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Summary

Cancers arise through the acquisition of oncogenic mutations and grow through clonal 

expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved as mutations 

within a single cell-cycle. Instead, DNA lesions segregate unrepaired into daughter cells for 

multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We 

characterise this process in mutagen-induced mouse liver tumours and show that DNA replication 

across persisting lesions can produce multiple alternative alleles in successive cell divisions, 

thereby generating both multi-allelic and combinatorial genetic diversity. The phasing of lesions 

enables the accurate measurement of strand biased repair processes, the quantification of 

oncogenic selection, and the fine mapping of sister chromatid exchange events. Finally, we 

demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV 

light and chemotherapy agents in human cells and tumours, which has profound implications for 

the evolution and adaptation of cancer genomes.

Sequencing and analysis of cancer genomes have identified a wealth of driver mutations and 

mutation signatures1,3, illustrating how environmental mutagens cause genetic damage and 

elevate cancer risk4,5. The diversity of mutation patterns identified from cancer genome 

sequencing is testament to the temporal and spatial heterogeneity of exogenous and 

endogenous exposures, mutational processes, and germline variation amongst patients. A 

recent study of diverse human cancers identified 49 distinct single base substitution 

signatures, with almost all tumours demonstrating evidence of at least three signatures3.

Such intrinsic heterogeneity leads to overlapping mutation signatures that confound our 

ability to accurately disentangle the biases of DNA damage and repair, or to interpret the 

dynamics of clonal expansion. We reasoned that a more controlled and genetically uniform 

cancer model system would overcome some of these limitations and complement human 

cancer studies. By effectively re-running cancer evolution hundreds of times, we aimed to 

explore oncogenesis and mutation patterns at high resolution and with good statistical 

power.

We chemically induced liver tumours in fifteen-day-old (P15) male C3H/HeOuJ inbred mice 

(Fig. 1a; subsequently C3H, n=104) using a single dose of diethylnitrosamine (DEN), thus 

greatly extending our previous study6. To provide a genetic comparison and a validation 

dataset in a divergent mouse strain7, we treated a cohort of CAST/EiJ mice with DEN 

(subsequently CAST, n=54).

Whole genome sequencing (WGS) of 371 independently-evolved tumours from 104 C3H 

mice (Supplementary Table 1) revealed that each genome harboured ~60,000 somatic point 

mutations, which equates to 13 mutations per megabase (Fig. 1b) and is comparable to 

human cancers caused by exogenous mutagen exposure such as tobacco smoking and UV 

exposure8,9. Insertion-deletion mutations, larger segmental changes, and aneuploidies were 

rare (Extended Data Fig. 1a-f). The tumour genomes were dominated (76%) by 

T→N/A→N mutations (where N represents any alternate nucleotide, Fig. 1c), consistent 

Aitken et al. Page 2

Nature. Author manuscript; available in PMC 2021 February 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



with previous studies implicating the long-lived thymine adduct O4-ethyl-deoxythymine as 

one of the principal mutagenic lesions generated through bioactivation of DEN by 

cytochrome P450 (CYP2E1)10. In addition to the predominantly T→N signature 

(subsequently DEN1), deconvolution of mutation signatures revealed a second signature 

prominent in a minority of tumours (DEN2) but typically present at a low level (Extended 

Data Fig. 1g-j). DEN2 is mainly composed of C→T/G→A substitutions, likely representing 

O6-ethyl-2-deoxyguanosine10, which can be repaired by the enzyme MGMT11. Known 

driver mutations were identified in the EGFR/RAS/RAF pathway6,12,13 (Fig. 1d). These 

exhibited a strong propensity to be mutually exclusive: 82% of C3H tumours had only a 

single known driver mutation. Similar results were replicated in CAST mice (Extended Data 

Fig. 1i,j).

Chromosome-scale segregation of lesions

Strikingly, in each tumour genome we observed multi-megabase segments with pronounced 

Watson versus Crick strand asymmetries of mutation spectra (Fig. 2). We define Watson 

strand bias as an excess of T→N over A→N mutations, when called on the forward strand 

of the reference genome, and the opposite as Crick strand bias. The asymmetrically mutated 

segments often encompass an entire chromosome, and have a median span of 55Mb (Fig. 

2a-d). The scale of these segmental asymmetries is orders of magnitude greater than those 

generated by transcription coupled repair (TCR)14, APOBEC mutagenesis15,16, or produced 

by replication strand asymmetries14,17. Despite segmental strand asymmetry, mutation load 

remains approximately uniform across the genome (Fig. 2e) and asymmetric segments do 

not correspond to changes in DNA copy-number (Fig. 2f).

Pervasive, strand-asymmetric mutagenesis can be explained as the consequence of DEN-

induced lesions remaining unrepaired prior to genome replication. The first round of 

replication after DEN exposure results in two sister chromatids with independent lesions on 

their parent strands (Fig. 2j). The daughter strand is produced using a lesion-containing 

template whose complement is synthesised with reduced replication fidelity over damaged 

nucleotides, resulting in nucleotide misincorporation errors complementary to lesions. These 

two sister chromatids necessarily segregate into separate daughter cells during mitosis. The 

heteroduplexes of lesions with paired mismatches are resolved into full mutations by later 

replication cycles (Fig. 2j). We subsequently refer to this phenomenon as “lesion 

segregation”.

The haploid X chromosome always contains segments with a strong strand bias (Fig. 2g). 

On autosomal chromosomes, we also observe an unbiased state, which we interpret as the 

aggregated biases of the two allelic autosomal chromosomes with opposing strand 

asymmetries. More explicitly, when both copies of a chromosome have Watson bias, the 

genome shows a Watson bias (e.g. chromosome 15 in Fig. 2a-d); when one copy has Watson 

bias and the other a Crick bias the two will cancel each other out and appear unbiased (e.g. 

chromosome 19 in Fig. 2a-d). Under lesion segregation, these asymmetries represent the 

random retention of Watson or Crick biased segments over the whole genome, and are 

essentially the output of two independent 1:1 Bernoulli processes, analogous to two fair coin 

flips. In such a model, we expect (1) 50% of the autosomal genome and (2) 100% of the 
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haploid X chromosome to show mutational asymmetry; both predictions are supported by 

the observed data (Fig. 2g,i). A small fraction of tumours (3.5%) are outliers (Fig. 2g,i), with 

absent or muted mutational asymmetry; these features are associated with atypically low 

variant allele frequency distributions, indicating they may be polyclonal or polyploid 

(Supplementary Table 1). The asymmetric regions show a 23-fold (median) excess of their 

preferred mutation over its reverse complement, suggesting that >95% of those lesions that 

go on to produce a mutation, segregate for at least one mitosis.

Resolving sister chromatid exchange

The lesion segregation model predicts mutational asymmetries should span whole 

chromosomes, yet we commonly observe discrete switches between multi-megabase 

segments of Watson and Crick bias within a chromosome (Fig. 2a-d,g). Such switches likely 

represent sister chromatid exchanges (SCEs) resulting from homologous recombination 

(HR) mediated DNA repair events18 (Extended Data Fig. 3a) that are typically invisible to 

sequencing technologies because HR between sister chromatids is generally thought to be 

error-free19.

The observed rate of sister-chromatid exchange positively correlates with the genome-wide 

load of point mutations (Extended Data Fig. 2a,b). The presence of ~27 (median) SCEs in 

each of 371 diploid tumour genomes meant we were well-powered to detect recurrent 

exchange sites and biases in genomic context (Extended Data Fig. 2c,d). After filtering out 

three reference genome mis-assemblies (Fig. 2g; Extended Data Fig. 2e,f), we find that 

SCEs occur throughout the genome, with modest enrichment in transcriptionally inactive, 

late replicating regions (Extended Data Fig. 3b).

The fine mapping (~20kb resolution) of SCEs allowed us to test the fidelity of HR between 

sister chromatids. The mutation rate appears locally elevated at SCEs, but the spectrum of 

mutations matches the rest of the genome (Extended Data Fig. 3c-f). We propose that a 

model of Holliday intermediate branch migration could explain these observations 

(Extended Data Fig. 3g).

Lesion segregation reveals oncogenic selection

The random segregation of sister chromatids into daughter cells would result in 50% Watson 

and 50% Crick strand lesion retention on average across tumours, and the majority of the 

genome conforms to this prediction (Fig. 2h). We observe striking deviations at loci 

spanning known murine hepatocellular carcinoma driver genes (Fig. 2h). For example, the 

Braf T→A mutation at codon 584 is a known oncogenic driver 6 and is observed in 153/371 

C3H tumours. Presuming that the Braf mutation was DEN induced, we would expect the 

mutation to have occurred in a chromosomal segment that retained T-lesions on the same 

strand as the driver T→A change. Indeed this is the case (94%; 144/153 tumours retain 

lesions on the expected strand, Fisher’s exact test p=3.6x10-19, rejecting the 50:50 null 

expectation). In contrast, tumours lacking the Braf mutation do not show a systematic bias 

(47% Crick bias, 53% Watson bias, p=0.88, not rejecting the 50:50 null expectation). We 

applied this general test for oncogenic selection at sites with sufficient recurrent mutations to 
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have statistical power. Our results confirmed significant oncogenic selection of previously 

identified driver mutations in Hras, Braf and Egfr (Fig. 1d; Extended Data Table 1).

DNA repair with lesion strand resolution

Resolving DNA lesions to specific strands in a single mutagenised cell cycle presents a 

unique opportunity to investigate strand-specific interactions with DNA damage and repair 

in vivo. In expressed genes, transcription-coupled nucleotide excision repair specifically 

removes DNA lesions from the mRNA template strand rather than from the non-template 

strand (Fig. 3a)20,21. To explore this, we generated total transcriptomes of liver tissue from 

P15 C3H and CAST mice, corresponding to the known tissue of origin as well as the exact 

developmental timing of DEN mutagenesis.

For each gene in each tumour, we resolved whether the lesion-containing strand was the 

mRNA template or not, and calculated mutation rates stratified by both expression level and 

lesion strand (Fig. 3b). As expected, TCR was highly specific to the template strand and 

correlated closely with gene expression. Among genes without detectable expression, there 

was no reduction or observable transcription strand-bias in the mutation rate. In contrast, 

mutation in the most highly expressed genes was reduced by 79.8±1.0%, if the tumour 

inherited lesions on the template strand. We also detected a small transcription-associated 

decrease of 10.7±1.4% in mutation rate for lesions on the non-template strand, relative to 

lowly-expressed genes.

We next considered the specificity of TCR, comparing the rates of mutation for each 

trinucleotide context between template and non-template strands, stratified by expression 

level (Fig. 3c,d). The most common mutations (T→N), have an 82% (s.d. 6.8% across 

sequence contexts) lower rate on the template strand than the non-template strand for highly 

expressed genes; the non-template mutation rate is the same regardless of expression level 

(Fig. 3d, dark-blue lines are close to vertical), as expected20.

Mutations from C and G on the template strand show a high efficiency of TCR (70% (s.d. 

7.8%) and 34% (s.d. 21%) respectively, Fig. 3d), but there is a consistent transcription-

dependent reduction of mutation rate when these lesions are on the non-template strand 

(lines are deflected from vertical), possibly revealing activity of non-TCR repair processes in 

accessible genic regions. Though comparatively rare, mutations from adenine on the lesion 

containing strand are increased with transcription (Fig. 3d). This unexpected observation 

could be due to the activity of error-prone translesion DNA polymerase Pol-η which targets 

transcribed regions, where it specifically mutates A:T base-pairs22.

Prior analyses of TCR could not resolve the lesion containing strand14,20,23. Consistent with 

these previous findings, we observe reduced mutation rates broadly across the transcription 

start site (TSS) region and into active gene bodies (Fig. 3e). A notable feature of this profile 

is the relative increase in mutation rate for the core promoter located in the 200 nucleotides 

immediately upstream of the TSS24. Including lesion strand information in the analysis (Fig. 

3f,g) shows the relative increase in mutation rate over the core promoter to be a result of 

high rates of TCR upstream and downstream, but a relative depletion of TCR activity over 
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the promoter itself, results that are replicated in CAST mice (Extended Data Fig. 4a-e). The 

ability to resolve the lesion strand newly reveals the striking and distinct contributions of 

bidirectional transcription from active promoters25 in shaping the observed mutation 

patterns.

Lesion segregation generates genetic diversity

The lesion segregation model (Fig. 2j) predicts that a segregating lesion may template 

multiple rounds of replication in successive cell cycles. In such a scenario, each replication 

across the lesion could incorporate different incorrectly paired nucleotides - or even the 

correctly paired nucleotide - opposite a persistent lesion. Consistent with this notion, 

hundreds of multi-allelic mutations have recently been reported from single cell sequencing 

of human cancer samples26 and a well-controlled cell lineage tracking system27.

We investigated the extent of multi-allelic variation within each liver tumour genome by 

analysing the sequencing reads overlapping identified mutations. For example, a nucleotide 

position with multiple high-confidence reads supporting a reference T, mutation to A and 

also mutation to C would be considered multi-allelic. On average, 8% of mutated sites in 

DEN induced tumours exhibit evidence of multi-allelic variants (n=1.8 million sites in C3H 

tumours), though this value ranges from <1% to 25.7% between tumours (Fig. 4a). As a 

control we performed equivalent analysis on sites that had been called as mutated in a 

randomly selected proxy tumour; on average, only 0.098% (95% CI: 0.043-0.25%) show 

evidence of non-reference nucleotides.

We further validated the multi-allelic variant calls from whole genome sequencing within 

independently performed exome sequencing of the same tumours6. The second and 

subsequent alternate alleles show the same profile of read depth-dependent validation rate as 

the called mutant allele, and clear separation from control analyses with mis-paired exome 

and genome sequence (Fig. 4b).

The independent generation of multi-allelic variation across the genome produces 

combinatorial genetic diversity not expected under purely clonal expansion. This 

combinatorial diversity can be directly visualised in pairs of mutated sites close enough to be 

spanned by individual sequencing reads (Fig. 4c,d). These reads report allele combinations 

that required lesions to have been replicated over without generating a mutation in some cell 

divisions (Fig. 4d). Allele frequency distributions indicate that non-mutagenic synthesis over 

DNA lesions is common (Extended Data Fig. 5). As expected for orthogonal measures of the 

generated genetic diversity, the tumour-wide level of combinatorial diversity from proximal 

mutation pairs closely correlates with the multi-allelic rate (Fig. 4e), and highlights the 

consistently high variance of these measures between tumours.

The explanation for this inter-tumour variance becomes evident when plotting the 

distribution of multi-allelism along each tumour genome (Fig. 4f-i). Tumours with high rates 

of genetic diversity typically have uniformly high rates of multi-allelism across their genome 

(Fig. 4g). They likely developed from a first generation daughter of the original DEN 

mutagenised cell, in which all DNA is a duplex of a lesion containing and non-lesion 
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containing strand. Replication over lesion containing strands in subsequent generations 

produces multi-allelic variation at a uniform rate throughout the genome.

Tumours with lower total levels of genetic diversity exhibit discrete genomic segments of 

high and low multi-allelism (Fig. 4h,i). These tumours can be explained as having developed 

from a cell a few generations subsequent to DEN treatment. Each mitosis following DEN 

exposure is expected to dilute the lesion containing strands present in each daughter cell by 

approximately 50%, assuming random segregation. Only lesion-retaining fractions of the 

genome generate multi-allelic and combinatorial genetic diversity in the daughter lineages. 

As expected from the lesion segregation model with SCE, the multi-allelic patterns mirror 

the mutational asymmetry segmentation pattern.

By estimating the fraction of multi-allelic chromosomal segments, we can infer the cell 

generation post-DEN exposure that the tumour grew from (Fig. 4j). 67% of C3H and 21% of 

CAST tumours developed from first generation daughter cells following DEN exposure, 

indicating the single large burst of mutations was instantly transformative. For the 

remainder, the observed fractions of multi-allelic segments cluster around expectations for 

second and subsequent cell generations, suggesting that the production of a specific mutant 

allele combination, an additional mutation, or an external trigger was required for 

transformation. Intriguingly, Egfr driven tumours appear to transform significantly later after 

DEN treatment, suggesting that driver gene identity may influence the timing of tumour 

inception (Fig. 4k).

Lesion segregation is ubiquitous

Lesion segregation is a major feature of DEN mutagenesis in mouse liver. This immediately 

raises two important questions: are other DNA damaging agents also characterised by lesion 

segregation? And does lesion segregation occur in human cells and cancers? A recent study 

exposed human induced pluripotent stem cells (iPSCs) to 79 known or suspected 

environmental mutagens and found 41 of them produced nucleotide substitutions above 

background expectations5. Although not previously noted in these data, we found that many 

of these exposures generated chromosome-scale lesion segregation patterns (Extended Data 

Fig. 6a-d) similar to our in vivo DEN model.

For each mutagenic agent, we identified the most common nucleotide substitution type in 

each sample (e.g. C→T/G→A in simulated solar radiation exposure, Extended Data Fig. 6a) 

and applied runs-based tests to quantify their segmental asymmetry. The application of runs-

based tests (e.g. the rl20 metric) (Fig. 5a-f) revealed that segmental mutational asymmetry is 

a common feature of DNA damaging mutagens in human cells (Fig. 5c). We detect 

significant mutational asymmetry in every sample with good statistical power (>1,000 

informative mutations, Fig. 5e), including clinically relevant insults, such as sunlight 

(simulated solar radiation, SSR), tobacco smoke (BPDE) and chemotherapeutic agents 

(temozolomide). We conclude that the chromosome-scale segregation of lesions and the 

resulting strand asymmetry of mutation patterns is a general feature of all tested DNA 

damaging mutagens.
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In an analogous experiment, similar numbers of mutations were induced by perturbation of 

replication and repair pathways28. These mutator phenotypes are independent of DNA 

lesions and correspondingly significant asymmetry was neither expected nor detected (Fig. 

5d).

A common feature of our DEN mutagenesis experiment and mutagen exposure in human 

iPSCs5 is the striking pattern of mutation asymmetry that occurs as a consequence of a 

single mutagenic insult. By contrast, most human cancers are subject to multiple damaging 

events over their history. Our lesion segregation model predicts that such tumours will 

acquire new waves of segregating lesions after each exposure, thus progressively masking 

and mutually confounding their mutation patterns. Therefore, even though we have shown 

that UV exposure does cause striking lesion segregation in human cells (Fig. 5a; Extended 

Data Fig. 6a), it is unlikely that the mutational asymmetry diagnostic of lesion segregation 

would be detected in skin cancers.

Despite the low prior expectation of detecting lesion segregation patterns in human cancers, 

we used the same algorithm as for human iPSCs to search for such patterns in human cancer 

genomes29 (n=18,965 cancers from 22 primary sites). This identified multiple cancers that 

clearly show mutational asymmetry characteristic of lesion segregation (Fig. 5f,g). The 

majority of these tumours are renal, hepatic or biliary in origin, and show a high mutation 

rate and strand asymmetry of T→A/A→T mutations, consistent with known aristolochic 

acid exposure3 (Supplementary Table 2). We conclude that while visualised most clearly in 

tumours subjected to a single dose of a mutagen, lesion segregation has likely shaped all 

genomes that have suffered DNA damage, which has important implications for tumour 

evolution and heterogeneity.

Discussion

Here we have shown that most mutation-causing DNA lesions are not resolved as mutations 

within a single cell-cycle. Instead, lesions segregate unrepaired into daughter cells for 

multiple cellular generations, resulting in chromosome-scale strand asymmetry of 

subsequent mutations. This suggests that lesion removal prior to replication is high fidelity, 

rarely resulting in mutations. Low fidelity replication over persistent lesions implicates the 

involvement of DNA damage tolerance mechanisms30 over genomic perfection31. Initially 

discovered in a well-powered in vivo mammalian model of oncogenesis, we also 

demonstrate that lesion segregation is ubiquitous to all tested mutagens, occurs in human 

cells, and is evident in human cancers. Similar patterns of asymmetry in bacterial 

mutagenesis posit that the underlying mechanisms are deeply conserved32,33.

Our discovery of pervasive lesion segregation challenges long standing assumptions in the 

analysis of cancer evolution34. For example, the widely used infinite sites model35 does not 

allow for recurrent rounds of mutation at the same site. These findings also provide new 

opportunities for understanding cancer evolution, through the use of the mutational 

asymmetry and multi-allelic rate patterns to track events during oncogenesis and to quantify 

selection. A far-reaching implication of lesion segregation is that it may provide a window of 

opportunity for a cancer to sample the fitness of mutation combinations within the lineage, 
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circumventing Muller’s ratchet36 and Hill-Robertson interference: low efficiency of 

selection due to the inability to separate mutations of opposing fitness effects37,38. 

Consequently, DNA damaging chemotherapeutics, particularly large or closely spaced doses 

generating persistent lesions, could inadvertently provide an opportunity for efficient 

selection of the resulting mutations. This insight may guide the development of more 

effective chemotherapeutic regimens.

Once identified, lesion segregation is a deeply intuitive concept. Its practical applications 

provide new vistas for the exploration of genome maintenance and fundamental molecular 

biology. The discovery of pervasive lesion segregation profoundly revises our understanding 

of how the architecture of DNA repair and clonal proliferation can conspire to shape the 

cancer genome.

Methods

Mouse colony management

Animal experimentation was carried out in accordance with the Animals (Scientific 

Procedures) Act 1986 (United Kingdom) and with the approval of the Cancer Research UK 

Cambridge Institute Animal Welfare and Ethical Review Body (AWERB). Animals were 

maintained using standard husbandry: mice were group housed in Tecniplast GM500 IVC 

cages with a 12-hour light / 12-hour dark cycle and ad libitum access to water, food 

(LabDiet 5058), and environmental enrichments.

Chemical model of hepatocarcinogenesis

15-day-old (P15) male C3H and CAST mice were treated with a single intraperitoneal (IP) 

injection of N-Nitrosodiethylamine (DEN; Sigma-Aldrich N0258; 20 mg/kg body weight) 

diluted in 0.85% saline. Liver tumour samples were collected from DEN-treated mice 25 

weeks (C3H) or 38 weeks (CAST) after treatment. All macroscopically identified tumours 

were isolated and processed in parallel for DNA extraction and histopathological 

examination. Non-tumour tissue from untreated P15 mice (ear, tail, and background liver) 

was sampled for control experiments.

Tissue collection and processing

Liver tumours of sufficient size (≥2 mm diameter) were bisected; one half was flash frozen 

in liquid nitrogen and stored at -80°C for DNA extraction, and the other half was processed 

for histology. Tissue samples for histology were fixed in 10% neutral buffered formalin for 

24 h, transferred to 70% ethanol, machine processed (Leica ASP300 Tissue Processor; 

Leica, Wetzlar, Germany), and paraffin embedded. All formalin-fixed paraffin-embedded 

(FFPE) sections were 3 μm in thickness.

Histochemical staining

FFPE tissue sections were haematoxylin and eosin (H&E) stained using standard laboratory 

techniques. Histochemical staining was performed using the automated Leica ST5020; 

mounting was performed on the Leica CV5030.
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Imaging

Tissue sections were digitised using the Aperio XT system (Leica Biosystems) at 20x 

resolution; all H&E images are available in the BioStudies archive at EMBL-EBI under 

accession S-BSST129.

Tumour histopathology

H&E sections of liver tumours were blinded and assessed twice by a pathologist (S.J.A); 

discordant results were reviewed by an independent hepatobiliary pathologist (S.E.D). 

Tumours were classified according to the International Harmonization of Nomenclature and 

Diagnostic Criteria for Lesions in Rats and Mice (INHAND) guidelines39. In addition, 

tumour grade, size, morphological subtype, nature of steatosis, and mitotic index were 

assessed (Supplementary Table 1), as well as the presence of cystic change, haemorrhage, 

necrosis, or vascular invasion.

Sample selection for WGS

Tumours which met the following histological criteria were selected for whole genome 

sequencing (C3H n=371, CAST n=84): (i) diagnosis of either dysplastic nodule (DN) or 

hepatocellular carcinoma (HCC), (ii) homogenous tumour morphology, (iii) tumour cell 

percentage >70%, and (iv) adequate tissue for DNA extraction. Neoplasms with extensive 

necrosis, mixed tumour types, a nodule-in-nodule appearance (indicative of an HCC arising 

within a DN), or contamination by normal liver tissue were excluded. Since carcinogen-

induced tumours arising in the same liver are independent6, multiple tumours were selected 

from each mouse to minimise the number of animals used. A subset of normal (non-tumour) 

samples from untreated mice were also sequenced (C3H n=13, CAST n=7).

Whole genome sequencing

Genomic DNA was isolated from liver tissue and liver tumours using the AllPrep 96 

DNA/RNA Kit (Qiagen, 80311) according to the manufacturer's instructions. DNA quality 

was assessed on a 1% agarose gel and quantified using the Quant-IT dsDNA Broad Range 

Kit (Thermo Fisher Scientific). Genomic DNA was sheared using a Covaris LE220 focused-

ultrasonicator to a 450 bp mean insert size.

WGS libraries were generated from 1 μg of 50 ng/ul high molecular weight gDNA using the 

TruSeq PCR-free Library Prep Kit (Illumina), according to the manufacturer's instructions. 

Library fragment size was determined using a Caliper GX Touch with a HT DNA 1k/12K/Hi 

Sensitivity LabChip and HT DNA Hi Sensitivity Reagent Kit to ensure 300-800 bp (target 

~450 bp).

Libraries were quantified by real-time PCR using the Kapa library quantification kit (Kapa 

Biosystems) on a Roche LightCycler 480. 0.75 nM libraries were pooled in 6-plex and 

sequenced on a HiSeq X Ten (Illumina) to produce paired-end 150 bp reads. Each pool of 6 

libraries was sequenced over eight lanes (minimum of 40x coverage).
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Variant calling and somatic mutation filtering

Sequencing reads were aligned to respective genome assemblies (C3H = C3H_HeJ_v1; 

CAST = CAST_EiJ_v1)40 with bwa-mem (v.0.7.12)41 using default parameters. Reads were 

annotated to read groups using the picard (v.1.124)42 tool AddOrReplaceReadGroups, and 

minor annotation inconsistencies corrected using the picard CleanSam and 

FixMateInformation tools. Bam files were merged as necessary, and duplicate reads were 

annotated using the picard tool MarkDuplicates.

Single nucleotide variants were called using Strelka2 (v.2.8.4)43 implementing default 

parameters. Initial variant annotation was performed with the GATK (v.3.8.0)44 walker 

CalculateSNVMetrics45. Genotype calls with a variant allele frequency < 0.025 were 

removed. Although inbred strains were used, fixed genetic differences between the colonies 

and the reference genome, as well as small numbers of germline variants segregating within 

the colonies were identified. For each strain, fixed differences identified as homozygous 

changes present in 100% of genotyped samples were filtered out. Segregating variants were 

filtered based on the excess clustering of mutations to animals with shared mothers. To 

generate a null expectation taking into account the family structure of the colonies, the 

parent-offspring relationships were randomly permuted 1,000 times. For each count of 

recurrent mutation (range 5 to 371 inclusive), we determined the null distribution of 

expected distinct mothers. Comparing this to the observed count of distinct mothers for each 

recurrent (n>4) mutation, those with a low probability (p<1x10-4, pnorm function from R 

(v.3.5.1)46) under the null were excluded from analyses.

Copy number variation between tumours within strains was called using CNVkit (v.0.9.6)47. 

Non-tumour reference coverage was provided from non-tumour control WGS data (C3H 

n=11, CAST n=7) and per tumour cellularity estimates (see below) were provided.

RNA-sequencing

Total RNA was extracted from P15 liver tissue (n=4 biological replicates per strain) using 

QIAzol Lysis Reagent (Qiagen), according to the manufacturer’s instructions. DNase 

treatment and removal were performed using the TURBO DNA-freeTM Kit (Ambion, Life 

Technologies), according to the manufacturer’s instructions. RNA concentration was 

measured using a NanoDrop spectrophotometer (Thermo Fisher); RNA integrity was 

assessed on a Total RNA Nano Chip Bioanalyzer (Agilent)

Total RNA (1 μg) was used to generate sequencing libraries using the TruSeq Stranded Total 

RNA Library Prep Kit with Ribo-Zero Gold (Illumina), according to the manufacturer’s 

instructions. Library fragment size was determined using a 2100 Bioanalyzer (Agilent). 

Libraries were quantified by qPCR (Kapa Biosystems). Pooled libraries were sequenced on 

a HiSeq4000 to produce ≥40 million paired-end 150 bp reads per library.

RNA-seq data processing and analysis

Transcript abundances were quantified with Kallisto (v.0.43.1)48 (using the flag --bias) and a 

transcriptome index compiled from coding and non-coding cDNA sequences defined in 

Ensembl v9149. Transcripts per million (TPM) estimates were generated for each annotated 
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transcript and summed across alternate transcripts of the same gene for gene-level analysis. 

Transcription start sites (TSS) for each gene were annotated with Ensembl v91 and based 

upon the most abundantly expressed transcript. RNA-seq data are available at Array Express 

at EMBL-EBI under accession E-MTAB-8518.

Genomic annotation data

Mouse liver proximity ligation sequencing (HiC) data were downloaded from GEO 

(GSE65126)50, replicates were combined, then aligned to GRCm3851 and processed using 

the Juicebox (v.7.5) and Juicer scripts52 to obtain the HiC matrix. Eigenvectors were 

obtained for 500kb consecutive genomic windows over each chromosome from the HiC 

matrix using Juicebox and subsequently oriented (to distinguish compartment A from B) 

using GC content per 500kb bin. We used progressiveCactus53 to project the 500kb windows 

into the C3H reference genome and Bedtools (v.2.28.0) to merge syntenic loci between 450 

and 550 kb in size, removing the second instance where we observed overlaps.

Genic annotation was obtained from Ensembl v9149 for the corresponding C3H and CAST 

reference genome assemblies (C3H_HeJ_v1, CAST_EiJ_v1). Genomic repeat elements 

were annotated using RepeatMasker (v.20170127)54 with the default parameters and 

libraries for mouse annotation.

The analysable fraction of the genome

Analysis and sequence composition calculations were confined to the main chromosome 

assemblies of the reference genome (chromosomes 1-19 and X). Using WGS of non-tumour 

liver, ear and tail samples (C3H n=11, CAST n=7) collected and sequenced 

contemporaneously with tumour samples, genome sequencing coverage was calculated for 

1kb windows using multicov in Bedtools (v.2.28.0)55. Windows with read coverage >2 s.d. 

from the autosomal mean were flagged as suspect in each tumour. Read coverage over the X 

chromosome was doubled in these calculations to account for the expected hemizygosity in 

these male mice. Any 1kb window identified as suspect in >90% of these non-tumour 

samples was flagged as “abnormal read coverage” (ARC) and masked from subsequent 

analysis. This masked 12.7% of the C3H and 11.5% of the CAST reference genomes 

yielding analysable haploid genome sizes of C3H = 2,333,783,789 nt and CAST = 

2,331,370,397 nt.

Mutation rate calculations

Mutation rates were calculated as 192 category vectors representing every possible single 

nucleotide substitution conditioned on the identity of the upstream and downstream 

nucleotides. Each rate being the observed count of a mutation category divided by the count 

of the trinucleotide context in the analysed sequence. To report a single aggregate mutation 

rate, the three rates for each trinucleotide context were summed to give a 64 category vector 

and the weighted mean of that vector reported as the mutation rate. The vector of weights 

being the trinucleotide sequence frequency of a reference sequence, for example the 

composition of the whole genome. In the case of whole genome analysis, the same 

trinucleotide counts are used in (1) the individual category rates calculation and (2) the 

weighted mean of the rates, cancelling out. For windowed comparisons of mutation rates, 
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the weighted mean is calculated using the genome wide composition of trinucleotides rather 

than the local sequence composition, providing a compositionally adjusted mutation rate 

estimate. For mutation rates in TCR analysis, the same compositional adjustment was 

carried out but using the trinucleotide composition of the aggregate genic spans of genome 

(minus ARC regions) for normalisation.

Mutation signatures

The 96 category “folded” mutation counts for each of the 371 C3H tumours were 

deconvolved into the best fitting number (K) of component signatures using sigFit (v.2.0)56 

with 1,000 iterations and K set to integers 2 to 8 inclusive. A heuristic goodness of fit score 

based on cosine similarity favoured instances where K=2. The DEN1 and DEN2 signatures 

reported were obtained by running sigFit with 30,000 iterations for K=2. Analysis of CAST 

tumours gave less distinct separation of signatures so the C3H derived DEN1 and DEN2 

were used for both strains. To fit signatures to each tumour we used sigFit provided with the 

DEN signatures and additional SPONT1 and SPONT2 signatures that were derived from 

equivalent WGS analysis of spontaneous (non-DEN induced) C3H tumours.

Driver mutation identification

Candidate driver mutations were identified by applying oncodriveFML (v.2.2.0 using the 

SIFT scoring scheme)57 and oncodriveCLUSTL (v.1.1.1)58 to mutations identified in C3H 

tumours. The only genes convincingly identified as significantly enriched for functionally 

impactful or clustered mutations were Hras, Braf, and Egfr. Kras appeared as marginally 

significant. These four genes were identified for C3H6. Protein altering mutations in those 

genes were annotated as driver mutations in C3H and CAST tumours.

Mutational asymmetry segmentation and scoring

For each tumour a focal subset of “informative” mutation types were defined, T→N/A→N 

mutations, in the case of DEN-induced tumours. The order of focal mutations along each 

chromosome was represented as a binary vector (e.g. 0 for T→N, 1 for A→N). Vectors 

corresponding to each chromosome of each tumour were processed with the cpt.mean 

function of the R Changepoint (v.2.2.2)59 package run with an Akaike information criterion 

(AIC) penalty function, maximum number of changepoints set to 12 (Q=12), and 

implementing the PELT algorithm for optimal changepoint detection. Following 

segmentation, the defined segments were scored for strand asymmetry, taking into account 

the sequence composition of the segment. For example in tumours with T→N/A→N 

informative mutations the number of Ts on the forward strand is the count of Watson sites G 

W and the number of T→N mutations is μ W which together give the Watson strand rate R 

W=μ W/G W. The forward strand count of As and mutations from A likewise give the Crick 

strand rate R C=μ C/G C. From these two rates we calculate a relative difference metric, the 

mutational asymmetry score S=(R W-R C)/(R W+R C).

The parameter S scales from 1 all Watson (e.g. DEN T→N mutations) through 0 (50:50 

T→N:A→N) to -1 for all Crick (e.g. DEN A→N). For the categorical assignment, S ≥ 0.3 

is Watson strand asymmetric, S ≤- 0.3 Crick strand asymmetric and in the range -0.3 < S < 

0.3 symmetric, though more stringent filtering was applied where noted. Segments 
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containing <20 informative mutations were discarded from subsequent analyses. To test for 

oncogenic selection at sites with recurrent mutations, mutational asymmetry segments 

overlapping the focal mutation were categorised based on their asymmetry score S, as above. 

The test was implemented as a Fisher’s exact test with the 2x2 contingency table comprising 

the counts of chromosomes (two autosomes per cell) stratified by Watson versus Crick 

asymmetry and the presence of the focal mutation in the tumour. Tumours containing 

another known driver gene or recurrent mutation within the focal asymmetry segment were 

discarded from the analysis. We estimated the minimum recurrence of a mutation necessary 

to reliably detect oncogenic selection through simulation. Biased segregation of 

chromosomes containing drivers was modelled using the observed median excess of T→N 

over A→N lesions (23 fold), and random segregation of non-driver containing strands (1:1 

ratio). Our model predicted >33 C3H recurrences or >41 CAST recurrences would give 80% 

power to detect oncogenic selection if present.

Tumour cellularity estimates

We calculated tumour cellularity as a function of the non-reference read count in autosomal 

chromosomes (1-R/d)*2 where R is the reference read count at a mutated site and d is the 

total read depth at the site. For each tumour these values were binned in percentiles and the 

midpoint of the most populated (modal) percentile taken as the estimated cellularity of the 

tumour. Given the low rate of copy number variation across the DEN induced tumours, no 

correction was made for copy-number distortion. Skew in the variant allele frequency 

(VAF=(1-R/d)) distribution was calculated using Pearson’s median skewness coefficient 

implemented in R as (3(mean-median))/sd of the VAF distribution.

Identifying and filtering reference genome mis-assemblies

Since lesion segregation, mutation asymmetry patterns allow the long-range phasing of 

chromosome strands, they can detect discrepancies in sequence order and orientation 

between the sequenced genomes and the reference. We identified autosomal asymmetry 

segments that immediately transitioned from Watson bias (S > 0.3) to Crick (S < -0.3) or 

vice versa without occupying the intermediate unbiased state (-0.3 < S < 0.3); such 

“discordant segments” are unexpected. Allowing for ±100kb uncertainty in the position of 

each exchange site we produced the discordant segment coverage metric. At sites with 

discordant segment coverage >1 we calculated percentage consensus for mis-assembly 

M=ds/(ds+cs) where ds is the number of discordant segments over the exchange site and cs 
the number of concordant: where either Watson or Crick mutational asymmetry extends at 

least 1x106 nucleotides on both sides of the exchange site. The approximate genomic 

coordinates for a C3H strain specific inversion on chromosome 6 were previously 

reported60.

Sister chromatid exchange site analysis

Identified SCE sites were aggregated across tumours from each strain. Exchange sites within 

1x106 nt of known and proposed reference genome mis-assembly sites were excluded from 

analysis. The mid-point between the flanking informative mutations was taken as the 

reference genome position of the exchange event, and the distance between those flanking 

mutations as the positional uncertainty of the estimate. To generate null expectations for 
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mutation rate measures, the coordinate of an exchange was projected into the genome of a 

proxy tumour and the mutation rates and patterns measured from that proxy tumour 

(repeated 100 times). The permutation of tumour identifiers for the selection of proxy 

tumours was a shuffle without replacement that preserved the total number of exchange sites 

measured in each tumour.

The comparison of mutation spectra between windows was calculated as the cosine distance 

between the 96 category trinucleotide context mutation spectra for the whole genome and 

that calculated for the aggregated 5kb window. The 96 categories were equally weighted for 

this comparison.

Exchange site enrichment analysis used Bedtools55 shuffle to permute the genomic positions 

of exchange sites into the analysable fraction of the genome (defined above). Observed rates 

of annotation overlap were compared to the distribution of values from 1,000 permuted 

exchange sites. For genic overlaps we used Ensembl v9149 coordinates for genic spans; gene 

expression status was based on the summed expression over all annotated transcripts for the 

gene from P15 liver from the matched mouse strain. Expression thresholds were defined as 

>50th centile for active and <50th centile for inactive genes.

A higher count of informative mutations provides greater power to identify shorter 

mutational asymmetry segments. To fairly test for correlation between nucleotide 

substitution rate and SCE rate we randomly down-sampled informative mutations to 10,000 

per tumour genome and recomputed the mutational asymmetry segmentation patterns from 

the sampled data. Tumours with <10,000 informative mutations were excluded. We then 

correlated the total (not down sampled) nucleotide substitution load to the count of SCE 

events inferred from the down-sampled data.

Transcription coupled repair calculations

For each protein coding gene, the maximally expressed transcript isoform was identified 

from P15 liver in the matched strain (TPM expression), subsequently the primary transcripts. 

In the case of ties, transcript selection was arbitrary. Genes were partitioned into five 

categories based on the expression of the primary transcript: expression level 0 (<0.0001 

TPM) and four quartiles of detected expression.

Using the segmental asymmetry patterns of each tumour and the annotated coordinates 

(Ensembl v91) of the selected transcripts, we identified transcripts completely contained in a 

single Watson or Crick asymmetric segment and located at least 200kb from the segment 

boundary at both ends. We also applied strict asymmetry criteria of mutational asymmetry 

scores S > 0.8 for Watson and S < -0.8 for Crick asymmetry segments, though analysis with 

the standard asymmetry thresholds and no segment boundary margin give similar results and 

identical conclusions. For each transcript in each tumour we then used both the 

transcriptional orientation of the gene and the mutational asymmetry of the segment 

containing it to resolve the segregated lesions to either the template (anti-sense) or non-

template (sense) strand of the gene. Transcripts contained in mutationally symmetric regions 

or not meeting the strict filtering criteria were excluded from analysis.
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We then analysed mutation rates stratifying by gene expression level and the template/non-

template strand of the lesions but aggregating between tumours within the same strain. The 

transcription start site coordinates used correspond to the annotated 5’ end of the primary 

transcripts.

Multi-allelic variation

Aligned reads spanning genomic positions of somatic mutations were re-genotyped using 

Samtools mpileup (v.1.9)61. Genotypes supported by ≥2 reads with a nucleotide quality 

score of ≥20 were reported, considering sites with two alleles as biallelic, those with three or 

four alleles as multi-allelic. The fraction of called mutations exhibiting multi-allelic 

variation was calculated for the analysable fraction of the genome, across 10Mb consecutive 

windows and also for each of the mutational asymmetry segments calculated for each 

tumour.

A null expectation for the multi-allelic rate estimate was generated per C3H tumour; 

genomic positions identified as mutated across the other 370 tumours were down-sampled to 

match the mutation count in the focal tumour. Any of these proxy mutation sites with a non-

reference genotype supported by ≥2 reads and nucleotide quality score ≥20 at the focal site 

were referred to as “multi-allelic” for the purposes of defining a background expectation for 

the calling of multi-allelic variation. For each tumour, this was repeated 100 times and the 

mean reported.

We used whole exome sequencing (WES) of fifteen C3H tumours from prior work6 that 

have subsequently been used to generate WGS data in this study as a basis for validating 

multi-allelic calls. Multi-allelic variant positions derived from WGS were genotyped in 

WES using Samtools mpileup, as described above. Only sites with ≥30x WES coverage 

were considered and alleles were found to be concordant if a WGS genotype was supported 

by ≥1 read in the WES data. To provide a null expectation, the analysis was repeated using 

WES data from a different tumour and validation rates reported for all versus all 

combinations of mismatched WGS-WES pairs (152-15=210).

To quantify combinatorial genetic diversity for each tumour, pairs of mutations located 

between 3-150nt apart were phased using sequencing reads that traversed both mutation 

sites. Distinct allelic combinations were counted after extraction with Samtools mpileup 

using only reads with nucleotide quality score ≥20 over both mutation sites.

Estimating the cell generation of transformation

Knowing the faction of lesion segregation segments that generated multi-allelic variation 

across a tumour genome allows the inference of the generation time post-mutagenesis of the 

cell from which the tumour developed, because each successive cell generation is expected 

to retain only 50% of the lesion containing segments. We estimate this fraction as follows. 

Let p denote the fraction of multi-allelic segments and let q be its complement, i.e. the 

fraction of non-multi-allelic segments, for each tumour genome. Segment boundaries being 

SCE sites or chromosome boundaries. In order to determine p, we re-purpose the quadratic 

Hardy-Weinberg equation: p+q=p 2+2pq+q 2 =1, which holds since the two possible 

fractions need to sum to unity. Given an asymmetric segment of interest in the diploid 

Aitken et al. Page 16

Nature. Author manuscript; available in PMC 2021 February 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



genome, there are 3 distinct scenarios: (i) both chromosomes are multi-allelic (p 2), (ii) One 

of the chromosomes is multi-allelic and the other is not (pq+qp) and (iii) both chromosomes 

are non-multi-allelic (q 2). The first two scenarios are not distinguishable from the data as 

both appear multi-allelic (m). However, in the third scenario, for a segment to be non-multi-

allelic (biallelic, b), both chromosomal copies have to be non-multi-allelic. As described 

below, q 2 can be estimated directly from the data and is subsequently used to estimate p=1-
sqrt(q 2 ) and hence the cell generation number of transformation post-mutagenesis.

The estimation of q 2 requires computing the ratio q 2=b/(b+m). We can directly observe the 

counts of b as non-multi-allelic segments. The number of autosomal chromosome pairs 

(n=19) and count of sister chromatid exchange events (x) give the total number of segments 

in the genome b+m=n+x. Exchange events are not expected to align between allelic 

chromosomes which will result in the partial overlap of segments between allelic copies. 

Although this increases the number of observed segments (b and m) relative to actual 

segments, assuming the independent behaviour of allelic chromosomes and that segment 

length is independent of multi-allelic state, this partial overlap does not systematically 

distort the quantification of b or the estimation of q 2.

To call a non-multi-allelic segment (b) we require less than 0.04% multi-allelic sites. The 

threshold based on the tri-modal frequency distribution of multi-allelic rates per-segment, 

aggregated over all 371 C3H tumours. The 0.04% threshold separates the lower distribution 

of multi-allelic rates from the mid and higher distributions.

To test for the enrichment of specific driver gene mutations in early generation versus late 

generation transformation post-DEN treatment, we applied Fisher’s exact test (fisher.test 

function in R) to compare the generation 1 ratio of tumours with, versus those without a 

focal mutation, to the same ratio for tumours inferred to have transformed in a later 

generation. We additionally report the same odds ratios, but requiring that the “with focal 

mutation” tumours had a driver mutation in only one of the driver genes: Hras, Braf, or Egfr.

Cell-line and human cancer mutation analysis

Somatic mutation calls were obtained from DNA maintenance and repair pathway perturbed 

human cells28. Of the 128,054 reported single nucleotide variants, 6,587 unique mutations 

(genomic site and specific change) were shared between two or more sister clones, so likely 

represent mutations present but not detected in the parental clone. All occurrences of the 

shared mutations were filtered out leaving 106,688 mutations for analysis, although the 

inclusion of these filtered mutations does not alter any conclusions drawn. Somatic mutation 

calls from mutagen exposed cells5 were obtained, no additional filtering was applied to these 

sub-clone mutations.

Somatic mutation calls from the International Cancer Genome Consortium (ICGC)62 were 

obtained as simple_somatic_mutation.open.* files from release 28 of the consortium, one 

file for each project. These somatic mutations have been called from a mixture of whole 

genome and whole exome sequencing. Of the 18,965 patients represented (and not 

embargoed in the release 28 dataset), 116 were excluded from analysis; these represent a 

distinct whole exome sequenced subset of the LICA-CN project that appear to show a 
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processing artefact in the distribution of specific mutation subsets. ICGC mutations were 

filtered to remove insertion and deletion mutations and also filtered for redundancy so that 

each mutation was only reported once for each patient. Mutation signatures deconvolution 

was performed using the R MutationPatterns (v.1.4.2)63 package and COSMIC signature 22 

was interpreted as aristolochic acid3.

The rl20 metric and runs tests

Amongst only the informative mutations (e.g. T→N/A→N in DEN) three consecutive 

T→N without an intervening A→N is a run of three. The R function rle was used to encode 

the run-lengths for binary vectors of informative mutations along the genome of a focal 

tumour.

Ranking them from the longest to the shortest run, we find the set of longest runs that 

encompass 20% of all informative mutations in the tumour. The run-length of the shortest of 

those is reported as the rl20 metric. The threshold percent of mutations was defined as having 

to be less than 50%, as on average only 50% of the autosomal genomes are expected to show 

mutational asymmetry patterns. On testing with randomised data, the value of 20% gave a 

stable null expectation (maximum observed value of a run of five) and still encompassed a 

large fraction of the informative mutations. All rl20 results reported were implemented so 

that runs were broken when crossing chromosome boundaries.

The Wald-Wolfowitz runs test was performed using the runs.test function of the R randtests 

(v.1.0)64 library. It was applied to binary vectors of informative changes as described above, 

with threshold=0.5.

The Wald-Wolfowitz runs test significance is inflated by coordinated dinucleotide changes, 

such as those produced by UV light exposure and also other local mutational asymmetries 

such as replication asymmetry14 and kataegis events15,65. The rl20 metric appears robust to 

most such distortions but we find it efficiently detects kataegis events that are in an 

otherwise mutationally quiet background, as is often the case for breast cancer. For this 

reason we also indicate the total genomic span of mutations in the rl20 subset of mutation 

runs: kataegis events typically span a tiny (<5%) fraction of the whole genome.

Computational analysis environment

Primary data processing was performed in shell-scripted environments calling the software 

indicated. Except where otherwise noted, analysis processing post-variant calling was 

performed in a Conda environment and choreographed with Snakemake running in an LSF 

batch control system (Supplementary Table3). The analysis pipeline including Conda and 

Snakemake configuration files can be obtained from the repository https://git.ecdf.ed.ac.uk/

taylor-lab/lce-ls.

Key resources

The key reagents and resources required to replicate our study are listed in Supplementary 

Table 3. For externally sourced data, where applicable, URLs that we used can be found in 

the Git repository https://git.ecdf.ed.ac.uk/taylor-lab/lce-ls.

Aitken et al. Page 18

Nature. Author manuscript; available in PMC 2021 February 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://git.ecdf.ed.ac.uk/taylor-lab/lce-ls
https://git.ecdf.ed.ac.uk/taylor-lab/lce-ls
https://git.ecdf.ed.ac.uk/taylor-lab/lce-ls


Extended Data

Extended Data Fig. 1. Summary mutation metrics for both C3H and CAST tumours.
a, Single nucleotide substitution rates per C3H tumour, rank ordered over x-axis (grey 

points, median blue line). Insertion/deletion (indel, <11 nt) rates show as black. b, Y-axis 

from a, expanded to show distribution of indel rates with preserved tumour order. c, Number 

of C3H copy number variant (CNV) segments and their total span as a percent of the haploid 

genome. Blue shading shows intensity of overlapping points as a percent of all tumours in 

the plot. d-f, Corresponding plots for CAST derived tumours, f, two extreme x-axis outliers 

relocated (red) and x-axis value shown. g-h, Mutation spectra deconvolved from the 

aggregate spectra of 371 C3H tumours, subsequently referred to as the DEN1 and DEN2 

signatures. i, Oncoplot summarising mutation load, mutation spectra, and driver gene 

mutation complement of C3H tumours. j, Oncoplot of CAST derived tumours as i.
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Extended Data Fig. 2. The frequency of sister chromatid exchanges correlates with mutation 
rate, and localising reference genome assembly errors.
a, The relationship between single nucleotide substitution mutation load and detected sister 

chromatid exchange (SCE) events in C3H tumours. Counts of SCE (y-axis) are based on 

down-sampling to 10,000 informative mutations per tumour to ensure equal power to detect 

SCE in each tumour. Tumours with <50% cellularity (pink) have high mutation load and 

form a sub-group with few detected sister chromatid exchange events; these are suspected to 

be polyclonal tumours and were excluded from the Pearson’s correlation reported. b, As for 

a but showing CAST derived tumours. c, Evaluation of the relationship between mutation 

load and ability to detect sister chromatid exchange events. Mutations from C3H tumour 

94315_N8 (shown in Fig. 2) randomly down-sampled and segmentation analysis applied. Y-

axis shows the percentage of sister chromatid exchange events detected (100 replicates, 95% 

C.I. pink). X-axis is on a log-scale: 95% of C3H and >95% of CAST tumours have mutation 

counts to the right of the blue vertical line. Down-sampling other tumours gave comparable 

results. d, The same down-sampling data as shown in panel c but the y-axis shows the 

percent of mutations with the correct (same as full data) mutational asymmetry assignment. 

e, Candidate C3H reference genome assembly errors. Genome coordinates shown on the x-

axis. Immediate switches between Watson and Crick asymmetry are not expected on 

autosomes unless both copies of the chromosome have a SCE event at equivalent sites. 

However, inversions and translocations between the sequenced genomes and the reference 

assembly are expected to produce immediate asymmetry switches. The discordant segment 

coverage (DSC) count (black y-axis) shows the number of informative tumours (those with 

either Watson or Crick strand asymmetry at the corresponding genome position) that suggest 

a tumour genome to reference genome discrepancy. Consensus support (brown y-axis) 

plotted as triangles shows the percentage of informative tumours that support a genomic 

discrepancy at the indicated position (only shown for values >50% support). The two sites 

on chromosome 6 in C3H correspond to a previously identified C3H strain specific inversion 
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that is known to be incorrectly oriented in the C3H reference assembly60. f, As for e, but 

showing CAST tumours. The candidate mis-assembly on chromosome 14 in both strains at 

an approximately orthologous position suggesting a rearrangement shared between strains or 

a missassembly in the BL6 GRCm38 reference assembly against which other mouse 

reference genome assemblies have been scaffolded.

Extended Data Fig. 3. Locally elevated mutation load is driven by sister-chromatid exchange.
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a, Double strand breaks (DSBs) and other DNA damage can trigger homologous 

recombination (HR) mediated DNA repair between sister chromatids. The repair 

intermediate resolves into separate chromatids through cleavage and ligation; grey triangles 

denote cleavage sites for one of the possible resolutions that would result in a large-scale 

sister-chromatid exchange event. Although illustrated for double-ended DNA breaks, single 

ended breaks from collapsed replication forks can be repaired through HR and could 

similarly lead to the formation of repair intermediate structures that can be resolved as 

SCEs. b, Enrichment analysis of sister chromatid exchanges sites (red) compared with null 

expectations from randomly permuting locations into the analysable fraction of the genome 

(grey distributions), the black boxes denote 95% of 1,000 permutations. Sister chromatid 

exchange events are enriched in later replicating and transcriptionally less active genomic 

regions (Hi-C defined compartment B), and correspondingly depleted from early replicating 

active regions. c, Aggregating across n=9,645 sister chromatid exchange sites, the observed 

mutation rate approximately doubles at the inferred site of exchange (x=0). Aggregate 

mutation rates (brown) were calculated in consecutive 5kb windows. Compositionally 

matched null expectation was generated by permuting each exchange site into 100 proxy 

tumours and calculating median (black) and 95% confidence intervals (grey) while 

preserving the total number of projected sites per proxy tumour. d, The elevated mutation 

count is not the result of a high mutation density in a subset of exchange sites, rather it is a 

subtle increase in mutations across most exchange sites. Heatmap showing mutation counts 

calculated in consecutive 5kb windows across each exchange site. Rows represent each 

exchange site, rank-ordered by total mutation count across each 400kb interval. e, The 

distribution of positional uncertainty in exchange site location approximately mirrors the 

decay profile of elevated mutation frequency. f, Divergence of mutation rate spectra is shown 

as cosine distance between the analysed window and the genome wide mutation rate 

spectrum aggregated over all C3H tumours. Despite the elevated mutation frequency, there is 

no detected distortion of the mutation spectrum. g, A model based on HR repair 

intermediate, branch migration that produces heteroduplex segments of (i) 
mismatch:mismatch (circles) and (ii) lesion:lesion (red triangles) strands. Subsequent strand 

segregation would increase the mutational diversity of a descendant cell population but not 

the mutation count per cell (key as per Fig. 2).

Aitken et al. Page 22

Nature. Author manuscript; available in PMC 2021 February 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 4. Replication of transcription coupled repair with lesion strand resolution in 
Mus musculus castaneus.
a, Transcription coupled repair of template strand lesions is dependent on transcription level 

(P15 liver, transcripts per million, TPM). Confidence intervals (99%) are shown as whiskers, 

where broad enough to be visible. b, Comparison of mutation rates for the 64 trinucleotide 

contexts: each context has one point for low and one point for high expression. c, Data as in 

panel b plotted on log scale; there is a line linking low and high expression for the same 

trinucleotide context. d, Sequence composition normalised profiles of mutation rate around 

Aitken et al. Page 23

Nature. Author manuscript; available in PMC 2021 February 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



transcription start sites (TSS). e, Stratifying the data plotted in d by lesion strand reveals 

much greater detail on the observed mutation patterns, including the pronounced influence 

of bidirectional transcription initiation.

Extended Data Fig. 5. Variant allele frequency distributions demonstrate high rates of non-
mutagenic replication over segregating lesions.
a-f, Variant allele frequency (VAF) distributions shown as probability density functions 

(total area under curve=1) for example tumours, calculated taking into account observed 

multi-allelic variation. The VAF for identified driver mutations is indicated (brown triangle). 

Tumour identifiers are shown top right along with the percent of genomic segments (based 

on mutation asymmetry segmentation) that are multi-allelic. Skew shows Pearson’s median 

skewness coefficient for the VAF distributions. Panels a-c show tumours with no multi-

allelic segments and exhibit a symmetric VAF distribution showing minimal sub-clonal 

structure; d-f tumours with all segments multi-allelic, illustrating the sub-clonal structure 

generated by segregating lesions. g, Tumours with a high proportion of multi-allelic 

segments have a left-skewed VAF distribution indicating frequent non-mutagenic replication 

over segregating lesions. Percent of genome segments that are multi-allelic (x-axis) plotted 

against VAF distribution skew for 371 C3H tumours. Tumours with low estimated cellularity 

indicated in pink and excluded from correlation analysis. h, As for g but showing 84 CAST 

tumours. i, Mutation asymmetry summary ribbon for example C3H tumour 90797_N2; 

genome on the x-axis. The percent of mutation sites with robust support for multi-allelic 

variation (y-axis) calculated in 10Mb windows (grey) and for each asymmetric segment 

(black). Thresholds for high (black), intermediate (grey) and zero (red) rates of multi-allelic 

sites shown on the right axis. j, VAF density plots for the example tumour 90797_N2 (shown 

in i) mutations in asymmetry segments stratified by the multi-allelic rate thresholds defined 
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in panel i. As with whole tumour based analysis (a-h), high multi-allelic rates correspond to 

a leftward skew of the VAF (black, grey) whereas segments without multi-allelic variation 

(red) show a minimally skewed distribution.

Extended Data Fig. 6. Examples of mutation patterns generated by lesion segregation from a 
diverse range of clinically relevant mutagens.
a, Genome wide mutation asymmetry plot (as per Fig. 2a-c) for simulated solar radiation 

(SSR) exposed human iPSCs5 illustrating lesion segregation for ultraviolet damage. 

Immediately adjacent mutations (inter-mutation distance 100) indicate CC->TT dinucleotide 
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changes. Despite a low total mutation load (1,308 nucleotide substitutions, 842 informative 

T→A changes), the mutational asymmetry of lesion segregation is evident for the 

aristolochic acid exposed clone5 b, and the polycyclic aromatic hydrocarbon DBADE, c that 

is found in tobacco smoke. d, Summary mutation asymmetry ribbons (as per Fig. 2d) for all 

mutagen exposed clones with rl20 >5, which illustrates the independence of asymmetry 

pattern between replicate clones, almost universal asymmetry on chromosome X, and 

approximately 50% of the autosomal genome with asymmetry over autosomal 

chromosomes. The dominant mutation type is indicated for each mutagen. In those clones 

with low mutation rates, some sister exchange sites are likely to have been missed leading to 

reduced asymmetry signal (e.g. on the X chromosome). Segments with <20 informative 

mutations are shown in white.

Extended Data Table 1
A lesion segregation based test for oncogenic selection.

Strain Gene Mutation Mutation count Odds ratio P-value Known driver

C3H Braf 6:37548568_A/T 151 2.13 5.77x10-6 Yes

C3H Hras 7:145859242_T/C 81 2.67 6.88x10-6 Yes

C3H Hras 7:145859242_T/A 65 1.02 1 Yes

C3H Intronic Fmnl1 11:105081902_A/C 44 1.03 1 No

C3H Intergenic 9:73125689_G/C 42 1.13 1 No

C3H Egfr 11:14185624_T/A 34 3.87 1.23x10-4 Yes

CAST Braf 6:37451282_A/T 42 1.41 0.338 Yes

Recurrently mutated sites in both C3H and CAST with sufficient estimated power to detect oncogenic selection through 
biased strand retention analysis (required >33 C3H recurrences or >41 CAST recurrences). Odds ratio values >1 indicate 
the predicted correlation of driver mutation and Watson/Crick strand retention in tumours with the candidate driver 
mutation, but not for those without the mutation. The Fisher’s exact test P-value is shown after Bonferroni correction. 
Known driver indicates the mutation or its orthologous change has previously been implicated as a driver of hepatocellular 
carcinoma6. The CAST 6:37451282_A/T mutation is orthologous to the C3H 6:37548568_A/T mutation.
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Fig.1. DEN-initiated tumours have a high burden of point mutations with a distinct mutation 
signature and driver mutations in the EGFR/RAS/RAF pathway.
a, Fifteen-day-old (P15) male C3H/HeOuJ mice received a single dose of diethylnitrosamine 

(DEN); tumours were isolated 25 weeks after DEN treatment (P190), histologically analysed 

and subjected to whole genome sequencing. b, DEN-induced tumours displayed a median 

mutation rate of 13 mutations per million base pairs (μ/Mb). c, Mutation spectra histogram 

for the aggregated mutations of 371 C3H tumours showing the distribution of nucleotide 

substitutions, stratified by flanking nucleotide sequence context (96 categories). Sequence 

context for every fourth trinucleotide context is annotated (x-axis). d, Oncoplot summarising 

each tumour as a column with its mutation rate (black) and the presence of driver mutations 

in known driver genes (brown boxes). Tumours are ordered by the driver mutations 

identified.
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Fig. 2. Chromosome-scale and strand asymmetric segregation of DNA lesions.
a-f, An example DEN-induced C3H tumour (identifier: 94315_N8) with the genome shown 

over the x-axis. a-c, Mutational asymmetry. Individual T→N mutations shown as points, 

blue (T on the Watson strand, a) and gold (T on the Crick strand, c), the y-axis representing 

the distance to the nearest neighbouring T→N mutation on the same strand. b, Segmentation 

of mutation strand asymmetry patterns. Y-axis position shows the degree of asymmetry (no 

bias: grey); mutational symmetry switches indicated as red lines. d, Segmentation profile 

summarised as ribbon showing only the asymmetric segments. e, Mutation rate in 10Mb 

windows, blue line shows the genome wide rate for this tumour. f, DNA copy number in 

10Mb windows (grey) and for each asymmetry segment (black). g, Summary ribbon plots 

(as in d) for all 371 C3H tumours, ranked by chromosome X asymmetry. Purple triangle 

indicates tumour shown in panels a-f. Reference genome mis-assembly points marked (grey 

diamonds). h, Balance of Watson versus Crick asymmetry amongst tumours, showing 
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deviations at driver genes. i, Tumours consistently show segmental mutational asymmetry 

across 50% of their autosomal genome. j, Model for DNA lesion segregation as a 

mechanism to generate mutational asymmetries. The exposure of a mutagen generates 

lesions (red triangles) on both strands of the DNA duplex (1). If not removed before or 

during replication (2) those lesions will segregate into two sister chromatids, one (blue) 

carrying only Watson strand lesions and subsequent templated errors, and the second (gold) 

only Crick strand lesions and their induced errors. Following mitosis, the daughter cells will 

have a non-overlapping complement of mutagen-induced lesions and resulting replication 

errors (3), which are resolved into full mutations in the next round of replication (4). The 

lesion containing strands segregate, becoming a progressively diminishing fraction of the 

lineage, yet continue as a template for replication. Only cell lineages containing cancer 

driver changes (* in step (1)) will expand into substantial clonal populations (5).
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Fig.3. Identification of the lesion containing DNA strand allows processes such as transcription 
coupled repair (TCR) to be quantified with strand specificity.
a, TCR of DNA lesions is expected to reduce the mutation rate only when lesions are on the 

template strand of an expressed gene. b, TCR of template strand lesions is dependent on 

transcription level (P15 liver, transcripts per million (TPM)). Confidence intervals (99%) are 

shown as whiskers. c, Comparison of mutation rates for the 64 trinucleotide contexts: each 

context has one point for low and one point for high expression. d, Data as in panel c plotted 

on log scale; there is a line linking low and high expression for the same trinucleotide 
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context. e, Sequence composition normalised profiles of mutation rate around transcription 

start sites (TSS). f, Stratifying the data plotted in e by lesion strand reveals much greater 

detail, including the pronounced net influence of bidirectional transcription initiation on the 

observed mutation patterns. g, TSS region detail from panel above, f.
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Fig.4. Lesion segregation generates multi-allelic and combinatorial genetic diversity.
a, Percent of mutation sites with robust support for multi-allelic variation, one point per 

tumour. Grey line indicates median. Null expectation (magenta) from permutation between 

tumours. b, Validation rate for whole genome sequence (WGS) mutation calls in replication 

whole exome sequencing (WES). Null expectation from permuting tumour identity between 

WGS and WES. c, Sequence reads spanning proximal mutations, showing nucleotide calls 

per read. d, As c, showing combinatorial diversity between a pair of biallelic sites. e, 

Correlation between per-tumour multi-allelic rate and high combinatorial diversity mutation 

pairs (as in c, d), one point per tumour. f, Tree showing all possible progeny of a DEN 

mutagenised cell for the subsequent 10 generations. Blue and gold lines trace the simulated 

segregation of lesion-containing strands from a single haploid chromosome. Coloured nodes 

show hypothetical transformation events and their daughter lineages that would give rise to 

the multi-allelic patterns in tumours shown to the right. g-i, Mutation asymmetry summary 

ribbons for example C3H tumours that show high g, variable h, or low i rates of genetic 

diversity; genome on the x-axis. The percent of mutation sites with robust support for multi-

allelic variation calculated in 10Mb windows (grey) and for each asymmetric segment 

(black). j, Histogram of the estimated cell generation post-DEN exposure from which C3H 

tumours developed based on the proportion of multi-allelic segments. k, Enrichment of 

specific driver gene mutations in earlier (generation 1) and later (generation >1) developing 

tumours. All tumours containing the indicated driver mutation (black); the subset of tumours 
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with just the indicated driver and no other driver mutation (red); multi-driver denotes all 

tumours that contain multiple identified driver genes in the EGFR/RAS/RAF pathway.
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Fig.5. Lesion segregation is a pervasive feature of exogenous mutagens and is evident in human 
cancers.
a, The runs-based rl20 metric, calculated for the simulated solar radiation (SSR) clone 

MSMO_56.s5 (Extended Data Fig. 6a); here, 20% of informative mutations (C→T/G→A) 

are in strand asymmetric runs of 22 consecutive mutations or longer (e.g. ≥22 C→T without 

an intervening G→A). b-d, The rl20 metric and runs tests. Solid blue lines show Bonferroni 

adjusted p=0.05 thresholds, p-values < 1x10-15 are rank-ordered. b, DEN-induced C3H 

tumours (this study). c, Mutagen exposed human cells5, colour corresponds to the mutagen 

key in panel g. d, Cell-lines with genetically perturbed genome replication and maintenance 

machinery28. e, All 25 mutagens identified as producing robust mutation spectra when 

human induced pluripotent stem cells are exposed5, grouped by type of agent. See 

Supplementary Table 2 for the details of abbreviated mutagen exposures. The rl20 metric (x-

axis) is plotted for each replicate clone, the size of each data point is scaled to the number of 

informative mutations. f, The rl20 metric and runs tests for human cancers from International 

Cancer Genome Consortium projects. g, Mutational asymmetry in an example human 

hepatocellular carcinoma, donor DO231953, which shows a single dominant mutation 

signature for aristolochic acid exposure (43.3%).
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