity (normalized to pCMV control) at the rs4684847 risk allele 

by ectopic expression of PRRX1 in 3T3-L1 preadipocytes. Mean ± SD; n = 9, paired t test.

(J) Regulation of PPARG2 mRNA expression in SGBS adipocytes with the CC risk allele, or 

TT nonrisk allele introduced by CRISPR/Cas9 genome editing approach. siPRRX1 and 

siNT transfection concurrent with induction of differentiation, PPARG2 mRNA assessed by 

quantitative RT-PCR (qRT-PCR), standardized to HPRT. Mean ± SD, n = 12, t test. siNT, 

nontargeting siRNA.

See also Figure S4 and Table S17.
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Figure 5. Binding of PRRX1 at the rs4684847 Risk Allele in Human Adipose Cells Affects Lipid 
Metabolism and Insulin Sensitivity
(A) rs4684847-dependent PPARG2 and PRRX1 mRNA levels measured by qPCR 

(standardized to HPRT) in hASC from BMI-matched rs4684847 CT (n = 16) and CC (n = 

32) risk allele carriers. siPRRX1 and siNT transfected concurrent with induction of 

adipogenic differentiation for 72 hr. Left: Pearson’s correlation in the siNT set. Right: box-

whisker plot comparing PPARG2 mRNA in siNT- versus siPRRX1-treated cells (t test). FC, 

fold change.
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(B and C) Global gene expression profiling by Illumina microarrays (q < 0.2) in hASCs 

from rs4684847 CC risk allele carriers transfected with siPRRX1 (n = 9, gray dots) and 

cotransfected with siPRRX1 and siPPARG (n = 4, red dots) for 72 hr after induction of 

adipogenic differentiation (B). Distribution of siPRRX1/siPPARG antiregulated genes 

among all regulated genes ranked by fold change (C).

(D and E) Biological pathways associated with siPRRX1/siPPARG antiregulated genes (D) 

and top scoring interaction network (E) from ingenuity pathway analysis.

(F) Oil Red O lipid staining of human SGBS cells with lentiviral-overexpressed flag-tagged 

PRRX1 (or control vector) 12 days after induction of adipocyte differentiation. Protein 

expression with aflag (PRRX1) and aACTB antibodies.

(G and H) rs4684847-dependent glyceroneogenesis rate measured by [1-14C]-pyruvate 

incorporation (G) and FFA release (H) in hASCs from BMI-matched rs4684847CT(n=16) 

and CC (n = 32) risk allele carriers aftersilencing ofPRRX1. (G) Left: Pearson’s correlation 

inthe siNT set. Right: box-whisker plot comparing siNT- versus siPRRX1-treated cells, t 

test. FFA, free fatty acids.

(I) rs4684847-dependent increase of [3H]-2-deoxyglucose ([3H]-2DG) uptake following 

insulin stimulation in hASCs. Box-whisker plot comparing siNT- versus siPRRX1-treated 

cells; t test.

(J) rs4684847-dependent rosiglitazone-mediated suppression of FFA-release during 

glyceroneogenesis. Pearson’s correlation comparing siNT versus siPRRX1. Mean ± SD, t 

test. See also Figures S4G and S4H; Tables 1 and 2.

(K) The rs4684847 risk allele (C allele) promotes PRRX1 binding 6.5 kb upstream of the 

PPARG2-specific promoter, leading to suppression of PPARG2 mRNA expression and 

perturbated lipid handling in adipose cells, increased circulating FFA levels, insulin 

resistance, and risk of T2D.
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Table 1
Correlation of Adipose Tissue PRRX1 mRNA Expression with T2D Traits in rs4684847 
Risk Allele Carriers

PRRX1 mRNA PRRX1 mRNA PRRX1 mRNA

All CC CT and TT

rs4684847 genotypes β p β p B p

A n = 38 n = 20 n = 18

log(BMI) — 1.32 0.05 1.23 0.19 1.43 0.23

age 1.45 0.03 1.23 0.19 1.96 0.09

log(TG/HDL) — 6.92 7.54 × 10−4 6.40 0.02 6.35 0.07

age 6.97 7.36 × 10−4 6.14 0.02 6.81 0.07

age/BMI 4.86 8.3 × 10−3 5.00 0.07 2.64 0.33

log(HOMAIR) — 2.77 3.52 × 10−3 3.13 8.3 × 10−3 1.80 0.29

age 2.77 3.77 × 10−3 3.12 8.6 × 10−3 1.70 0.34

age/BMI 1.41 0.028 2.1 4.6 × 10−3 -0.55 0.63

B n = 67 n = 54 n = 13

log(GIR) age/BMI -0.51 1.83 × 10−7 -0.78 3.30 × 10−8 -0.38 0.28

log(FFA) age/BMI 0.25 0.014 0.27 0.015 -0.009 0.99

Gene expression and phenotypes were measured in (A) adipose tissue from a lean/obese patient cohort (mean ± SD 24.2 ± 9.1 kg/m2), and (B) 

adipose tissue samples from BMI-matched obese patients (mean ± SD 43.2 ± 3.1 kg/m2) characterized by hyperinsulinemic euglycemic clamp. 
rs4684847 risk allele and nonrisk allele genotypes were determined by Sequenom-assay. p values and b-estimates from linear regression analysis of 
PRRX1 mRNA expression levels with phenotype measures are shown. BMI, body mass index; FFA, free fatty acids; GIR, glucose infusion rate of 
hyperinsulinemic euglycemic clamp; HDL, high density lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance; TG, 
triglyceride.
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Table 2
Genotype-PRRX1-Dependent Regulation of PRXX1/PPARG Antiregulated Genes in 
hASCs

siNT siPRRX1 siPRRX1/siNT

Hetero Homo Hetero/Homo Hetero Homo Hetero/Homo Hetero Homo

Mean ± 
SD

Mean ± 
SD FC p

Mean ± 
SD

Mean ± 
SD FC p FC p FC p

PRRX1 0.52 ± 0.18
0.51 ± 
0.19 1.01 0.92 0.11 ± 0.05

0.12 ± 
0.06 0.90 0.56 0.25

2.83 × 
10−7 0.22

4.02 × 
10−8

PPARG2 4.32 ± 1.07
0.79 ± 
0.08 0.18

2.46 × 
10−11 4.34 ± 1.47

3.37 ± 
1.04 0.77 0.08 1.00 0.96 4.29

7.24 × 
10−11

PPARG1 1.07 ± 0.26
1.04 ± 
0.33 1.03 0.79 1.18 ± 0.35

1.20 ± 
0.49 0.98 0.90 1.15 0.35 1.10 0.41

PEPCKC 2.83 ± 0.58
1.03 ± 
0.20 2.76

1.62 × 
10−10 2.66 ± 0.50

2.98 ± 
0.42 0.89 0.09 0.94 0.43 2.90

8.77 × 
10−4

PDK4 2.01 ± 0.88
0.74 ± 
0.18 2.73

3.19 × 
10−5 2.00 ± 0.60

1.73 ± 
0.61 1.15 0.27 0.99 0.97 2.35

8.01 × 
10−6

LIPE 1.37 ± 0.64
0.68 ± 
0.32 2.01

2.00 × 
10−3 1.30 ± 0.32

1.21 ± 
0.45 1.08 0.56 0.95 0.74 1.77

2.03 × 
10−3

ADIPOQ 1.89 ± 0.32
0.95 ± 
0.31 1.98

7.92 × 
10−8 1.85 ± 0.44

1.75 ± 
0.61 1.05 0.66 0.98 0.81 1.84

2.84 × 
10−4

OPG 0.78 ± 0.36
1.67 ± 
0.53 0.47

3.91 × 
10−5 0.84 ± 0.28

1.09 ± 
0.38 0.77 0.07 1.08 0.61 0.65

4.10 × 
10−3

TIMP3 0.61 ± 0.21
1.50 ± 
0.52 0.41

6.45 × 
10−6 0.83 ± 0.33

1.00 ± 
0.39 0.83 0.23 1.36 0.06 0.67 0.01

BBOX1 2.16 ± 0.48
0.96 ± 
0.30 2.26

8.04 × 
10−8 1.84 ± 0.37

2.14 ± 
0.44 0.86 0.07 0.85 0.07 2.23

3.09 × 
10−8

GLUT4 1.57 ± 0.35
0.99 ± 
0.24 1.58

6.15 × 
10−5 1.62 ±

1.50 ± 
0.31 1.09 0.26 1.03 0.67 1.50

1.08 × 
10−4

THRSP 0.99 ± 0.28
1.61 ± 
0.39 0.61

8.18 × 
10−5 1.53 ± 0.33

1.60 ± 
0.32 0.95 0.57 1.55

1.38 × 
10−4 0.99 0.93

PRRX1/PPARG antiregulated genes were identified by Illumina microarray analysis in samples with PRRX1 knockdown and simultaneous PRRX1 
and PPARG knockdown during adipogenic differentiation (Figure 5E). Confirmatory qRT-PCR was performed for these representative top 
regulated genes in hASC from BMI-matched heterozygous (hetero, n = 16) and homozygous (homo, n = 32) risk allele carriers (genotyped for the 
PPARG locus cis-regulatory variant rs4684847 and the tagSNP rs1801282 Pro12Ala). ADIPOQ, adiponectin, C1Q and collagen domain 
containing; BBOX1, butyrobetaine (gamma), 2-oxoglutarate dioxygenase (gamma-butyrobetaine hydroxylase); FC, fold change; GLUT4, Glucose 
Transporter Type 4; LIPE, lipase, hormone-sensitive; OPG, Osteoprotegerin; p, p value from unpaired t test; PDK4, pyruvate dehydrogenase kinase, 
isozyme 4; PEPCKC, Phosphoenolpyruvate carboxylase cytosolic; PPARG, peroxisome proliferator-activated receptor gamma; PRRX1, paired-
related homeobox 1; THRSP, thyroid hormone responsive Spot 14 Protein; TIMP3, TIMP metallopeptidase inhibitor 3.
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