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Abstract

Model-based learned iterative reconstruction methods have recently been shown to outperform 

classical reconstruction algorithms. Applicability of these methods to large scale inverse problems 

is however limited by the available memory for training and extensive training times, the latter due 

to computationally expensive forward models. As a possible solution to these restrictions we 

propose a multi-scale learned iterative reconstruction scheme that computes iterates on 

discretisations of increasing resolution. This procedure does not only reduce memory 

requirements, it also considerably speeds up reconstruction and training times, but most 

importantly is scalable to large scale inverse problems with non-trivial forward operators, such as 

those that arise in many 3D tomographic applications. In particular, we propose a hybrid network 

that combines the multiscale iterative approach with a particularly expressive network architecture 

which in combination exhibits excellent scalability in 3D.

Applicability of the algorithm is demonstrated for 3D cone beam computed tomography from real 

measurement data of an organic phantom. Additionally, we examine scalability and reconstruction 

quality in comparison to established learned reconstruction methods in two dimensions for low 

dose computed tomography on human phantoms.

Index Terms

Model-based learning; iterative reconstruction; cone beam computed tomography; deep learning; 
inverse problems

I Introduction

Computed tomography (CT) is an imaging technology where the interior anatomy of a 

subject is computed from a series of X-ray radiographs acquired by radiating the subject 
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from different directions. CT has had a profound impact on medical practice and it is now an 

indispensable technology in a wide spectrum of clinical and industrial applications. It has 

also been essential for advancing our understanding of disease in medical research.

CT imaging is however associated with risks, especially when it is used for screening. CT 

relies on repeatedly exposing a patient to ionising radiation of X-rays and hence there is an 

ongoing effort to minimise the total dose delivered to a patient during a CT scan. For that 

purpose, low dose CT protocols can be employed where fewer X-ray photons are measured, 

which consequently reduces the signal-to-noise ratio in acquired data. Widely used 

reconstruction techniques in clinical practice, such as filtered backprojection, are based on 

sampling theory and as such are not properly adapted to account for the statistical 

characteristics of measured data with high noise level. Hence, applying these schemes on 

low-dose CT data will produce sub-optimal images which consequently prevents low dose 

protocols from being widely adapted. Furthermore, in industrial and scientific applications 

which often utilise μCT systems, reconstructions are typically computed by the Feldkamp-

Davis-Kress (FDK) algorithm [1] used for cone beam cone beam CT (CBCT) 

measurements. Here the same requirement of many angles applies, but additionally 

reconstructions often exhibit cone beam artefacts due to the measurement geometry. 

Accurate measurement procedures to overcome these issues can be highly time consuming 

and effectively limit experimental capacity, hence there is a need for advanced and 

computationally efficient reconstructions algorithms from few angle measurements.

Over the years, a wide range of reconstruction methods have been developed that better 

account for the aforementioned statistical properties in few angle and low-dose CT scans. 

Among these, the most powerful and flexible have been variational model-based methods 

[2], [3], [4]. These offer a plug-and-play architecture for reconstruction where a user 

provides a model for how data is generated in absence of noise (forward operator), a 

statistical model for noise in data, and a prior model for desired reconstructions. The 

forward operator together with the statistical model for data ensures consistency against 

measured data, whereas the prior mainly prevents overfitting by penalising images that have 

‘irregular’ behaviour. These variational methods can sometimes be interpreted as computing 

the most likely solution (maximum a posteriori estimate) [5, sec. 3.3.2], see also [6], [7], [8]. 

Variational model-based reconstruction is, however, computationally demanding since it 

involves solving a large-scale optimisation problem. This becomes prohibitive in time-

critical applications, like clinical CT imaging, and especially so when the prior model is 

non-smooth, as in sparsity promoting priors. Another challenge lies in choosing an 

appropriate prior [9], [10], [11], [12], [13] and [5, sec. 3.4].

Motivated by these shortcomings, recently there have been several efforts in using methods 

from deep learning for reconstruction [5]. One particular approach trains a deep neural 

network with a suitable architecture against supervised data using a squared 2-loss [5, sec. 

5.1.2]. This can be seen as an approximate way to compute the average solution (conditional 

mean estimate). When properly adapted, such data driven approaches considerably 

outperform purely model based reconstruction techniques regarding both reconstruction 

quality and reconstruction speed [14].
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One natural approach is to use deep learning in the above context to directly learn the 

mapping from data to image [15]. Such an approach scales poorly, it requires re-training 

when data acquisition changes, and it relies on access to huge amounts of training data. 

Hence, this is not a feasible approach for clinical CT where high quality training data is 

scarce, as access to projection data is limited. Another approach is to use deep learning as a 

post-processing tool to improve upon an initial reconstruction. This is computationally 

feasible as shown in [16], [17], [18], but such an approach is essentially limited by the 

information content of the initial reconstruction and the richness of a-priori information 

learned from training data, which potentially increases bias in the reconstruction.

Learned iterative reconstruction methods seek to overcome these drawbacks by combining 

deep learning with a modelbased approach. More precisely, the idea is to use a deep neural 

network architecture for reconstruction that incorporates an explicit handcrafted forward 

operator and the adjoint of its derivative [14], [19], [20], [21], [22]. The idea is to unroll a 

suitable iterative scheme (usually taken from a modelbased approach) that in the limit 

defines a reconstruction operator [5, sec. 4.1.9]. This yields further improvements to 

reconstruction quality as compared to the direct learning or post-processing approaches 

mentioned before. Furthermore, including an explicit forward operator improves robustness 

and generalisability [23], [24], see also [25]. Additionally, it also reduces the amount of 

training data, since networks tend to have fewer parameters and the forward operator 

encodes a major portion of the relations in data that come from the acquisition geometry.

As already indicated, learned iterative reconstruction methods are typically trained in an 

end-to-end manner. Hence, the entire unrolled fixed-point scheme is treated as a single 

network and all its parameters are trained jointly. This provides an optimal set of network 

parameters under suitable optimisation procedures, but it also comes with two challenges. 

First, the memory footprint of storing and manipulating the network is too large for most 

single GPU configurations. Furthermore, during training the loss function is evaluated 

several times. Each of these involves evaluating the forward operator and its adjoint, or the 

adjoint of its derivative, which quickly leads to unreasonable training times. Hence, current 

learned iterative reconstruction algorithms do not scale well to large-scale and higher 

dimensions, such as fully 3D CT.

One possible solution to address these computational challenges is to adopt a greedy 

approach for training. Here each unrolled iteration in the network is trained separately [20]. 

In this way, training of each unrolled iterate and evaluation of the forward operator can be 

separated, thus rendering a training procedure feasible. On the other hand, such an approach 

clearly does not represent an optimal selection of network parameters as compared to jointly 

optimising over all network parameters for all unrolled iterates, as discussed in [20, sec. III-

A]. Therefore, such a greedy approach renders a trained network for reconstruction that may 

fall short in reconstruction quality compared to end-to-end schemes, we refer to [26] for 

further discussion on greedy schemes. Additionally, reconstruction times are still 

comparably slow due to multiple applications of the forward operator. In some cases 

however, the issue of computation times can be tackled by using faster approximate models 

[27], if available, but memory footprint remains an issue.
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In summary, the computational challenges of utilising learned iterative reconstructions are 

twofold: (i) Managing memory footprint; (ii) Feasible computation and training times. As 

some of these issues could be simply solved with enough computing power, we deliberately 

consider the case of limited computational resources in this study, instead of utilising large 

computing facilities, which may not be accessible to a wide range of researchers. Thus, we 

will limit ourselves here to a single GPU configuration, that necessitates the development of 

more memory efficient algorithms. Additionally, to address the second issue we aim to 

improve reconstruction speed without compromising reconstruction quality.

To achieve this we propose a new approach for training learned iterative reconstruction 

methods that scales to demanding large-scale tomographic imaging problems. It is a 

multiscale scheme that is motivated by the fact that the continuum forward operator can be 

discretised on various scales. In fact, the ray transform is known to be scale invariant [28], 

which defines the forward operator in CT, and this consistency across scales can be utilised 

for reconstruction [29], [30]. In particular, in our case each unrolled iterate in the network 

involves discretising the ray transform on a voxalised grid and the discretisation becomes 

increasingly fine as the unrolled iterates progress until the final resolution is achieved. 

Hence, the full high-resolution forward operator is only needed for the final unrolled iterate. 

Clearly, the approach is not limited to CT and readily applies to other tomographic 

modalities that involve the ray transform. Furthermore, it can be extended to any modality 

that arises as discretisation from a continuum model, such as MRI or even seismic imaging, 

in contrast to purely discrete problems.

This paper is structured as follows. In Section II we review common approaches for learned 

reconstructions and discuss possible limitations for large-scale applications. In Section III 

we introduce the notion of multi-scale schemes. In Section IV we extend the multi-scale 

scheme to a hybrid network and apply the proposed network to reconstruct from real CBCT 

measurements of an organic phantom in 3D. In the following Section V we discuss 

scalability and evaluate performance in comparison to other learned reconstruction methods 

in 2D for phantoms from human abdominal CT scans. In Section VI we discuss extensions 

and limitations of the proposed multiscale approaches. Some final conclusions are presented 

in Section VII.

II Learned reconstructions for tomographic imaging

In computed tomography we aim to reconstruct an image of the inside of a patient or object 

of interest from X-ray measurements. Mathematically, this reconstruction task is an inverse 

problem where we seek to recover the unknown absorption coefficient f* ∈ X (image) from 

measured photons g ∈ Y at the sensor (projection data or sinogram) where

g = A f∗ + δg . (1)

Here, A:X Y  is the forward operator, that is assumed to be known, and models how data 

is generated in absence of noise; δg ∈ Y denotes noise in the observation.
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In the following we will assume that A is a linear operator whose sampling is given by the 

data acquisition geometry, such as the fan beam transform in 2D and cone beam in 3D.

Reconstruction is typically an ill-posed task, so one needs to use noise-robust inversion 

procedures. Either by direct reconstruction algorithms, such as filtered backprojection 

(FBP), or by iterative algorithms that solve a variational problem

f : = argmin
f ≥ 0

D(f; g) + αℛ(f) . (2)

Here, f D(f; g) measures the goodness of fit against data g, f ℛ(f) is a regularisation 

term that ensures stability, and α > 0 is a weighting parameter that regulates the need for 

stability against the need to fit data. These methods tend to perform well, but are ultimately 

limited by the expressiveness of the hand-crafted regularisation term ℛ:X ℝ. Recently, 

several researchers have proposed to either combine direct reconstructions with a learning 

based post-processing or to learn an iterative algorithm. In the following we give a short 

overview of possible approaches that involve the model in the reconstruction process. Either 

once in Section II-A and hence rely more on the expressiveness of the learned network, or 

multiple times in Section II-B, which consequently increases the influence of the model in 

the reconstruction task.

A Reconstruction and post-processing

A straightforward approach to use data driven methods in reconstruction is by post-

processing an initial reconstruction. More precisely, let A†:Y X be an analytically known 

reconstruction operator that is proven to be robust. One can then train a convolutional neural 

network to remove reconstruction artefacts that arise from using A† [16], [17], [31]. These 

artefacts can be quite notable when data is highly noisy or under-sampled. The learned 

inverse mapping is then given as

Aθ
†: = Λθ ∘ A† .

The advantage in this approach lies in the analytical knowledge of the reconstruction 

operator, and hence networks can be designed to exploit structure in reconstruction artefacts. 

For instance in spatio-temporal problems, if under-sampling artefacts are known to be 

incoherent in time, the network only needs to learn to combine the spatial information by a 

temporal interpolation [32], [33]. On the other hand, for lower dimensional problems, the 

capacity of the network is essentially limited by the richness of the training data [34], [35]. 

Clearly such an approach is computationally fast since it only requires a single operator 

evaluation. On the downside, large capacity networks tend to over-fit to the training data and 

especially so when the training data is scarce. Furthermore, as shown in [14], [19], [20], [36] 

the results are clearly outperformed by learned iterative reconstruction algorithms that we 

next describe.
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B Learned iterative reconstructions

In learned iterative reconstruction schemes, neural networks are interlaced with evaluations 

of the forward operator A, its adjoint A∗, and possibly other hand-crafted operators. For 

example, a simple learned gradient-like scheme [14], [37] would be given by

fi + 1 = Λθi fi, A∗ A fi − g , i = 0, …, N − 1. (3)

This defines a reconstruction operator when stopped after N iterates:

Aθ
†(g): = fN where θ = θ0, …, θN − 1

and initialisation f0 = A†(g). Note that Λθi is a learned updating operator for the i:th iterate. 

The terminology ‘gradient-like’ comes from the following observation: if we consider 

minimising D(f; g) = 1
2 ∥ A(f) − g ∥2

2, then Λθ(f,h):= f – θh corresponds to a learned update 

in a gradient descent scheme, where the step length θ is the only learned parameter.

The parameters θ in the reconstruction operator Aθ
† are learned by end-to-end supervised 

training. More precisely, assume one has access to supervised training data (f (j), g (j)) ∈ X × 

Y where g(j) ≈ A f(j) . Then an optimal parameter is found by

min
θ

1
m ∑

j = 1

m
Lθ f(j), g(j)

where the loss function is given as

Lθ f, g : = Aθ
† g − f X

2
for f, g ∈ X × Y .

Note here that computing the gradient of the loss function w.r.t. θ requires performing back-

propagation through all of the unrolled iterates i = 0,…,N – 1.

In gradient boosting, that follow the greedy training [20], the loss function is changed. 

Instead of looking for a reconstruction operator that is optimal end-to-end, we only require 

iterate-wise optimality. For the learned gradient scheme above, this amounts to the following 

loss function for the i:th unrolled iterate:

Lθi fi, g = Λθi fi, A* A fi − g − f X
2

where fi: = Λθi − 1 fi − 1, A∗ A fi − 1 − g  and initialisation f0 = A†(g). These schemes 

can be viewed as a greedy approach and consequently constitute an upper bound to end-to-
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end networks. Thus, in the following we seek for a possibility to utilise end-to-end networks 

for large-scale problems.

III Multi-scale learned iterative reconstructions

The major limitations when employing learned iterative reconstruction methods for large 

problems are their prohibitive training times and memory requirements. This is mainly due 

to the fact that all iterations are performed at full resolution and hence require to evaluate the 

full scale forward operator for each iterate. To overcome this limitation we propose a multi-

scale scheme.

A Discretisation sequence

In the inverse problem in eq. (1), both the unknown image f* and data g are considered as 

continuum objects, which in imaging are typically represented by real-valued functions 

defined on some domains. In reality discrete data is recorded through a measurement device 

and we can only compute a digitised version of the unknown f*. By discretisation we refer 

loosely to the procedure for defining a finite dimensional version of eq. (1) that is given by 

the finite sampling of the data and the digitisation of f*. Likewise, a discretisation sequence 
is a finite sequence of discretisations that start from a coarse discretisation and is 

successively refined towards the desired finest resolution. The refinement and coarsening of 

the discretisation is through specific up- and down-sampling schemes that will be defined 

later. Consequently, motivated by the discretisation invariance of the ray transform, we aim 

to iteratively increase the resolution of our reconstructions. For that purpose, let S 0,…,SN 

denote a fixed sequence of discretisations of X and Y that increase in resolution through 

subsequent up-sampling. In the following we will associate each iterate fi with such a 

discretisation space Si. Stated more formally, a discretisation sequence is given by

Si: = Xi × Yi for i = 0, …, N .

Here, Xi ⊂ X is a finite dimensional subspace with dimension dim(Xi) ≤ dim(X i+1). 

Likewise, Yi ⊂ Y with dim(Yi) ≤ dim(Y i+1). Furthermore, let {fi, gi} ∈ Si denote the 

reconstructed image and data in each discretisation space. In the following we will need a 

projection operator in the data space πi: Y → Yi, for i = 0,…,N, and an up-sampling 

operator in the image space τi: X i–1 → Xi, for i = 1,…,N. Whereas the projection operator 

maps the data into the respective discretisation space, the up-sampling operator maps the 

reconstruction in the i:th discretisation space to the subsequent one in the discretisation 

sequence. Note that if dim(X i–1) = dim(Xi), then the up-sampling reduces to the identity τi 

= id.

The discretisation sequence S 0,…,SN defines as well a sequence of discretised versions of 

the inverse problem in eq. (1). More precisely, for each discretisation Si we obtain the 

corresponding inverse problem of recovering fi
∗ ∈ Xi from finitely sampled data gi ∈ Yi 

where
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gi = Ai fi∗ + δgi

with δgi denoting the noise in data and Ai:Xi Y i denoting the corresponding forward 

operator. Similarly, we have Ai
∗:Y i Xi for the adjoint and Ai

†:Y i Xi for the pseudo-

inverse on the discretisation space Si, e.g. the filtered backprojection in 2D or FDK in 3D. 

With these concepts we can now formulate the multi-scale iterative reconstructions schemes.

B A multi-scale learned gradient scheme

The underlying principle of the proposed multi-scale scheme is to start at the coarsest 

discretisation space S 0 and after each iterate we up-sample until we obtain the 

reconstruction in the final discretisation space in the desired full-resolution. This way each 

iterate has its own discretisation space and hence the number of iterations we perform is N + 

1, equal to the number of discretisation spaces. Since we aim to train the algorithm end-to-

end, this maximum number of iterations has to be fixed. For each iterate we then compute 

the gradient in the corresponding discretisation space ∇Di fi; g ∈ Si given by

∇Di fi; g : = Ai
∗ Ai fi − πi(g) . (4)

Following the structure of learned gradient schemes eq. (3), we perform a learned update 

with the current reconstruction fi and the corresponding gradient Di fi; g , followed by an 

up-sampling to the next finer resolution,

fi = Λθi fi, ∇Di fi; g

fi + 1 = τi + 1 fi .

The full MS-LGS is summarised in algorithm 1 and a schematic is illustrated in fig. 1.

Algorithm 1 Multi-scale learned gradient schemes (MS-LGS)

1: for i = 0, …,N do

2:     if i = 0 then

3:        f0 A0
†π0(g)

4:     else

5:        fi τi fi − 1

6:     end if

7:     fi Λθi fi, ∇Di fi; g

8: end for
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9: f* ← fN

1 Including a filtered gradient—Let us first note, that the up-sampling operator in 

each iteration restricts the high frequency components that can be present after up-sampling. 

Additionally, the normal operator A∗A is known to be smoothing of order 1 [28], which 

means, effectively, that any high frequency components in the final reconstruction can only 

be introduced by the network, similarly to the role of the regulariser in classical variational 

techniques. Thus, to complement the information for the network, we consider a version of 

MS-LGS with an additional filtered gradient that retains higher frequencies. That means we 

do not only compute the classic gradient ∇Di fi; g  in each iteration, but additionally a 

filtered version by substituting the adjoint with the filtered backprojection, or FDK in 3D,

∇†Di fi; g : = Ai
† Ai fi − πi(g) . (5)

A similar approach has been studied earlier for classic iterative methods in [38]. In our case 

the filtered gradient will be computed additionally to the classic gradient eq. (4) and hence 

this will increase the computational cost by the application of one filtered backprojection in 

each step, but, as can beseen later, improves reconstruction quality. For notational 

convenience, we will denote the set of inputs to the network in each scale by

fi : = fi, ∇Di fi; g , ∇†Di fi; g . (6)

In the resulting scheme, multi-scale learned filtered gradient schemes (MS-LFGS), with the 

additional computation of the filtered gradient we then have the update equations

fi Λθi fi

instead of line 7 in algorithm 1.

2 Computational cost—Concerning the total computational cost: Due to sub-sampling 

on the coarser discretisation spaces the computation of projections is essentially governed by 

the computations on the final resolution. If we assume that the computational cost of 

evaluating the network Λθi is negligible in comparison to the forward and adjoint operator 

(or pseudoinverse), then the total computational complexity is governed by the cost of the 

operator at the finest scale.

Formally, the total computational cost can be roughly estimated as follows. Let us assume 

that at each scale we double each dimension, then the number of voxels scale by 2d. Thus, 

the computational cost on each scale increases in the same manner and the estimated total 

computational cost on all scales can be bounded by a geometric series
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Cd: = ∑
k = 0

∞ 1
2d

k
= 1

1 − 1/2d . (7)

For d = 2 we have C 2 = 4/3 and C 3 = 8/7 for d = 3. We note, that the same estimate applies 

to memory requirements of the multi-scale scheme. This emphasises that the proposed 

approach is especially suitable for higher dimensional applications, since the computational 

cost on the course discretisation spaces becomes neglectable, as we will see in the next 

section for an application to 3D cone beam CT.

IV Reconstruction of 3D cone beam measurements

Let us now discuss the reconstruction task from three dimensional cone beam 

measurements. We note that due to the structure of the multi-scale approaches, the 

reconstruction quality will essentially depend on the expressibility of the last layer and 

hence it is only reasonable to make the last iterate as informative as possible. To achieve 

scalability with an expressive network at the last iterate, we propose to combine MS-LFGS, 

as described in Section III-B1, with the established U-Net architecture [39] with the addition 

that the gradient information is reused in each scale of U-Net. This network is specifically 

designed to utilise the previously computed information across all-scales.

A Cone beam measurement data

We evaluate the applicability of the proposed networks to reconstructions in 3D with an 

application to CBCT. For this purpose we utilise a database provided by the FleX-ray lab at 

Centrum Wiskunde & Informatica [40], consisting of 42 walnuts scanned in a custom made 

μCT. For each target there are 3 separate scans consisting of 1201 angles with uniform 

increment of 0.3° and varying source locations at the top, middle, and bottom of the target. 

That is for a mean target size of 30mm the scanning positions are at -15mm, 0, 15mm with 

respect to the central slice. As these three scans result in different cone beam artefacts, they 

are combined to create a reference ground-truth reconstruction of size 5013 negating the 

cone beam artefacts. We refer to [40] for further details on the scanning setup and geometry.

For our experiments we utilise the central scanning position at the centre of the target, with a 

source-to-target distance of 66mm and source-to-detector distance 199mm. We select 60 

uniformly spaced angles, resulting in an angular increment of 6°. Additionally we down-

sample both, measurements and ground-truth reconstruction, by a factor of 3. This results in 

a reconstruction size of 1683, where each of the 60 projections is of size 256 × 324. We note 

that we chose the maximum reconstruction size possible under the memory constraints of 

this study.

The supplied data is given as linearised measurements, thus we will use the linear projection 

model as our forward operator

A(f)(l) = ∫lf(x)dx, for l ∈ ℳ, (8)
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where ℳ is the three dimensional manifold of lines in ℝ3 defined by the cone beam 

measurement geometry described above.

B A hybrid multi-scale network: ∂U-Net

As the final reconstruction quality in the multi-scale scheme is primarily dependent on the 

last iterate operating on the final resolution, it is advisable to make this last iterate as 

expressive as possible without significantly increasing bias in the reconstructions. For this 

purpose we propose an across-scales network, that is essentially a combination of MS-LFGS 

and U-net that utilises the computed gradient information across all scales; in the following 

we will call this architecture ∂U-Net. Details of the network design are discussed next.

1 Implementation details—The resulting ∂U-Net architecture chosen for the 

application to CBCT is illustrated in Figure 2. We have chosen the number of iterates as N + 

1 = 5; for the corresponding discretisation spaces, we fix the resolution of the finest desired 

reconstruction space as XN = ℝn×n×n, with n = 168. The coarser resolutions are then 

obtained by reducing the resolution for each downsampling by a factor of 2 in each 

dimension until scale 1, here scale 0 has the same resolution to avoid overfitting due to very 

small image sizes in the first iterate. Thus, the coarsest scale is obtained by 3 times 

downsampling, that is a factor of 8 per dimension and hence the total image size is reduced 

by a factor of 512. In the projection space, we keep the number of angles at 60 for each 

scale, but downsample the detector size by the same factor as the image size, i.e. reducing 

each dimension by factor 2 until scale 1.

The mapping πi to the coarser scale is implemented by an area mean, the up-sampling with 

τi is performed by trilinear interpolation. After each network update, we compute the set of 

filtered and classical gradient as in eq. (6) for the current scale, that is

fi = Λθi fi , (9)

as well as the gradient set of the up-sampled output fi + 1 = τi + 1 fi . Where the former 

gradient set in eq. (9) is passed to U-Net in the respective scale, subsequently expanded by a 

double convolutional layer and then concatenated with the result of the max-pooling in U-

Net, and the latter gradient set of the up-sampled output, i.e. fi + 1 = τi + 1 fi , is used for the 

next iterate in the gradient scheme. Here the sub-networks are given in a ResNet style 

following [14], [36]. Specifically, we chose a double convolutional layer with 12 channels 

and a final layer with 1 output channel. The output is then given by a residual update

Λθi fi = fi + siGθi fi , (10)

where Gθi denotes the chosen architecture for the updates, i.e. the the three convolutions, 

and si is a learnable step size initialised by 0 following [41]. The learnable parameters in 

each iterate are then given by θi = si, θi .

All algorithms, including reference methods, are implemented in Python using PyTorch [42] 

for the networks. The image and projection spaces are implemented with ODL (Operator 

Hauptmann et al. Page 11

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2021 February 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Discretization Library) [43] using ASTRA [44] as back-end for evaluating the ray transform 

and its adjoint. Training details and parameter choices will be stated in the following 

sections.

C Reconstructions

Additionally to reconstructions with the proposed ∂U-net, we will compare the quality to 

reconstruction with FDK followed by post-processing with U-Net, following [17], as well as 

a reconstruction with the basic MS-LFGS as described in Section III. We note that this is 

essentially an ablation study on how each part performs separately. The U-Net architecture 

follows the same scheme as outlined in Figure 2, with the difference that the initial channel 

width is 16 and doubled in each scale, leading to slightly more parameters. For MS-LFGS 

we chose two variants here, one that is based as well on a ResNet architecture as used in the 

∂U-Net and a second variant, where all sub-networks Gθi in (10) are given by a down-scaled 

version of U-Net, which we call mini U-Net, similarly to what has been used in [27]. This 

mini U-Net consists of only 2 scales (one max-pool layer), instead of the classic 4, and an 

initial channel depth of 12 on the first scale to be conforming with the ∂U-Net. All updates 

in the iterate schemes are performed following the residual updates in eq. (10).

To make the comparison uniform for all test cases we performed training for all algorithms 

in the same manner. In particular we chose Adam as the optimiser with an 2-loss to the 

ground-truth; each network is trained for 10,000 iterations with one training sample per 

minimisation step. The initial learning rate is set to 10–3 with a cosine decay. These choices 

have shown to perform well for all presented algorithms.

For training we have chosen 40 out of the 42 walnuts, which leaves 2 for validation and 

testing. The obtained reconstructions for the test walnut (number 41) are shown in Figure 3. 

It can be seen, that all learned methods are capable of successfully suppressing the cone 

beam artefacts in comparison to the FDK reconstruction.

D Quantitative results

Visually all three learned reconstructions perform well and produce an informative 

reconstruction from just 60 projection angles. To compare the reconstructions in more detail, 

we have computed quantitative measures shown in Table I, specifically PSNR and SSIM 

with respect to the provided ground-truth image. Additionally, we provide training and 

execution times for all algorithms, number of parameters and needed memory for evaluation 

of the trained network.

The results suggest that the basic multi-scale approach is not competitive in terms of PSNR 

and SSIM. As we have indicated earlier, this is most likely due to the limited expressiveness 

of the final network. This can be clearly seen by the comparison of MS-LFGS based on 

ResNet and the mini U-Net for each iterate, as increasing the depth of the networks 

improves reconstruction quality clearly. In particular, the proposed ∂U-Net, that combines 

the MS-LFGS architecture with a U-Net in the final iterate, improves reconstruction quality 

further and slightly outperforms the established post-processing and denoising by U-Net 

approach.
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Concerning training and execution times, clearly U-net is fastest to train and execute, 

roughly taking double the time of FDK. It is noteworthy that the iterative approaches only 

add a slight overhead in execution time, where MS-LFGS using a ResNet structure is even 

faster. The most computationally expensive algorithm is ∂U-Net, but has only an overhead of 

50% to the basic U-Net. This emphasises the excellent scalability of the multi-scale 

approaches in 3D.

In comparison, the basic LGS as described in Section II-B with 5 iterates and a ResNet 

structure would require roughly 5 times the resources, in terms of memory and computation 

times, see Table I for the estimated values. Clearly, one would not only need more 

computing power to train the algorithm, but also reconstruction times fall short to the multi-

scale approaches

E Robustness

Even though the reconstruction quality of ∂U-Net might only slightly outperform the 

denoising with U-Net, it provides a scalable model-based iterative reconstruction technique. 

This is of particular importance for applications where training data is scarce and objects 

might vary, as model-based iterative reconstructions have been shown to be more robust with 

respect to perturbations in the data and geometry, as demonstrated in several studies [20], 

[23], [24], see also [25] for a theoretical discussion. To emphasise this point, we have 

performed a robustness study with respect to noise. As the training data was given by real 

projection data it contained a natural noise component. For the robustness study, we have 

added additional normally distributed noise to the projection data for the test set and 

recorded the PSNR values of the reconstructions. The results of this experiment are 

illustrated in Figure 4. It can be seen that all model-based iterative approaches are more 

robust with respect to additional noise, whereas post-processing with U-Net does deteriorate 

much quicker. It is also interesting to note, that ∂U-net does show similar robustness as the 

MS-LFGS approaches, but under higher noise starts to deteriorate also a bit faster, which 

can be expected as it is a hybrid network combining both approaches.

V Comparative study in 2D

In this section we aim to evaluate the performance of the proposed ∂U-Net and multi-scale 

schemes in comparison to learned gradient schemes as in [14] that operate in each iterate on 

the full resolution. As these approaches do not scale well to 3D we restrict ourselves here to 

two dimensions. We will first examine scalability on simulated data and then evaluate 

reconstruction performance with realistically generated data from human phantoms supplied 

for the 2016 AAPM Low Dose CT Grand Challenge.

A Implementation—Let us first discuss the implementation choices for the multiscale 

schemes. As in the previous section, we fix the number of iterations to N + 1 = 5. To create 

the discretisation spaces, we fix the resolution of the finest desired reconstruction space as 

XN = ℝn×n. The coarser resolutions are then obtained by reducing the resolution for each 

downsampling by a factor of 2 in each dimension. That means, the coarsest scale is obtained 

by 4 times downsampling which reduces the data size in 2D by a factor of 256. In this part, 

we reduce the amount of angles by a factor of 2 as well, the projection resolution is 
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determined for each scale separately to fully cover the domain. Following the study in 3D, 

the mapping πi to the coarser scale is implemented by an area mean, whereas the up-

sampling with τi is performed here by bilinear interpolation.

We will restrict the network architectures in this section to learned gradient schemes with a 

mini U-net as the subnetwork. As this choice has shown to be more competitive for the 

reconstruction of the walnut data in 3D. For the ∂U-net, we follow the architecture outlined 

in Figure 2, where we adjust the channel width to 16 in the first scale of the U-Net, this also 

applies to the sub-networks used in the iterative multi-scale part.

B Memory scaling of reconstruction algorithms

Let us first examine the scalability in terms of memory footprint of the proposed multi-scale 

algorithms in comparison to reference learned reconstruction methods. For comparison we 

choose post-processing with U-Net, following [17] with initial channel width of 64, and 

LGS [14]. Here LGS is implemented consistent with the proposed MS-LFGS algorithm, that 

means we use 5 iterations and a mini U-Net for the sub-networks. In fact, we note that this 

can be seen as a subclass of MS-LGS, where all discretisation spaces are of the same 

resolution and the scaling operators are given by the identity.

For the training procedure we created phantoms by randomly generated ellipses, see Figure 

5. The measurement data is then produced by the ray transform eq. (8), with a fan beam 

geometry and 512 angles. The simulated measurement is then corrupted by additional 5% of 

normally distributed random noise.

Since the aim of this experiment is to examine memory consumption only, we have trained 

each network for 1000 iterations with one sample in each iteration and recorded the 

maximum memory consumption. The smallest phantom size was chosen as 1282 and was 

increased until memory consumption exceeded the available memory on a single GPU with 

12GB memory, or more specifically 12196 MB. The resulting plot is shown in Figure 6.

We note that memory consumption of all networks scales with O(nd), where d is the 

dimension. A reduction in memory consumption can be mainly achieved by usage of smaller 

networks and as such reduction by a constant. Nevertheless, memory consumption of LGS 

depends on the number of iterations also, i.e. we have O(Nnd). Following Section III-B2, for 

multi-scale approaches this iteration dependence can be bounded as well by the factor Cd in 

(7) and thus we obtain the basic memory dependence of O(nd).

A reconstruction obtained with MS-LFGS for a resolution of 15362 is shown in Figure 5 in 

comparison to a reconstruction by filtered backprojection.

C Application to human CT scans

In order to evaluate the reconstruction quality on a clinically relevant case, we simulate 

realistic measurement data from human abdomen CT scans provided by the Mayo Clinic for 

the 2016 AAPM Low Dose CT Grand Challenge [45]. The data set consists of high-dose 

scans from 10 patients. We used the provided reconstructions with 3 mm slice thickness and 
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image size 512 × 512. We divided the data into 9 patients for training, resulting in 2168 

slices, and 1 patient for testing purposes with 210 slices.

For the data simulation, we used a fan beam geometry with source to axis distance 500 mm 

and axis to detector distance 500 mm. In order to create realistic measurement data, we use 

the non-linear forward model given by the Beer-Lamberts law:

A(f)(l) = e−μ∫lf(x)dx .

Here,  denotes the line along which the x-ray photons travel and we select the mass 

attenuation coefficient μ = 0.2 cm2/g, which corresponds approximately to the value of 

water. We simulate low dose scans with Poisson noise in the measurement data. For the 

computations we linearise the obtained data by applying – log(·)/μ to the measurements, by 

which the forward model simplifies to the ray-transform as in eq. (8). A slice from the test 

patient with the corresponding measurement data is shown in Figure 7.

We remind that we chose the number of iterations as N + 1 = 5 and hence the image 

resolution in the coarsest discretisation space S 0 is just 32 × 32. For the experiments we 

consider a scenario that roughly represents a clinical low-dose CT scan with 600 angles and 

a photon count of 8000.

1 Training procedure for low dose scans—We train both multi-scale schemes as 

outlined in Section III, the proposed hybrid ∂U-Net, as well as a full-scale learned gradient 

scheme (LGS) and post-processing with U-Net. In each case, we compute an initial 

reconstruction by filtered backprojection with the Hann filter and frequency scaling of h = 

0.6, this reconstruction is also chosen as the input to the postprocessing with U-Net. The 

same parameters are selected to compute the filtered gradient eq. (5) for the MS-LFGS.

To make the comparison uniform for all test cases we trained all algorithms in the same 

manner. In particular we chose Adam as the optimiser with an 2-loss; each network is 

trained for 20,000 iterations with one training sample per minimisation step. The initial 

learning rate is set to 10–3 with a cosine decay These choices have shown to perform well 

for all presented algorithms. In the following we will discuss the reconstruction results along 

with a quantitative evaluation.

D Evaluation of reconstruction quality in 2D

The resulting reconstructions from 600 angles are shown in Figure 8. Let us first note that U-

Net does generally produce sharper images than the learned approaches, but can tend to 

reconstruct artificial realistic looking features. All iterative approaches tend to produce 

smoother reconstructions, in particular we observe that in areas of uncertainty the learned 

approaches are more conservative in recreating features and rather tend to reconstruct 

uniform areas instead of reproducing features from the training data.

We have computed quantitative measures for all cases as shown in Table II. Comparing the 

multi-scale schemes, it is apparent here as well that the filtered gradient is necessary for 

competitive reconstruction quality. Overall, the proposed ∂U-Net does perform best of all 
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algorithms, followed by LGS and then MS-LFGS. We note here, that it is expected that LGS 

performs better than both multi-scale schemes, as it operates on the full resolution in each 

iteration, but consequently does not scale very well. Nevertheless, the hybrid network ∂U-

Net is capable of producing competetive results, while being scalable.

Regarding memory consumption, the multi-scale approaches are expected to be cheapest in 

terms of memory and training times. Whereas ∂U-Net clearly reduces memory consumption 

in comparison to LGS, we can see that here in 2D the training times are slightly longer, due 

to multiple filtered backprojections in the lower scales. We note that this effect is negated in 

3D as seen in Table I, since computational complexity reduces by a factor of 8 on each scale 

in 3D instead of just 4 in 2D. It is also interesting to point out that MS-LGS is faster in 

execution times than filtered backprojection followed by U-Net, even though reconstruction 

quality might not be competitive this can be of use in highly time critical applications.

VI Discussion

The presented framework for multi-scale learned iterative reconstructions in Section III 

provides a general framework for a scalable iterative learned image reconstruction. 

Combining these multi-scale schemes with a U-Net in the last iterate provides a hybrid 

network capable of outperforming the previously proposed LGS approaches. Nevertheless, 

as this study is primarily of methodological nature, we would like to discuss in the following 

a few aspects on how the presented framework can be extended.

A The scalability issue

Recently, some efforts have been made to extend learned iterative reconstruction algorithms 

to 3D applications. These approaches mainly tackle the memory aspect of the scalability 

issue, which prevents scalability to higher dimensions by hardware restrictions. For instance, 

by using invertable networks [46] one does not need to store the whole network for 

computation of the gradient in the training. Whereas this solves the important issue of 

memory footprint, it does not address computational complexity of the forward operator and 

as such is primarily applicable to forward operators of low complexity, such as the Fast 

Fourier Transform used in magnetic resonance imaging. For computationally more 

expensive forward operators, scalability is essentially limited by extensive training times due 

to the evaluation of the model. The proposed multi-scale schemes provide a possible 

solution to this dilemma, as the model is only once evaluated on the full resolution. This is 

illustrated in Table III, where we present the order of computational resources needed for the 

discussed algorithms in this study. The multi-scale approach addresses both points of the 

scalability issue, memory footprint and computation times. In comparison to LGS, which 

additionally scales with number of iterations, the multi-scale approach reduces this to the 

order of a single iteration.

In fact, the multi-scale schemes showcase their strength especially in higher dimensions as 

the reduced evaluation cost scales with the dimension. This can be clearly seen when 

comparing the study in 2D and 3D as presented here. For instance, the hybrid ∂U-Net 

compared to the basic U-Net has an overhead in evaluation time of roughly 300% in 2D, this 
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reduces to only 50% in 3D. Which underlines the suitability of the proposed ∂U-Net for 

higher dimensional applications.

B Influence of scales

As discussed above, the computational advantage of the multiscale approach is primarily due 

to the low-cost computations on the coarse resolution, but these come with some subtleties. 

We want to note that the early iterates on low resolutions are prone to overfitting and can 

negatively influence the reconstruction quality on the following iterates. Thus, one has to be 

careful to appropriately deal with the low resolution iterates For instance, the ResNet 

structure chosen in ∂U-Net for the iterative part is more resilient than the mini U-Net. The 

computed updates in each iterate in the ∂U-Net for the walnut reconstructions are shown in 

Figure 9 and as it can be seen the reconstructions nicely gain sharpness in each iterate until 

the final reconstruction is achieved.

For the pure multi-scale schemes, as used in MS-LFGS, instead of using only the mini U-

Net, one could also consider mixing architectures, especially in the low resolution iterates 

changing to the ResNet structure for more stability. This has been omitted from this study 

for the sake of brevity.

C Extensions of the multi-scale approach

In this study we have chosen the structure of the multiscale algorithms as simplistic as 

possible. Nevertheless, the proposed framework does offer larger flexibility in choices that 

might be more suitable for other applications. In particular with respect to network design 

and choice of discretisation spaces. In the following we would like to mention some 

possibilities how the multi-scale schemes can be extended:

• In our study the mini U-Net has shown to be effective to restore high-frequency 

components more effectively than a basic ResNet style CNN as utilised in [14]. 

We note that also more memory efficient networks might be used, such as the 

MS-D Net [47] or, as mentioned above, invertable architectures. Possible 

extensions of the ∂U-Net to other architectures based on dilated convolutions 

instead of pooling layers can be investigated as well.

• In the multi-scale schemes we have chosen to identify each discretisation space 

with one iteration. This limitation can be easily relaxed, for instance by 

computing two iterations in the same discretisation space, as done for the ∂U-

Net. In case all iterates are computed on the same space, this simplifies to the 

basic LGS.

• We have chosen to reduce the resolution in all dimensions equally. It would be 

also possible to only reduce the resolution along one dimension in each step and 

alternate in dimensions. Along the same lines, the up-sampling operator can be 

chosen differently, including the possibility of a learned up-sampling.

• Lastly, the multi-scale framework is not limited to learned gradient schemes and 

can be extended to other learned approaches such as variational networks [19] 

and learned primal-dual [36].
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VII Conclusions

We have presented a general framework for scalable learned iterative reconstruction 

algorithms for large-scale problems and higher dimensions, by restricting the expensive 

computation of the full resolution forward operator to only one application in the final 

reconstruction space and as such reduces computation times as well as memory footprint of 

the learned iterative scheme. This multi-scale approach is especially powerful in higher 

dimensions, such as 3D, where the computational cost of the early iterates is negligible. We 

have presented two methods to obtain such a scalable learned iterative reconstruction, a 

basic multi-scale learned (filtered) gradient scheme based on the previous work [14] as well 

as hybrid model-based iterative network combined with U-Net, that reuses previously 

computed gradients on each scale in the respective U-Net scales.

The presented algorithms are evaluated by reconstructing 3D volumes of walnuts from real 

measurements, successfully demonstrating scalability of model-based iterative 

reconstructions to higher dimensions for non-trivial forward operators. The proposed 

architectures produce competitive results compared to post-processing with U-Net with an 

increasing robustness due to the iterative model-based nature of the methods. Additionally, 

we have evaluated the proposed algorithms in 2D in comparison to an established learned 

gradient scheme, that does not provide easy scalability.

Whereas this work is primarily a methodological study, we believe that it will be of high 

relevance to applications where high dimensionality of the imaging problem is inherent with 

computationally demanding forward operators, such as it is the case in cone beam CT.
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Fig. 1. 
Visualisation of the MS-LGS as outlined in algorithm 1. Each iteration is performed on their 

respective discretisation space, where the gradient ∇Di: = ∇Di fi; g  is computed and the 

update is performed by the network Λθi. After each update an up-sampling by τi to the next 

finer space is performed until the final resolution SN is achieved.
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Fig. 2. 
The proposed ∂U-Net architecture for multi-scale learned iterative reconstructions of CBCT 

reconstructions in 3D. The left part of the network consists of a MS-LFGS, which uses a U-

Net on the right in the final iterate. Additionally, the output and corresponding gradient 

information of each iterate is re-used in the respective scale of the U-Net.
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Fig. 3. 
Reconstructions of the Walnut used for testing from 60 angles and resolution 1683. 

Reconstructions are compared to the phantom computed from a total of 1200 angles and 

three scanning positions to negate cone beam artefacts. The reconstruction by FDK is 

computed with Hann filter and frequency scaling h = 0.6 (PSNR=26.95). The proposed 

algorithm ∂U-Net (PSNR=34.69) is compared to post-processing by U-Net (PSNR=34.62) 

and the multi-scale approach MS-LFGS (PSNR=34.13) using a mini U-Net in each scale.
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Fig. 4. Robustness study with respect to additional noise in the test data. Specifically, normally 
distributed random noise is added to the projection data and reconstruction quality is evaluated 
for all algorithms under consideration.
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Fig. 5. Reconstruction of an ellipse phantom of size 15362 from 512 angles with 5% normally 
distributed random noise. (Left) Phantom used to create the data, (Middle) reconstruction by 
filtered backprojection, (Right) obtained reconstruction with MS-LFGS.

Hauptmann et al. Page 25

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2021 February 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 6. Memory consumption in the training phase of proposed algorithms and reference learned 
methods for simulated data in 2D of increasing size. Maximal available memory on the GPU was 
12196MB.
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Fig. 7. Sample slice from the test patient windowed to [–300, 300]HU and the corresponding 
measurement data from 600 angles with a mean of 8000 photon counts.
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Fig. 8. Reconstructions of the test patient for measurement case 1 with 600 angles. All images are 
windowed and displayed on [–300,300]HU. The filtered backprojection here is computed with h 
= 0.4.
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Fig. 9. Representation of the multi-scale scheme used in the ∂U-Net with obtained reconstruction, 
gradient, and filtered gradient on each discretisation space. Reconstructions obtained for the test 
walnut from 60 angles, here we show the middle slice in the xy-plane.
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Table I
Quantitative measures and computational resources for CBCT reconstructions of the 
walnut data from 60 angles. Computed values are given for the test data in comparison to 
the ground-truth from full measurements. Additionally, we present estimated benchmark 
values for LGS.

PSNR SSIM Train Exec. Parameter Memory

FDK 26.95 0.424 ~1m 260ms 1 723MB

U-Net denoiser 34.62 0.910 4h29m 528ms 6.3·106 6097MB

MS-LFGS (ResNet) 32.98 0.878 5h04m 526ms 2.4·104 2547MB

MS-LFGS (MINI U-Net) 34.13 0.903 7h02m 645ms 2.1·105 4853MB

∂ U-Net 34.69 0.914 7h28m 795ms 4.1·106 5313MB

LGS (5 ITER., ESTIMATED) – – ~25h 2.5s ~ 2 · 105 ~ 12500MB
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Table II
Quantitative measures for low dose scans along with benchmark results for each 
algorithm. Averaged over 210 slices of test patient. Mean values are shown with their 
standard deviation.

PSNR SSIM Train Exec. Parameter Memory

FBP 32.48 ±1.55 0.73 ±0.0612 -10s 33ms 1 1477MB

LGS 43.25 ±1.24 0.963 ±0.0032 2h31m 149ms 128970 2229MB

U-Net denoiser 42.76 ±1.52 0.960 ±0.0026 1h38m 67ms 3.1·107 2733MB

MS-LGS 41.42 ±1.33 0.948±0.0041 1h42m 53ms 128970 1143MB

MS-LFGS 42.85 ±1.25 0.960 ±0.0034 2h07m 154ms 129690 1143MB

∂ U-Net 43.51 ±1.23 0.965 ±0.0032 3h25m 224ms 2.3·106 1351MB
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Table III
Scaling properties of discussed algorithms in terms of memory footprint and operator 
evaluations. Here, n is the image size, d is the image dimension (usually d = 2,3), and N 
refers to number of unrolled iterations in learned iterative schemes.

Memory OPERATOR EVAL.

FBP O(nd) 1

U-Net denoiser O(nd) 1

LGS O(Nnd) O(N)

Multi-scale O(nd) O(1)
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