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Abstract

Auditory models are commonly used as feature extractors for automatic speech-recognition 

systems or as front-ends for robotics, machine-hearing and hearing-aid applications. Although 

auditory models can capture the biophysical and nonlinear properties of human hearing in great 

detail, these biophysical models are computationally expensive and cannot be used in real-time 

applications. We present a hybrid approach where convolutional neural networks are combined 

with computational neuroscience to yield a real-time end-to-end model for human cochlear 

mechanics, including level-dependent filter tuning (CoNNear). The CoNNear model was trained 

on acoustic speech material and its performance and applicability were evaluated using (unseen) 

sound stimuli commonly employed in cochlear mechanics research. The CoNNear model 

accurately simulates human cochlear frequency selectivity and its dependence on sound intensity, 

an essential quality for robust speech intelligibility at negative speech-to-background-noise ratios. 

The CoNNear architecture is based on parallel and differentiable computations and has the power 

to achieve real-time human performance. These unique CoNNear features will enable the next 

generation of human-like machine-hearing applications.

Introduction

The human cochlea is an active, nonlinear system that transforms sound-induced vibrations 

of the middle-ear bones to cochlear travelling waves of basilar-membrane (BM) motion [1]. 

Cochlear mechanics and travelling waves are responsible for hallmark features of 

mammalian hearing, including the level-dependent frequency selectivity [2–5] that results 

from a cascade of cochlear mechanical filters with centre frequencies (CFs) between 20 kHz 

and 40 Hz from the human cochlear base to apex [6].
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Modelling cochlear mechanics has been an active field of research because computational 

methods can help characterise the mechanisms underlying normal or impaired hearing and 

thereby improve hearing diagnostics [7,8] and treatment [9,10], or inspire machine-hearing 

applications [11,12]. One popular approach involves representing the cochlea as a 

transmission line (TL) by discretising the space along the BM and describing each section 

using a system of ordinary differential equations that approximate the local biophysical filter 

characteristics (Fig. 1a; state-of-the-art model) [13–19]. Analytical TL models represent the 

cochlea as a cascaded system in which the response of each section depends on the 

responses of all previous sections. This architecture makes them computationally expensive, 

as the filter operations in the different sections cannot be computed in parallel. The 

computational complexity is even greater when nonlinearities or feedback pathways are 

included to faithfully approximate cochlear mechanics [15,20].

Computational complexity is the main reason that real-time applications for hearing-aid 

[21], robotics [22], and automatic speech recognition applications do not adopt cochlear 

travelling-wave models in their preprocessing. Instead, they use computationally efficient 

approximations of auditory filtering that compromise on key auditory features. A common 

simplification implements the cochlear filters as a parallel, rather than cascaded, filterbank 

[23,24]. However, this parallel architecture captures neither the longitudinal coupling 

properties of the BM [25] nor the generation of otoacoustic emissions [26]. Another popular 

model, the gammatone filterbank model [27], ignores the stimulus-level dependence of 

cochlear filtering. Lastly, a number of models simulate the level-dependence of cochlear 

filtering but fail to match the performance of TL models [28]: they either simulate the 

longitudinal cochlear coupling locally within the individual filters of the uncoupled 

filterbank [29] or introduce distortion artefacts when combining an automatic-gain-control 

type of level-dependence with cascaded digital filters [30–32].

Thus, the computational complexity of biophysically realistic cochlear models poses a 

serious impediment to the development of human-like machine-hearing applications. This 

complexity motivated our search for an efficient model that matches the performance of 

state-of-the-art analytical TL models while offering real-time execution. Here, we 

investigate whether convolutional neural networks (CNNs) can be used for this purpose. 

Neural networks of this type can deliver end-to-end waveform predictions [33,34] with real-

time properties [35] and are based on convolutions akin to the filtering process associated 

with cochlear processing.

This paper details how CNNs can best be connected and trained to approximate the 

computations performed by TL cochlear models [19, 36, 37], with a specific emphasis on 

simultaneously capturing the tuning, level-dependence, and longitudinal coupling 

characteristics of human cochlear processing. The proposed model (CoNNear) converts 

speech stimuli into corresponding BM displacements across 201 cochlear filters distributed 

along the length of the BM. Unlike TL models, the CoNNear architecture is based on 

parallel CPU computations that can be accelerated through GPU computing. Consequently, 

CoNNear can easily be integrated with real-time auditory applications that use deep 

learning. The quality of the CoNNear predictions and the generalisability of the method are 

evaluated on the basis of cochlear mechanical properties such as filter tuning estimates [38], 
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nonlinear distortion characteristics [39], and spatial excitation patterns [40] obtained using 

sound stimuli commonly adopted in experimental studies of cochlear mechanics but not 

included in the training.

The CoNNear model

The CoNNear model has an auto-encoder CNN architecture and transforms a 20-kHz 

sampled acoustic waveform (in [Pa]) to NCF cochlear BM displacement waveforms (in [μm]) 

using several CNN layers and dimension changes (Fig. 1a). The first four layers are encoder 
layers and use strided convolutions to halve the temporal dimension after every CNN layer. 

The following four, decoder, layers map the condensed representation onto L × N CF outputs 

using deconvolution operations. L corresponds to the initial size of the audio input and N CF 

to 201 cochlear filters with centre frequencies (CFs) between 0.1 and 12 kHz. The adopted 

CFs were spaced according to the Greenwood place-frequency map of the cochlea [6] and 

span the most sensitive frequency range of human hearing [41]. It is important to preserve 

the temporal alignment (or, phase) of the inputs across the architecture, because this 

information is essential for speech perception [42]. We used U-shaped skip connections for 

this purpose. Skip connections have earlier been adopted in image-toimage translation [43] 

and speech-enhancement applications [33,34]; they pass temporal information directly from 

encoder to decoder layers (Fig. 1a; dashed arrows). Aside from preserving phase 

information, skip connections may also improve the model’s ability to learn how best to 

combine the nonlinearities of several CNN layers to simulate the level-dependent properties 

of human cochlear processing.

Every CNN layer is comprised of a set of filterbanks followed by a nonlinear operation [44] 

and the CNN filter weights were trained using TL-simulated BM displacements from 

NCFcochlear channels [37]. While training was conducted using a speech corpus [45] 

presented at 70 dB SPL, model evaluation was based on the ability to reproduce key 

cochlear mechanical properties using basic acoustic stimuli (e.g. clicks, pure-tones) unseen 

during training (Fig. 1c). During training and evaluation, the audio input was segmented into 

2048-sample windows (≈ 100 ms), after which the corresponding BM displacements were 

simulated and concatenated over time. Because CoNNear treats each input independently, 

and resets its adaptation properties at the start of each simulation, this concatenation 

procedure could result in discontinuities near the window boundaries. To address this issue, 

we also evaluated an architecture that had the previous and following (256) input samples 

available as context (Fig. 1b). Different from the no-context architecture (Fig. 1a), a final 

cropping layer was added to remove the simulated context and yield the final L-sized BM 

displacement waveforms. Additional details on the CoNNear architecture and training 

procedure are given in Methods and Extended Data Fig. 1. Lastly, training CoNNear using 

audio inputs of fixed duration does not prevent it from handling inputs of other durations 

after training, thanks to its convolutional architecture. This flexibility is a clear benefit over 

matrix-multiplication-based neural network architectures, which can operate only on inputs 

of fixed-duration.
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CoNNear hyperparameter tuning

Critical to this work is proper determination of the optimal CNN architecture and its 

hyperparameters that yield a realistic model for cochlear processing. Ideally, CoNNear 

should both simulate the speech training dataset with a sufficiently low L1 loss [i.e., the 

average mean-absolute difference between simulated BM displacements of the reference TL 

and CoNNear model] and also reproduce key cochlear response properties. Details on the 

hyperparameters that can be adjusted to define the final CoNNear architecture (number of 

layers, nonlinearity, context) are given in Extended Data Fig. 1. To determine the 

hyperparameters, we followed an iterative principled approach taking into account: (i) the 

L1 loss on speech material, (ii) the desired frequency- and level-dependent cochlear filter 

tuning characteristics, and (iii), the computational load needed for real-time execution. 

Afterwards, the prediction accuracy of CoNNear was evaluated on a broader set of response 

features. We considered a total of four metrics derived from cochlear responses evoked using 

simple stimuli of different frequencies and levels: filter tuning (QERB), click-evoked 

dispersion, pure-tone excitation patterns, and the generation of cochlear distortion products. 

Together, these evaluation metrics form a comprehensive description of cochlear processing. 

Further information on the tests and their implementation is given in Methods. A benefit of 

our approach is that the evaluation stimuli were unseen to the model to ensure an 

independent evaluation procedure. Even though any fragment of the speech training material 

can be seen as a combination of basic acoustic elements such as impulses and pure tones of 

varying levels and frequencies, the cochlear mechanics stimuli were not explicitly present in 

the training material.

The first hyperparameter specifies the total number of encoder/decoder layers, which we set 

to 8 on the basis of QERBsimulations. Aside from the reference experimental human 

QERBcurve for low stimulus levels [46], Fig. 2a shows simulated QERBcurves from the 

reference TL-model (red) overlaid with CoNNearmodel simulations. CoNNear captures the 

frequency-dependence of the human and reference TL-model QERBfunction better as the 

layer depth was increased from 4 to 8. Models with 4 and 6 layers underestimated the 

overall QERBfunction and performed worse for CFs below 1 kHz where reference ERBs 

were narrower, and corresponding BM impulse responses longer, than for higher CFs. 

Extending the number of layers beyond 8 increased the required computational resources 

without producing a substantial improvement in the quality of the fits. These resources are 

listed in Extended Data Fig. 2 for models of different layers, along with L1-loss predictions 

on the speech training set and a small set of evaluation metrics.

The second hyperparameter controls the activation function, or nonlinearity, which is placed 

between the CNN layers. To mimic the original shape of the outer-hair-cell input/output 

function [47] responsible for cochlear compression, we required that the activation function 

cross the x-axis. We therefore considered only the parametric rectified linear unit (PReLU) 

and hyperbolic-tangent (tanh) nonlinearities rather than standard activation functions such as 

the sigmoid and ReLU. Figure 2b depicts how the PreLU and tanh activation functions 

affected the simulated QERBs across CFs. Whereas the PReLU activation function was 

unable to capture the level-dependence of cochlear filter tuning, the tanh nonlinearity 

reproduced both the level and frequency-dependence of human QERBs. Additionally, 
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Extended Data Fig. 3 (no context simulations) shows that the model with tanh nonlinearity 

reached a lower L1 loss on both training and test sets compared to the PReLU nonlinearity, 

while requiring a smaller number of parameters. The benefit of the tanh nonlinearity is 

further illustrated when comparing simulated pure-tone excitation patterns across model 

architectures. Figure 3 shows that the tanh nonlinearity (c) outperforms the PReLU 

nonlinearity (b) in capturing the compressive growth of BM displacement with stimulus 

level, as observed in the excitation pattern maxima (a). Although both activation functions 

were able to code negative input deflections, only the model with tanh nonlinearity (whose 

shape best resembles the cochlear input/output function) performed well. These simulations 

show that it is essential to consider the shape of the activation function when the reference 

system is nonlinear.

The final hyperparameter relates to adding context information when simulating an input of 

size L. As noted earlier, CNN architectures treat each input independently, which can 

produce discontinuities near the window boundaries. The effect of adding context [cf. 

architecture (b) vs (a) in Fig. 1] is best observed when simulating speech. Figure 4 shows 

simulated BM displacements of the reference and CoNNear models to a segment of the 

speech test set which was not seen during training. Panel (d) shows that providing context 

prevents discontinuities near the window boundaries. Context was also beneficial when 

simulating the reference 70-dB QERBfunction in Fig. 2c. The L1-loss simulations in 

Extended Data Fig. 3 (tanh simulations) confirmed the overall performance improvement 

when providing context, and hence the final CoNNear architecture included a context 

window of 256 samples on either side of the 2048 sample input (Fig. 1b).

Generalisability of CoNNear

Overfitting occurs when the trained model merely memorises the training material and fails 

to generalise to data not present in the training set. To investigate whether the final CoNNear 

architecture was robust against overfitting, we tested how well the trained CoNNear model 

performed on unseen stimuli from (i) the same database, (ii) a different database of the same 

language, (iii) a different database of a different language, and (iv) a music piece.

Figure 5 shows boxplots of the L1-loss distributions of all simulated windows in the 

following audio material (from left to right): the TIMIT training set, the TIMIT test set using 

different speakers, the Dutch Matrix sentence database [49], Radioheads’ OK Computer 

album, and 400 randomly-drawn samples from different event categories in the AudioSet 

database [50]. In addition to calculated loss distributions, Fig. 5 compares instantaneous BM 

displacement intensities between the reference TL-model (g) and CoNNear (h) for three 

stimuli unseen during training: an English sentence from the Wall Street Journal Corpus [48] 

to show how CoNNear adapts to different recording settings (first column). A sentence from 

the Dutch matrix test [49] to investigate performance on a different language stimulus 

(middle column), and a music segment to test performance on a non-speech acoustic 

stimulus (right column). From an application perspective, we also tested how CoNNear 

handles audio input of arbitrary length. Extended Data Fig. 4 shows that CoNNear 

generalises well to an unseen speech stimulus of length 0.5 s (10048 samples) and a music 
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stimulus of length 0.8 s (16384 samples), even though training was performed using shorter 

2048-sample windows of fixed duration.

The similar loss distributions across tested speech conditions, together with the small 

intensity prediction errors seen in Fig. 5(i), show that CoNNear generalises well to 

unfamiliar stimuli. When comparing L1-loss distributions between speech (b,c) and non-

speech (d,e) audio, we observe increased mean L1-losses along with a greater performance 

variability, which reflects the large variety of spectral and temporal features present in music 

or the AudioSet database. Even though median performance is still acceptable for non-

speech audio, we conclude that CoNNear performs most comparable to the original TL-

model simulations for speech. CoNNear’s prediction accuracy on non-speech audio may be 

improved by retraining with a larger and more-diverse stimulus set than the adopted TIMIT 

training set. However, a clear benefit from our hybrid, neuroscience-inspired training method 

is that we can yield a generalisable CoNNear architecture even when using a training dataset 

which is much smaller than those adopted in standard data-driven NN-approaches [44]. 

Lastly, we note that the non-speech audio were downsampled to 16 kHz to match the 

frequency content of the TIMIT speech material to allow for a fair comparison between 

speech and non-speech audio. We can hence not guarantee that CoNNear performs well on 

non-speech audio with frequency content above 8 kHz.

CoNNear as a model for human cochlear signal processing

Since the primary goal of this work was to develop a neural-network based model for human 

cochlear mechanics, we evaluated how well the trained CoNNear model collectively 

performs on simulating key cochlear mechanics metrics (see Methods for a detailed 

description). Figure 2c shows that the final CoNNear architecture with context simulates the 

frequency- and level-dependence of human cochlear tuning. At the same time, CoNNear 

faithfully captures the shape and compression properties of pure-tone cochlear excitation 

patterns (Fig. 3d). However, we did observe small excitation pattern fluctuations at CFs 

below the stimulus frequency for the 1 and 2 kHz simulations (middle and bottom row in 

Fig. 3). These fluctuations had levels of ≈ 30 dB below the peak of the excitation pattern and 

are hence not expected to degrade the sound-driven CoNNear response to complex stimuli 

such as speech. This latter statement is supported by (i) the CoNNear speech simulations in 

Fig. 5i, which show minimally visible noise in the error patterns, and (ii) the root mean-

square error (RMSE) observed between simulated TL and CoNNear model excitation 

patterns for a broad range of frequencies and levels (Extended Data Fig. 6c). To obtain a 

meaningful error estimate, we normalised the RMSE to the TL excitation pattern maximum 

to yield a CoNNear error percentage. The error for the final CoNNear architecture remained 

below 5 % for pure-tone frequencies up to 4 kHz, and stimulation levels below 80 dB. 

Increased errors were observed for higher stimulus levels and at CFs of 8 and 10 kHz and 

stemmed from the overall level and frequency content of the speech material used for 

training; the dominant energy in speech occurs below 5 kHz, and we presented the speech 

corpus at 70 dB. However, it is noteworthy that the visual difference between simulated 

high-level excitation patterns was mostly associated with low-level fluctuations at CFs 

below the stimulation frequency and not at the stimulation frequency itself (cf. the first and 

last columns of Fig. 3). This means that the stimulus-driven error that occurs when using 
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broadband stimuli is likely smaller than that observed here for tonal stimuli. In summary, the 

error appears acceptable for processing speech-like audio. We speculate that CoNNear’s 

application range can be extended by retraining with stimuli at different levels and/or with 

greater high-frequency content.

The top panel of Fig. 6 shows the dispersion characteristics of the TL model and trained 

CoNNear models, illustrating the characteristic 12-ms onset delay from basal (high CF, low 

channel numbers) to apical (low CF, high channel numbers) cochlear sections in both 

models. In the cochlea, dispersion arises from the biophysical properties of the coupled BM 

(i.e., its spatial variation of stiffness and damping), and the CoNNear architecture captures 

this phenomenon. Adding context did not affect the simulation quality.

Finally, we tested CoNNear’s ability to simulate a last, key feature of cochlear mechanics: 

distortion products, which travel in reverse along the BM to generate pressure waveforms in 

the ear canal (i.e., distortion-product otoacoustic emissions, DPOAEs). The bottom panel of 

Fig. 6 compares reference TL-model simulations with those of different CoNNear models 

(b)-(d). DPOAE frequencies are visible as spectral components that are not present in the 

stimulus (which consists of two pure tones at frequencies f 1= 2.0 kHz and f 2= 2.4 kHz). In 

humans, the strongest DP component occurs at 2f 1− f 2= 1.6 kHz, and as the simulations 

show, the level of this DP was best captured using the tanh activation function. As observed 

before in the excitation pattern simulations, the activation function most resembling the 

shape of the cochlear nonlinearity performed best when simulating responses that rely on 

cochlear compression. Adding context removed the high-frequency distortions that were 

visible in panels (b) and (c).

The quality of the DPOAE simulations across a range of stimulation levels and frequencies 

was further investigated in Fig. 6e. Up to L2levels of 60 dB SPL, CoNNear matched the 

characteristic nonlinear growth of both TL-simulated and human DPOAE level functions 

well [52]. At higher stimulation levels, DPOAE levels started fluctuating in both models. 

Although this may reflect the chaotic character of cochlear DPs interacting with cochlear 

irregularities in TL models and in human hearing [26], it may simply reflect the limited 

training material we had available for CoNNear at these higher levels. Given that human 

DPOAEs are generally recorded for stimulation levels below 60 dB SPL in clinical or 

research contexts [53], we can conclude that CoNNear was able to capture this important 

epiphenomenon of hearing. The cochlear mechanics evaluations we performed in Figs. 2, 3, 

6 and Extended Data Fig. 6 together demonstrate that the 8-layer, tanh, CoNNear model 

with context performed best on four crucial aspects of human cochlear mechanics. Despite 

training on a limited speech corpus presented at 70 dB SPL, CoNNear learned to simulate 

outputs which matched those of biophysically-realistic analytical models of human cochlear 

processing across level and frequency.

CoNNear as a real-time model for audio applications

In addition to its ability to simulate realistic cochlear mechanical responses, CoNNear 

operates in real-time. In audio applications, real-time is commonly defined as a computation 

duration less than 10 ms; below this limit no delay is perceived. Table 1 summarises the 
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necessary time to compute the final CoNNear-context model for a stimulus window of 1048 

samples on CPU or GPU architectures. On a CPU, the CoNNear model outperforms the TL-

model by a factor of 129 and on a GPU, CoNNear is 2142 times faster. Additionally, the 

GPU computations show that the trained CoNNear model (8-layers, tanh, with context) has a 

latency of 7.27 ms, and hence reaches real-time audio processing performance.

Discussion

This paper details how a hybrid, deep-neural-net and analytical approach can be used to 

develop a real-time model of human cochlear processing (CoNNear), with performance 

matching that of human cochlear processing. As we demonstrate here for the first time, 

neither real-time performance nor biophysically realistic responses need be compromised. 

CoNNear combines both in a single auditory model, laying the groundwork for a new 

generation of human-like robotic, speech-recognition and machine hearing applications. 

Prior work has demonstrated the clear benefits of using biophysically realistic cochlear 

models as front-ends for auditory applications: e.g. for capturing cochlear compression, 

[7,11,28], speech enhancement at negative signal-to-noise ratio’s [12], realistic sound 

perception predictions [54] and for simulating the generation of human auditory brainstem 

responses [37, 55]. Hence, CoNNear can dramatically improve performance in application 

areas which, to date, have relied on computationally intensive biophysical models. Not only 

can CoNNear operate on running audio input with a latency below 7.5 ms, the model offers 

a differentiable solution which can be used in closed-loop systems for auditory feature 

enhancement or augmented hearing.

With the rise of neural-network (NN) based methods, computational neuroscience has seen 

an opportunity to map audio or auditory brain signals directly to sound perception [56–58] 

and to develop computationally efficient methods to compute large-scale differential-

equation-based neuronal networks [59]. These developments are transformative, as they can 

unravel the functional role of hard-to-probe brain areas in perception and yield 

computationally fast neuromorphic applications. The key to these breakthroughs is the 

hybrid approach in which knowledge from neuroscience is combined with that of NN-

architectures [60]. While the possibilities of NN approaches are numerous when large 

amounts of training data are available, this is rarely the case for biological systems and 

human-extracted data. It therefore remains challenging to develop models of biophysical 

systems which can generalise to a broad range of unseen conditions or stimuli.

Our work presents a solution to this problem for cochlear processing by constraining the 

CoNNear architecture and its hyperparameters on the basis of a state-of-the-art TL cochlear 

model. Our general approach consists of four steps: First, derive an analytical description of 

the biophysical system on the basis of available experimental data. Second, use the 

analytical model to generate a training data set consisting of responses to a representative 

range of relevant stimuli. Third, use this training data set to determine the NN-model 

architecture and constrain its hyperparameters. Finally, verify the ability of the model to 

generalise to unseen inputs. Here, we demonstrated that CoNNear predictions generalise to a 

diverse set of audio stimuli by faithfully predicting key cochlear mechanics features to 

sounds which were excluded from the training. We note that CoNNear performed best on 
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unseen speech and cochlear mechanics stimuli with levels below 80 dB. We expect that 

improved generalisability to complex non-speech audio such as environmental sounds and 

music can be obtained when retraining CoNNear with a more diverse audio set.

Our proposed method is by no means limited to NN-based models of cochlear processing. 

Indeed, the method can be widely applied to other nonlinear and/or coupled biophysical 

models of sensory and biophysical systems. Over the years, analytical descriptions of 

cochlear processing have evolved based on the available experimental data from human and 

animal cochleae, and they will continue to improve. It is straightforward to train CoNNear to 

an updated/improved analytical model in step (i), as well as to include different or additional 

training data in (ii) to further optimise its performance.

Conclusion

We present a hybrid method which uniquely combines expert knowledge from the fields of 

computational auditory neuroscience and machine-learning-based audio processing to 

develop a CoNNear model of human cochlear processing. CoNNear presents an architecture 

with differentiable equations and operates in real time (<7.5 ms delay) at speeds 2000 times 

faster than state-of-the-art biophysically realistic models. We have high hopes that the 

CoNNear framework will inspire a new generation of human-like machine hearing, 

augmented hearing and automatic speech-recognition systems.

Methods

Extended Data Fig. 1 describes the parameters which define the CNN-based CoNNear auto-

encoder architecture. The encoder layers transform audio input of size L into a condensed 

representation of size L/2M× kM, where kM equals the number of filters in the Mth CNN 

layer. We used 128 filters per layer with a filter length of 64 samples. The encoder layers use 

strided convolutions, i.e. the filters were shifted by a time-step of two to halve the temporal 

dimension after every CNN layer. The decoder contains M deconvolution layers to re-obtain 

the original temporal dimension of the audio input (L). The first three decoder layers used 

128 filters per layer and the final decoder layer had (N CF) filters, equalling the number of 

cochlear sections simulated in the reference cochlear TL model.

Training CoNNear

CoNNear was trained using TL-model simulations of N CFBM displacement waveforms in 

response to audio input windows of L= 2048 samples. For the context architecture (Fig. 1b), 

the previous and following Ll=Lr=256 input samples were also available to CoNNear. This 

architecture included a final cropping layer to remove the context after the last CNN decoder 

and yield an output size L × N CF. Note that the CoNNear model output units are BM 

displacement yBM in [μm], whereas the TL-model outputs are in [m]. This scaling was 

necessary to enforce a training procedure with sufficiently high digital numbers. For training 

purposes, and visual comparison between the TL and CoNNear outputs, the yBM values of 

the TL model were multiplied by a factor of 106 in all figures and analyses.
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The TIMIT speech corpus [45] was used for training and contains phonetically balanced 

sentences with sufficient acoustic diversity. To generate the training data, 2310 sentences 

from the TIMIT corpus were used. They were upsampled from 16 kHz to 100 kHz to solve 

the TL-model accurately [36] and the root-mean square (RMS) energy of every utterance 

was adjusted to 70 dB sound pressure level (SPL). 550 sentences of the TIMIT dataset were 

omitted from the training and considered as the test set. BM displacements were simulated 

for 1000 cochlear sections with centre frequencies between 25 Hz and 20 kHz using a 

nonlinear time-domain TL model of the cochlea [37]. From the TL-model output 

representation (i.e., 1000 yBM waveforms sampled at 20 kHz), outputs from 201 CFs 

between 100 Hz and 12 kHz, spaced according to the Greenwood map [6], were chosen to 

train CoNNear. Above 12 kHz, human hearing sensitivity becomes very poor [41], 

motivating our choice for the upper limit of considered CFs. CoNNear model parameters 

were optimised to minimise the mean absolute error (dubbed L1 loss) between the predicted 

model outputs and the reference TL model outputs. A learning rate of 0.0001 was used with 

Adam optimiser [61] and the entire framework was developed using the Keras machine 

learning library [62] with a Tensorflow [63] back-end.

Cochlear mechanics evaluation metrics

The evaluation stimuli were sampled at 20 kHz and had a duration of 102.4 ms (2048 

samples) and 128 ms (2560 samples) for the CoNNear and CoNNear-context model, 

respectively. Stimulus levels were adjusted using the reference pressure of ρ 0= 2 ·10−5 Pa. 

Only when evaluating how CoNNear generalised to longer duration continuous stimuli 

(Extended Data Fig. 4), or when investigating its real-time capabilities, did we deviate from 

this procedure. The following sections describe the four cochlear mechanics evaluation 

metrics we considered to evaluate the CoNNear predictions. Together, these metrics form a 

comprehensive description of cochlear processing.

Cochlear filter tuning

A common approach to characterise auditory or cochlear filters is by means of the 

equivalent-rectangular bandwidth (ERB) or QERB. The ERB describes the bandwidth of a 

rectangular filter which passes the same total power than the filter shape estimated from 

behavioural or cochlear tuning curve experiments [64], and presents a standardised way to 

characterise the tuning of the asymmetric auditory/cochlear filter shapes. The ERB is 

commonly used to describe the frequency and level-dependence of human cochlear filtering 

[4,46,65], and QERBto describe level-dependent cochlear filter characteristics from BM 

impulse response data [19,66]. We calculated QERB as:

QERB = CF
ERB . (1)

The ERB was determined from the power spectrum of a simulated BM time-domain 

response to an acoustic click stimulus using the following steps [66]: (i) compute the Fast 

Fourier Transform of the BM displacement at the considered CF, (ii) compute the area 

underneath the power spectrum, and (iii) divide the area by the CF. The frequency- and 
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level-dependence of CoNNear predicted cochlear filters were compared against TL-model 

predictions and experimental QERBvalues reported for humans [4].

The acoustic stimuli were condensation clicks of 100-μs duration and were scaled to the 

desired peak-equivalent sound pressure level (dB peSPL), to yield a peak-to-peak click 

amplitude that matched that of a pure-tone with the same dB SPL level (L):

click (t) = 2 2 ⋅ p0 ⋅ 10L/20 ⋅ x(t) with x(t) = 1 for t ≤ 100μs
0 for t > 100μs (2)

Cochlear Excitation Patterns

Cochlear excitation patterns can be constructed from the RMS energy of the BM 

displacement or velocity at each measured CF in response to tonal stimuli of different levels. 

Cochlear excitation patterns show a characteristic half-octave basal-ward shift of their 

maxima as stimulus level increases [40]. Cochlear excitation patterns also reflect the level-

dependent nonlinear compressive growth of BM-responses when stimulating the cochlea 

with a pure-tone of the same frequency as the CF of the cochlear measurement site [3]. 

Cochlear pure-tone transfer-functions and excitation patterns have in several studies been 

used to describe the level-dependence and tuning properties of cochlear mechanics [2,3,40]. 

We calculated excitation patterns for all 201 simulated BM displacement waveforms in 

response to pure tones of 0.5, 1 and 2 kHz frequencies and levels between 10 and 90 dB SPL 

using:

tone (t) = p0 ⋅ 2 ⋅ 10L/20 ⋅ sin 2πftone t , (3)

where t corresponds to a time vector of 2048 samples, L to the desired RMS level in dB 

SPL, and ftone to the stimulus frequencies. The pure-tones were multiplied with a Hanning-

shaped 10-ms on- and offset ramp to ensure a gradual onset.

Cochlear Dispersion

Click stimuli can also be used to characterise the cochlear dispersion properties, as their 

short duration allows for an easy separation of the cochlear response from the evoking 

stimulus. At the same time, the broad frequency spectrum of the click excites a large portion 

of the BM. Cochlear dispersion stems from the longitudinal-coupling and tuning properties 

of BM mechanics [67] and is observed through later click response onsets for BM responses 

associated with more apical CFs. In humans, the cochlear dispersion delay mounts up to 

10-12 ms for stimulus frequencies associated with apical processing [68]. Here, we use 

clicks of various sound intensities to evaluate whether CoNNear produced cochlear 

dispersion and BM click responses in line with predictions from the TL-model.

Distortion-product otoacoustic emissions (DPOAEs)

DPOAEs can be recorded in the ear-canal using a sensitive microphone and are evoked by 

two pure-tones with frequencies f 1and f 2and SPLs of L 1and L 2, respectively. For pure 

tones with frequency ratios between 1.1 and 1.3 [69], local nonlinear cochlear interactions 

generate distortion products, which can be seen in the ear-canal recordings as frequency 
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components which were not originally present in the stimulus. Their strength and shape 

depends on the properties of the compressive cochlear nonlinearity associated with the 

electro-mechanical properties of cochlear outer-hair-cells [39], and the most prominent 

DPOAEs appear at frequencies of 2f 2 − f 1and 2f 1 − f 2. Even though CoNNear was not 

designed or trained to simulate DPs, they form an excellent evaluation metric, as realistically 

simulated DPOAE properties would demonstrate that CoNNear was able to capture even the 

epiphenomena associated with cochlear processing. As a proxy measure for ear-canal 

recorded DPOAEs, we considered the BM displacement at the highest simulated CF which, 

in the real ear, would drive the middle-ear and eardrum to yield the ear-canal pressure 

waveform in an OAE recording. We compared simulated DPs extracted from the fast Fourier 

transform of the BM displacement response to simultaneously presented pure tones of f 1 

and f 2= 1.2 f 1with levels according to the commonly adopted experimental scissors 

paradigm: L 1= 0.4 L 2+ 39 [51]. We considered f 1 frequencies between 1 and 6 kHz and L 

2 levels between 10 and 100 dB SPL.
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Extended Data

Extended Data Fig. 1. Overview of the CoNNear architecture parameters.
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Extended Data Fig. 2. CNN layer depth comparison.
The first column details the CoNNear architecture. The next columns describe the total 

number of required model parameters, the required training time per epoch of 2310 TIMIT 

training sentences and average L1 loss across all windows of the TIMIT training set. 

Average L1 losses were also computed for BM displacement predictions to a number of 

unseen acoustic stimuli (click and 1-kHz pure tones) with levels between 0 and 90 dB SPL. 

Lastly, average L1 loss was also computed for the 550 sentences of the TIMIT test set. For 

each evaluated category, the best performing architecture is highlighted in bold font.

Extended Data Fig. 3. Activation function comparison.
The first column details the CoNNear architecture. The next columns describe the total 

number of required model parameters, the required training time per epoch of 2310 TIMIT 

training sentences and average L1 loss across all windows of the TIMIT training set. 

Average L1 losses were also computed for BM displacement predictions to a number of 

unseen acoustic stimuli (click and 1-kHz pure tones) with levels between 0 and 90 dB SPL. 

Lastly, average L1 loss was also computed for the 550 sentences of the TIMIT test set. For 

each evaluated category, the best performing architecture is highlighted in bold font.
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Extended Data Fig. 4. Simulated BM displacements for a 10048-sample speech stimulus and a 
16384-sample music stimulus.
The stimulus waveform is depicted in panel (a) and panels (b)-(c) depict instantaneous BM 

displacement intensities (darker colours = higher intensities) of the simulated TL-model (b) 

and CoNNear (c) outputs. The NCF=201 considered output channels are labelled per channel 

number: channel 1 corresponds to a CF of 12 kHz and channel 201 to a CF of 100 Hz. The 

same colour scale was used for both simulations and ranged between -0.5 µm (blue) and 0.5 

μm (red). The left panels show simulations to a speech stimulus from the Dutch matrix test 

[49] and the right panels shows simulations to a music fragment (Radiohead - No Surprises).
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Extended Data Fig. 5. Comparing TL and CoNNear model predictions at the median and 
maximum L1 prediction error.
The figure visually compares BM displacement intensities of the BM (b) and CoNNear (c) 

model to audio fragments which resulted in the median and maximum L1 errors of 0.008 

and 0.038 simulated for the TIMIT test set (Fig. 5). The NCF=201 considered output 

channels are labelled per channel number: channel 1 corresponds to a CF of 12 kHz and 

channel 201 to a CF of 100 Hz. The same colour scale was used for both simulations and 

ranged between -0.5 μm (blue) and 0.5 μm (red).
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Extended Data Fig. 6. Root mean-square error (RMSE) between simulated excitation patterns of 
the TL and CoNNear models reported as fraction of the TL excitation pattern maximum (cf. Fig. 
3).
Using the PReLU activation function (a) leads to an overall high RMSE as this architecture 

failed to learn the level-dependent cochlear compression characteristics and filter shapes. 

The models using the tanh nonlinearity (b),(c) did learn to capture the level-dependent 

properties of cochlear excitation patterns, and performed with errors below 5% for the 

frequency ranges and stimulus levels captured by the speech training data (for CFs below 5 

kHz, and stimulation levels below 90 dB SPL) The RMSE increased above 5% for all 

architectures when evaluating its performance on 8- and 10-kHz excitation patterns. This 

decreased performance results from the limited frequency content of the TIMIT training 

material.
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Data availability

The source code of the TL-model used for training is available via 10.5281/zenodo.3717431 

or github/HearingTechnology/Verhulstetal2018Model, the TIMIT speech corpus used for 

training can be found online [45]. Most figures in this paper can be reproduced using the 

CoNNear model repository.

Code availability

The code for the trained CoNNear model, including instructions of how to execute it is 

available from github.com/HearingTechnology/CoNNear cochlea or 10.5281/

zenodo.4056552. A non-commercial, academic UGent license applies.
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Fig 1. CoNNear Overview.
CoNNear is a fully convolutional encoder-decoder neural network with strided convolutions 

and skip-connections to map audio input to 201 basilar-membrane vibration outputs of 

different cochlear sections (NCF) in the time-domain. CoNNear architectures with (a) and 

without (b) context are shown. The final CoNNear model has four encoder and decoder 

layers, uses context and includes a tanh activation function between the CNN layers. (c) 

provides an overview of the model training and evaluation procedure. Whereas reference, 

analytical TL-model simulations to a speech corpus were used to train the CoNNear 

parameters, evaluation of the model was performed using simple acoustic stimuli commonly 

adopted in cochlear mechanics studies.

Baby et al. Page 22

Nat Mach Intell. Author manuscript; available in PMC 2021 August 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig 2. CoNNear hyperparameter tuning.
Cochlear filter tuning (QERB) was simulated to 100-μs clicks of 40 and 70 dB peSPL for 

different cochlear filter centre frequencies (CF). Reference human QERBestimates for low-

stimulus levels [46] are shown and compared to simulations of the reference TL model and 

CoNNear models with (c) and without (a,b) context. (a) Increasing the number of CoNNear 

layers from 4 to 8, improved the QERB-across-CF simulations. (b) Comparing architectures 

with the PReLU or tanh activation function shows that the PReLU nonlinearity failed to 

capture level-dependent cochlear filter tuning because the QERBfunctions remained invariant 

to stimulus level changes. 8-layer CNN architectures were used for this simulation. (c) 

Adding context to the 8-layer, tanh model further improved the CoNNear predictions by 

showing less QERBfluctuations across CF.
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Fig 3. Comparing cochlear excitation patterns across model architectures.
Simulated root-mean-square (RMS) levels of BM displacement across CF for pure-tone 

stimuli between 10 and 90 dB SPL. From top to bottom, the stimulus frequencies were 500 

Hz, 1 kHz and 2 kHz, respectively. Both the reference, TL-model, level-dependent excitation 

pattern shape changes and compressive growth of pattern maxima (a), were captured by the 

tanh architectures (c,d), but not by the PReLU architecture (b).
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Fig 4. Effect of adding context to the CoNNear simulations.
Simulated BM displacements for a 2048-sample-long speech fragment of the TIMIT test set 

(i.e., unseen during training). The stimulus waveform is shown in panel (a) and panels (b)-

(d) depict instantaneous BM displacement intensities (darker colours = higher intensities) of 

simulated TL-model outputs (b) and two CoNNear architecture outputs: without (c) and with 

(d) context. The left and right segments show the output of the neighbouring windows to 

demonstrate the discontinuity over the boundaries. The NCF=201 output channels are 

labelled per channel number: channel 1 corresponds to a CF of 12 kHz and channel 201 to a 

CF of 100 Hz. Intensities varied between -0.5 μm (blue) and 0.5 μm (red) for all panels.
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Fig 5. Generalisability of CoNNear to unseen input.
Top: boxplots comparing the distribution of L1 losses between TL-model and CoNNear 

model simulations for 2048-long windows within (a) 2310 sentences from the TIMIT 

training set (131760 calculated L1 losses, 16-kHz sampled audio) (b) the 550 sentences in 

the TIMIT test set (32834 L1 losses, 16-kHz sampled audio), (c) 100 sentences from the 

Dutch Matrix test (7903 L1 losses, 44.1-kHz sampled audio), (d) All songs of Radioheads 

OK Computer (48022 L1 losses, 16-kHz downsampled audio), (e) 400 random audio-

fragments from the natural-sounds AudioSet database (53655 L1 losses, 16-kHz 

downsampled audio). The red line in the boxplot shows the median of the L1 errors, the 

black box denotes the values between the 25% (Q1) and 75% (Q3) quartiles. The blue 
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whiskers denote the error values that fall within the 1.5 * (Q3 - Q1) range. Outliers are 

shown as circles. Cochlear model predictions and prediction errors for the windows 

associated with median and maximum L1 loss in the TIMIT test set are shown in Extended 

Data Fig. 5. Bottom: Along the columns, simulated BM displacements for three different 

2048-long audio stimuli are shown: a recording of the English Wall Street Journal speech 

corpus [48], a sentence from the Dutch matrix test [49] and a music fragment taken from 

Radiohead - No surprises. Stimulus waveforms are depicted in panel (f) and instantaneous 

BM displacement intensities (darker colours = higher intensities) of the simulated TL-model 

and CoNNear outputs are depicted in (g-h). Panel (i) shows the intensity difference between 

the TL and CoNNear outputs. The NCF=201 considered output channels are labelled per 

channel number: channel 1 corresponds to a CF of 12 kHz and channel 201 to a CF of 100 

Hz. The same colour map was used for all figures and ranged between -0.5 μm (blue) and 

0.5 μm (red).
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Fig 6. Cochlear dispersion and DPOAEs.
Top: Comparing cochlear dispersion properties across model architectures. Panel (a) shows 

the stimulus pressure, while panels (b)-(d) show instantaneous BM displacement intensities 

for CFs (channel numbers, CS) between 100 Hz (channel 201) and 12 kHz (channel 1). The 

colour scale is the same in all figure panels, and ranges between -15 μm (blue) and 15 μm 

(red). Bottom: Comparing simulated DPOAEs across model architectures. The frequency 

response of the 12-kHz CF channel (i.e., fast Fourier transform of the BM displacement 

waveform) was considered as a proxy for otoacoustic emissions recorded in the ear-canal. 

Panels (a) - (d) show simulations in response to two pure tones of f 1of 2.0 and f 2of 2.4 kHz 

for different model architectures. In humans, the most pronounced distortion product occurs 

at 2f 1− f 2(1.6 kHz). Panel (e) depicts simulated distortion-product levels (LDP) compared 

between TL and the CoNNear-tanh-context model. LDP was extracted from the frequency 

response of the 12-kHz CF channel at 2f 1− f 2. Simulations were conducted for L2levels 

between 10 and 100 dB SPL and L1=0.4 L2+39 [51]. f1ranged between 1 and 6 kHz, 

following a f2/f1ratio of 1.2.
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Table 1
Model calculation speed.

Comparison of the time required to calculate a TL and CoNNear model window of 1048 samples on a CPU 

(Apple MacBook Air, 1.8 GHz Dual-Core processor) and a GPU (NVIDIA GTX1080). The calculation time 

for the first window is considered separately for the GPU computations since this window also includes the 

weight initialisation. For each evaluated category, the best performing architecture is highlighted with a bold 

font.

Model #Param CPU
(s/window)

GPU 1st window
(s)

GPU
(ms/window)

PReLU/8 lay./no context 11,982,464 0.222 1.432 7.70

tanh/8 lay./no context 11,507,328 0.195 1.390 7.59

tanh/8 lay./context 11,689,984 0.236 1.257 7.27

Transmission Line N/A 25.16 N/A 16918
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