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Abstract

Protein synthesis is an energetically costly, complex and risky process. Aberrant protein 

biogenesis can result in cellular toxicity and disease, with membrane-embedded proteins being 

particularly challenging for the cell. In order to protect the cell from consequences of defects in 

membrane proteins, quality control systems act to maintain protein homeostasis. The majority of 

these pathways act post-translationally; however, recent evidence reveals that membrane proteins 

are also subject to co-translational quality control during their synthesis in the endoplasmic 

reticulum (ER). This newly identified quality control pathway employs components of the 

cytosolic ribosome-associated quality control (RQC) machinery but differs from canonical RQC in 

that it responds to biogenesis state of the substrate rather than mRNA aberrations. This ER-

associated RQC (ER-RQC) is sensitive to membrane protein misfolding and malfunctions in the 

ER insertion machinery. In this Review, we discuss the advantages of co-translational quality 

control of membrane proteins, as well as potential mechanisms of substrate recognition and 

degradation. Finally, we discuss some outstanding questions concerning future studies of ER-RQC 

of membrane proteins.
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Introduction

Eukaryotic cells can expend up to 30% of their energy resources on the production of new 

proteins (Buttgereit and Brand, 1995). One reason that protein synthesis accounts for such a 

large proportion of cellular energy consumption is the low yield of functional proteins and 

protein complexes. It is estimated that between 10 and 30% of nascent peptides in 

mammalian cells are degraded during or shortly after synthesis as a result of defects in 

biogenesis or maturation (Schubert et al., 2000; McShane et al., 2016). The consequences of 

synthesis errors can be severe; aberrant proteins resulting from improper biogenesis tend to 
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aggregate, which in turn is associated with cellular damage. This can result in diseases such 

as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and some forms of type 

II diabetes, lung cancer and heart disease (Hartl, 2017). Substitution of even a single amino 

acid that influences the topology of the non-essential prion protein (PrP) can cause protein 

aggregation at the cellular level and neurodegeneration at the organismal level (Hegde et al., 

1998).

In this Review, we will discuss how defects in biogenesis of membrane proteins (MPs) are 

handled early during their synthesis while they are still associated with translating 

ribosomes. Misfolding mutations in MPs have been associated with retinal degeneration 

(Cremers et al., 2020), cystic fibrosis (CF) (Kim and Skach, 2012), Charcot–Marie–Tooth 

disease (Bergoffen et al., 1993) and many other pathologies. Of the 1100 MPs annotated in 

the UniProt disease-related database, it has been hypothesised that most disease-causing 

mutations result in misfolding and/or aggregation (Marinko et al., 2019). In order to avoid 

cellular toxicity associated with aberrant or misfolded MPs, eukaryotic cells have evolved an 

extensive quality control network.

The central hub of MP quality control is the endoplasmic reticulum (ER). It is a major site of 

MP synthesis, and monitors various physical and contextual properties, including folding 

state (Vembar and Brodsky, 2008), glycosylation (Lamriben et al., 2016), oligomerisation 

(Natarajan et al., 2019) and organelle localisation (Chen et al., 2014; Okreglak and Walter, 

2014; Weir et al., 2017). The cornerstones of ER quality control include the soluble 

chaperones of the cytosol and ER lumen that promote protein folding; the unfolded protein 

response (UPR) (Karagöz et al., 2019), a global cellular response to accumulation of 

misfolded proteins; and ER-associated degradation (ERAD), which disposes of terminally 

misfolded proteins (Wu and Rapoport, 2018). These and other related quality control 

mechanisms have been extensively reviewed recently (Juszkiewicz and Hegde, 2018; 

Phillips et al., 2020) and will not be covered here. Instead, we will focus on quality control 

that acts during translation to prevent the accumulation of aberrant MPs at the earliest 

opportunity. This pathway has parallels with cytoplasmic ribosome-associated quality 

control (RQC) and has thus been termed ER-RQC (Joazeiro, 2019). In the context of 

aberrant MPs, ER-RQC appears to act pre-emptively to avoid the accumulation of 

potentially toxic misfolding MPs (Lakshminarayan et al., 2020; Trentini et al., 2020). 

Notably, unlike canonical RQC, this newly discovered co-translational quality control does 

not appear to respond to errors in the mRNAs encoding substrates. Instead, the process 

responds to the biogenesis state of the substrate. In this Review, we will discuss how defects 

in MP biogenesis might arise and describe the basic machinery involved in RQC. We will 

subsequently explore the relationship between ER-RQC and aberrant MPs, and describe 

potential mechanisms that might trigger ER-RQC, before considering outstanding questions 

in the field.

Biogenesis of MPs

The majority of MPs follow a common biogenesis pathway that has been heavily studied 

and is, for the most part, well understood (Rapoport et al., 2004; Osborne et al., 2005; Shao 

and Hegde, 2011; Park and Rapoport, 2012; Barlowe and Miller, 2013; Cymer et al., 2015b; 
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Rapoport et al., 2017). Substrates containing either an N-terminal signal peptide (SP) or a 

hydrophobic transmembrane-domain (TMD) are engaged at the mouth of the ribosome exit 

tunnel by the signal recognition particle (SRP). The SRP-bound ribosome is recruited to the 

ER membrane via interactions between SRP and its cognate receptor (SRP receptor, or SR). 

The nascent chain is subsequently transferred to the trimeric Sec61 translocon complex in an 

incompletely understood molecular hand-off reaction (Jomaa et al., 2017; Kobayashi et al., 

2018).

In the case of SP-containing proteins, the SP intercalates at the Sec61 lateral gate, propping 

open the channel and allowing passage of the nascent chain into the lumen (Voorhees and 

Hegde, 2015). The SP is subsequently proteolytically cleaved and removed. If the first 

hydrophobic element is a TMD, this sequence intercalates at the lateral gate of the 

translocon, before partitioning into the lipid bilayer. Following insertion of the first TMD, 

subsequent TMDs are sequentially inserted by the Sec61 translocon with soluble regions 

alternating between the cytosol and the lumen (Rapoport et al., 2004).

In this co-translational insertion process, there are multiple opportunities for errors to arise 

and, as a result, several potential points where quality control might be required (Fig. 1). The 

first potential source of error lies in establishing the correct topology during insertion of 

TMDs (Coelho et al., 2019). The topology decision for the first TMD is particularly 

important as it usually determines the topology of the entire protein, with some notable 

exceptions (Gafvelin et al., 1997; Sato et al., 1998a,b; Lu et al., 2000). Establishing the 

correct topology for a multi-pass MP has been likened to establishing the ‘reading frame’ 

during translation and is of paramount importance for correct biogenesis. A notable feature 

of MPs, with the exception of type 1 MPs, is that positive residues tend to be enriched in 

cytosolic sequences flanking the TMDs, leading to the ‘positive inside rule’ (Von Heijne, 

1986). In bacteria, it is likely that this topology is partly dictated by the proton motive force 

across the membrane (Cao et al., 1995). In eukaryotic cells, the source of this discrimination 

is less clear, although charges on the cytosolic face of Sec61 and auxiliary translocon 

associated factors have been implicated (Goder et al., 2004; Higy et al., 2004).

A second potential source of error is the integration of TMDs into the bilayer. Many TMDs 

contain charged and polar residues that are essential for function, for example, in pore 

formation for ion channels (Tao et al., 2009) or membrane occlusion sites for transporter 

proteins (Kato et al., 2015; Hiraizumi et al., 2019). As a result, many TMDs are only weakly 

hydrophobic and their insertion into the membrane is not as favourable as the insertion of 

more hydrophobic TMDs (Enquist et al., 2009). Insertion defects are often magnified by 

disease-causing mutations (Schlebach and Sanders, 2015), and mutation of hydrophobic to 

polar residues in TMDs of MPs is disproportionately likely to cause disease (Partridge et al., 

2004). In the final fold of a protein, polar and charged residues are normally protected from 

the hydrophobic core of the lipid bilayer through interactions with other TMDs. However, 

due to the sequential nature of TMD insertion, cognate interacting residues may not be 

available until all the TMDs are inserted, rendering unshielded residues vulnerable to 

reduced membrane partitioning. Indeed, intimate contacts between early and late emerging 

TMDs have been observed in structures such the cystic fibrosis transmembrane conductance 

regulator (CFTR) (Zhang and Chen, 2016). These contacts cannot be fulfilled until insertion 
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of the final TMDs, so upstream TMDs may either fail to insert properly or require assistance 

for stable insertion until synthesis is complete. Furthermore, the broader protein fold may be 

destabilised in the absence of these favourable interactions. In support of the importance of 

these interactions, there is experimental evidence for force generation as a result of 

interactions between C-terminal and N-terminal TMDs of an MP during co-translational 

insertion (Cymer and Von Heijne, 2013).

Finally, MPs can contain large soluble domains, on both the lumenal and cytosolic sides of 

the membrane, that must also fold correctly. Mutations in such soluble domains can result in 

extensive misfolding throughout the protein, including in the TMDs. Such widespread 

misfolding is found in the most common diseasecausing mutation in CFTR, ΔF508 (De 

Boeck et al., 2014). This residue maps to the first cytosolic nucleotide-binding domain, but 

forms the basis of an important interface with the cytosolic loops that join the membrane-

spanning helices, resulting in destabilisation of the entire protein fold when deleted 

(Mendoza et al., 2012). Mutations in either TMDs or soluble domains can impact protein 

folding during insertion into the ER membrane and therefore must be managed by a cellular 

quality control system.

Co-translational quality control

Insertion, topology and TMD-folding challenges occur during translation of MPs. In 

contrast, the best-studied quality control systems (e.g. ERAD) act post-translationally. This 

temporal separation allows the nascent protein to engage with machinery that can promote 

folding prior to decisions about degradation. However, recent data suggest that an additional 

form of quality control can occur co-translationally (Lakshminarayan et al., 2020; Trentini et 

al., 2020). This co-translational process appears to be a form of quality control called 

ribosome-associated quality control (RQC). The RQC pathway, which degrades nascent 

polypeptide chains, along with the related non-stop decay (NSD) (Frischmeyer et al., 2002; 

van Hoof et al., 2002) and no-go decay (NGD) (Doma and Parker, 2006) mRNA-

surveillance pathways, are triggered by problems that arise from aberrant mRNAs. Such 

problems can include mRNA lesions that prevent translation elongation and mRNAs that 

lack a stop codon before a poly-adenine [poly(A)] sequence (Joazeiro, 2019). Although 

RQC has predominantly been studied in the context of cytosolic proteins, emerging evidence 

suggests that similar pathways can also function at the ER (Brandman and Hegde, 2016; 

Joazeiro, 2019), and employ some of the core machinery that has been well characterised for 

the RQC-based recognition and resolution of cytosolic mRNA lesions. The term ER-RQC 

was coined to describe the action of this quality control process at the ER (Joazeiro, 2019).

RQC is triggered when translation elongation becomes stalled. The best studied example of 

a stall-inducing event is a ‘non-stop’ transcript, in which a poly(A) sequence occurs without 

an upstream stop codon. When a ribosome translates through a ‘non-stop’ poly(A) tract, 

charge interactions between the nascent chain and the ribosome exit tunnel result in a 

slowdown of translation across approximately six codons, caused by changes to the 

geometry of the peptidyl-transferase centre (PTC) (Chandrasekaran et al., 2019; Tesina et 

al., 2020). This translational slowing eventually leads to stalling, which is ultimately caused 

by single-helix stacking interactions between the mRNA and ribosomal RNA that perturb 
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elongation by sterically excluding the formation of the tRNA–eEF1A–GTP ternary complex 

that is required for elongation.

The cue that activates RQC of the nascent protein is a collision between an upstream 

ribosome and the terminally stalled downstream ribosome (Juszkiewicz et al., 2018; Ikeuchi 

et al., 2019a,b). The collided state forms a unique interface, which is recognised by the E3 

ubiquitin ligase ZNF598 (Hel2 in yeast). ZNF598 ubiquitylates uS10, uS3 and eS10 on the 

small ribosomal subunit; this signals commitment to the RQC pathway and initiates 

recruitment of additional factors that drive ribosome recycling and degradation of the 

nascent chain (Garzia et al., 2017; Juszkiewicz and Hegde, 2017; Matsuo et al., 2017; Sitron 

et al., 2017; Sundaramoorthy et al., 2017). The machinery involved in these downstream 

processes are well described, although some details of engagement remain incompletely 

understood. Stalled ribosomes with a codon in the A site are split by the activating signal 

cointegrator 1 complex (ASCC) complex (comprising ASCC1, ASCC2 and ASCC3) 

(Juszkiewicz et al., 2020a,b) in mammals or the homologous RQT complex (Matsuo et al., 

2017; Sitron et al., 2017) in yeast [Slh1 and Cue3 (also known as Rqt2 and Rqt3, 

respectively), and Rqt4] (Matsuo et al., 2020). In addition, a complex comprising Dom34 

and Hbs1 (Pelota and Hbs1 plus ABCE1 in mammals) splits ribosomes stalled at truncated 

mRNAs with an empty A site (Shoemaker et al., 2010; Pisareva et al., 2011; Tsuboi et al., 

2012) in a process that can act independently of ZNF598. Once the ribosome has been split, 

the exposed tRNA bound to the 60S ribosomal subunit is recognised by Rqc2 and the E3 

ubiquitin ligase Ltn1 (NEMF and listerin in mammals), which ubiquitylate the nascent 

chain, marking it for degradation at the proteasome (Chu et al., 2009; Bengtson and 

Joazeiro, 2010; Brandman et al., 2012; Shao et al., 2013). The nascent chain is then liberated 

from the tRNA via the action of Vms1 (ANKZF1 in mammals) (Izawa et al., 2017; Verma et 

al., 2018; Su et al., 2019; Yip et al., 2019) and extracted from the exit tunnel before 

degradation at the proteasome in a process dependent on Cdc48 (Brandman et al., 2012; 

Defenouillère etal., 2013). In Saccharomyces cerevisiae, Hel2-mediated ubiquitylation is 

also a trigger for degradation of the mRNA via the 5′-3′ exonuclease Xrn1 (Tesina et al., 

2019), the endonuclease Cue2 (D’Orazio et al., 2019) and the 3′-5′ exonuclease activity of 

the cytoplasmic exosome, which is recruited to the ribosome by the Superkiller (SKI) 

complex (van Hoof et al., 2002). It is likely that mammals degrade the mRNA in a similar 

manner, although this is less well characterised experimentally. An additional strand of NGD 

has recently been described in S. cerevisiae that is distinct from the pathway that engages 

traditional RQC. In this pathway, termed NGDRQC, Hel2-mediated ubiquitylation is 

preceded by Not4-mediated mono-ubiquitination of the ribosomal protein eS7 (Ikeuchi et 

al., 2019a,b) resulting in endonucleolytic mRNA cleavage upstream of the collided disome.

Rqc2 (NEMF in mammals) performs a second function in RQC in S. cerevisiae by 

catalysing the extension of the nascent polypeptide chain into C-terminal alanine-threonine 

(CAT) tails (Shen et al., 2015). This protein synthesis reaction is functionally independent of 

the 40S ribosomal subunit or any of the traditional translational GTPases (Osuna et al., 

2017), and acts to push the nascent chain out of the ribosome exit tunnel. This extension is 

thought to serve two main purposes. First, it increases the likelihood of an available 

ubiquitin acceptor lysine residue coming into contact with the Ltn1 catalytic domain, which 

resides at the mouth of the ribosomal exit tunnel (Shao et al., 2015; Kostova et al., 2017) to 
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ubiquitylate substrates. Second, the resulting CAT tail induces the aggregation and 

potentially also degradation of substrates (Yonashiro et al., 2016; Izawa et al., 2017; Sitron 

and Brandman, 2019). A form of CAT-tailing has recently been discovered in bacteria, 

indicating that it may be one of the most ancient forms of co-translational quality control 

(Lytvynenko et al., 2019). Recent reviews have covered the process of soluble RQC in 

extensive detail (Ikeuchi et al., 2019a,b; Joazeiro, 2019), instead we shall focus on the newly 

discovered RQC of MPs.

ER-RQC of MPs

RQC events at the ER have largely been studied in the context of aberrant mRNAs that are 

similar to well-defined cytoplasmic substrates but directed to the ER (see Box 1). Insights 

obtained from two new studies now specifically link the biogenesis of large multipass MPs 

with RQC (Lakshminarayan et al., 2020; Trentini et al., 2020) in the absence of obvious 

mRNA defects. Investigating the biogenesis of the multi-pass yeast ABC transporter Yor1, 

our laboratory, together with collaborators, discovered that misfolded Yor1 was subject to 

co-translational degradation, dependent on the specific type of misfolding induced by 

different mutations (Lakshminarayan et al., 2020). This quality control event was 

independent of ERAD genes but could be rescued by deletion of Hel2 and other RQC 

factors. Furthermore, degradation was also attenuated by reducing ribosome density on 

mRNAs or by increasing the surface area of the ER membrane (see Box 2) (Schuck et al., 

2009; Lakshminarayan et al., 2020). Taken together, these findings support a role for 

ribosome collisions in the degradation process (Lakshminarayan et al., 2020). Such a 

discovery marks a departure from previous studies of ER-RQC (see Box 1), as it suggests 

that the biogenesis state of the protein can also act as an input to RQC. As such, the RQC 

machinery is sensitive not just to the hard-coded information in the mRNA, but also to 

dynamic cues from the folding nascent chain. In a second study, listerin-knockout human 

cells were used to demonstrate that RQC contributes to generation of antigenic peptides 

(Trentini et al., 2020). Importantly, immunopeptidome analysis revealed that multipass MPs 

are specifically enriched as a class of listerin-dependent substrates. One implication of this 

enrichment is that MPs constitute a significant portion of so-called defective ribosomal 

products, or DRiPs, that are a source of self-peptides, and likely reflect errors in MP 

biogenesis (Trentini et al., 2020). Collectively, these observations suggest that aberrant 

biogenesis of MPs can trigger ER-RQC (Fig. 2). Intriguingly, co-translational ubiquitylation 

of CFTR and apolipoprotein B100 were first observed over 20 years ago (Sato et al., 1998b; 

Zhou et al., 1998), but it has only recently been realised that this may be the result of RQC.

Notably, both recent studies of ER-RQC of MPs implicate the ER membrane complex 

(EMC), a conserved complex of 6—10 ER membrane and cytoplasmic proteins (Jonikas et 

al., 2009; Wideman, 2015). The EMC can act as an insertase for tail-anchored (TA) proteins 

(Guna et al., 2017) and transmembrane proteins that have short lumenal N-termini (Nexo 

topology) (Chitwood et al., 2018). Recent structural characterisation of the EMC has 

suggested that it could mediate the insertion of hydrophobic TMDs through a mechanism 

that reduces the energetic barrier of TMD insertion into the membrane (Bai et al., 2020; 

O’Donnell et al., 2020; Pleiner et al., 2020). However, the EMC has been widely implicated 

in the biogenesis of many MPs that do not assume an Nexo or TA topology (Luo et al., 
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2002; Bircham et al., 2011; Christianson et al., 2012; Louie et al., 2012; Richard et al., 2013; 

Satoh et al., 2015; Bagchi et al., 2016; Marceau et al., 2016; Tang et al., 2017; Volkmar et 

al., 2018; Barrows et al., 2019; Tian et al., 2019; Xiong et al., 2020; Chitwood and Hegde, 

2019; Hiramatsu et al., 2019). The broad range of topologies of EMC substrates has led to 

suggestions of a role as a co-translational intra-membrane chaperone (Shurtleff et al., 2018; 

Coelho et al., 2019; Hiramatsu et al., 2019; Lin et al., 2019; Ngo et al., 2019; Volkmar and 

Christianson, 2020), although a chaperoning function is yet to be functionally demonstrated. 

In the case of yeast Yor1-ΛF, which has its N-terminus in the cytoplasm (i.e. Ncyt topology), 

biogenesis defects were triggered by the combination of protein misfolding and deletion of 

EMC. Mutations that restrict the gating properties of the Sec61 translocon similarly 

triggered ER-RQC (Lakshminarayan et al., 2020). In human cells, where deletion of listerin 

revealed ER-RQC of multi-pass MPs, the EMC was upregulated, suggesting that induction 

of membrane insertion machinery is an adaptive response to the presence of aberrant MPs 

(Trentini et al., 2020). Together, these links to EMC and Sec61 suggest that ER-RQC can be 

triggered by errors in the insertion of TMDs at the ER, and that the machinery is responsive 

to folding states of nascent polypeptides rather than just mRNA lesions. This distinction is 

of particular note as, so far, RQC studies have been linked explicitly to errors in mRNA 

rather than in the biogenesis state of the polypeptide. The relative contributions of mRNA 

errors and protein biogenesis errors in RQC at the ER remains unclear and is an important 

area for future investigation (see Box 1). Intriguingly, mutation of hydrophobic residues in 

the TMD of the low density lipoprotein receptor (LDLR) with arginine residues results in 

degradation that is independent of ERAD or the lysosome, potentially also as a result of ER-

RQC (Strøm et al., 2017).

Plants and mammals also possess an ER-associated quality control pathway that involves 

UFMylation of collided ribosomes followed by autophagic trafficking of substrates to the 

lysosome (Madlen et al., 2020; Walczak et al., 2019; Wang et al., 2020). Although this 

pathway has been characterised with artificially stalled substrates, proteomic analysis 

suggests many potential clients accumulate when this pathway is perturbed, suggesting a 

broad spectrum of potential targets.

Characteristics of ribosome stalls during MP biogenesis

The nature of ribosome-stalling events that trigger ER-RQC of MPs are likely to be distinct 

from the well-characterised examples of cytoplasmic RQC. ER-RQC of yeast Yor1 seems 

sensitive to MP length, folding state and the function of the insertion machinery 

(Lakshminarayan et al., 2020). Cytoplasmic RQC systems are likely tuned to prevent the 

dissolution of ribosomes that have merely slowed in translation but are not permanently 

arrested (Hickey et al., 2020; Juszkiewicz et al., 2020a). Such fine tuning is important, as 

translation rates are known to vary significantly across the genome (Fluitt et al., 2007; 

Darnell et al., 2018; Wu et al., 2019), and such variation is essential for many aspects of 

protein biogenesis (Nedialkova and Leidel, 2015; Yu et al., 2015). Tolerance to translational 

slowing is probably even more important in the context of secretory and MPs, where 

translation likely slows in response to SRP recruitment (Pechmann et al., 2014; Schibich et 

al., 2016), increasing the available time for targeting to the ER. As moderate translational 

slowing can favour biogenesis and presumably does not induce ER-RQC, it seems likely that 
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the stalls that trigger the quality control checkpoint are more complex than a moderate 

slowing of elongation that leads to ribosome collision.

It remains unclear how MP biogenesis influences translation kinetics; however, examples 

from the diverse range of structurally characterised stalling sequences may provide some 

clues. Examples of such stalling sequences, or arrest peptides, include MifM and SecM in 

bacteria (Chiba and Ito, 2012; Gumbart et al., 2012), the gp48 uORF2 sequence employed 

by human cytomegalovirus (hCMV) (Bhushan et al., 2010), and stalling of the unspliced 

form of the UPR activator XBP1 (XBP1-u) at the ER membrane in eukaryotes (Schibich et 

al., 2016). In each case, stalling is facilitated by interactions between the nascent chain and 

the ribosome exit tunnel. Although the specific mechanisms of these different stalling events 

are highly heterogenous, the stalled intermediates appear to share some features in common 

(Wilson et al., 2016): (1) intimate interactions between the backbone and the ribosome exit 

tunnel; (2) abnormal or unexpected peptide bond conformations in the nascent chain near the 

peptidyl-transferase centre (PTC); and (3) altered conformations of key amino acids and 

nucleotides surrounding the PTC. In general, interactions between the nascent chain and the 

ribosome exit tunnel, and abnormal geometries around the PTC are key features in a variety 

of stalling sequences.

Ribosome exit tunnels must accommodate translation of the entire cellular proteome (Dao 

Duc et al., 2019) while avoiding significant interaction with translocating nascent chains. 

However, some sequences are more prone to stable interactions than others. Of particular 

relevance to MP biogenesis, the N-terminal signal peptide of the secreted protein PCSK9 is 

prone to stalling the ribosome through interactions with the walls of the ribosome exit tunnel 

(Li et al., 2019; Liaud et al., 2019). It is possible, therefore, to envisage TMDs, which are 

hydrophobic and prone to helix formation within the ribosomal exit tunnel (Bañó-Polo et al., 

2018), to be particularly inclined to slow movement leaving the ribosome. Such a hypothesis 

is analogous to that of uORF2 of hCMV gp48, where the stalling sequence forms a helix in 

the ribosome exit tunnel proximal to the PTC, which consequently disrupts the geometry of 

the PTC, inhibiting conventional translation termination (Matheisl et al., 2015). Similarly, a 

structure of the first example of an endogenous RQC substrate, S. cerevisiae Sdd1, revealed 

important hydrophobic interactions with the ribosomal exit tunnel, helix formation and an 

altered conformation of the PTC (Matsuo et al., 2020).

Another factor pertinent to induction of ER-RQC is the force generated by normal insertion 

of TMDs into the lipid bilayer (Cymer et al., 2014; Niesen et al., 2018). Tension on the 

nascent chain could be generated by favourable interactions between substrates and the 

Sec61 translocon, EMC or other insertases, and chaperones. In addition, the energetically 

favourable partitioning of hydrophobic TMDs into the bilayer may create a pulling force on 

the nascent chain (Fig. 3). Although such proposed models are speculative in the absence of 

empirical data on the role of nascent chain tension in ER-RQC (discussed further below), 

such tension could help overcome potential resistance generated by interactions between 

TMDs and the ribosome exit tunnel. As such, the favourable insertion of TMDs might offset 

any ‘sticky’ interactions in the exit tunnel and help to avoid ribosome collisions. This model 

is consistent with the observation that mutations affecting the co-translational insertion of 

TMDs by the Sec61 translocon induce ER-RQC of yeast Yor1 ΔF (Lakshminarayan et al., 
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2020). Alternatively, it is possible that mutations in Sec61 create a physical ‘roadblock’ 

(Lakshminarayan et al., 2020), which would sterically prevent access of substrates to the 

membrane, leading to translational stalling. It is clear that there are several potentially viable 

explanations for the mechanism of misfolding-induced ER-RQC.

Furthermore, precisely how the EMC might contribute to avoiding translational pausing and 

ribosome collision remains to be seen. The EMC is required for the biogenesis of Nexo and 

many TA MPs (Guna et al., 2017; Chitwood et al., 2018; Volkmar et al., 2018; Chitwood and 

Hegde, 2019), but it is not clear whether EMC is directly involved in biogenesis of MPs that 

do not assume the Nexo topology, or whether observed synthesis effects are the result of loss 

of another, as yet unidentified, EMC client. It is possible that the EMC is required for the 

correct insertion of weak initial TMDs, which are missed by SRP, even if they are not in the 

Nexo orientation. Similarly, the EMC may be required to re-insert TMDs that are weakly 

hydrophobic and fail to insert in the absence of their cognate binding TMD (Chen and 

Zhang, 1999) (Fig. 2). Accordingly, loss of EMC function in the context of diseasecausing 

hydrophilic mutations in the TMDs of connexin-32 exacerbates failed integration of internal 

TMDs into the bilayer (Coelho et al., 2019).

Finally, a related means of stalling is achieved by bacterial arrest peptides that trigger 

stalling on membrane-bound ribosomes in a mechanism that may be relevant for ER-RQC 

MP substrates (Wilson et al., 2016). Here, the ribosome is targeted to the membrane but 

translation stalls in the absence of an active pulling force provided by the SEC translocation 

machinery. The force provided by the SEC machinery allows the ribosome to overcome a 

stall caused by the compact α-helical structure of the arrest peptide in the exit tunnel, which 

otherwise disrupts the peptidyl-transferase activity of the ribosome (Sohmen et al., 2015; 

Zhang et al., 2015; Su et al, 2017). It is thus possible that monitoring tension on the nascent 

chain during membrane translocation or insertion is an ancient method for enforcing 

regulation of biogenesis and quality control at cellular membranes.

Conclusions and perspectives in ER-RQC

The recent identification of folding-sensitive ER-RQC of multispanning MPs raises several 

key questions. First of all, it is unclear whether the canonical RQC machinery is sufficient 

for this form of ER-RQC or whether additional proteins are involved. In order to define the 

minimal machinery for ER-RQC, it will be necessary to identify tractable substrates for ER-

RQC, akin to the fluorescent poly(A) reporters widely utilised in the study of cytosolic RQC 

(Juszkiewicz and Hegde, 2017). Model substrates will enable genetic screening to identify 

and characterise components that are specific to RQC at the ER. One challenge in such an 

approach is likely to be redundancy between RQC and collision-induced mRNA decay, since 

early experiments indicate that the two processes can be synergistic at the ER (Arakawa et 

al., 2016). Additional redundancy with ERAD components may also be a complicating 

factor. Although degradation of Yor1-ΔF was independent of known ERAD genes 

(Lakshminarayan et al., 2020), other studies have implicated ERAD machinery in the 

extraction of RQC substrates at the ER(Cesaratto et al., 2019). Such differences might 

indicate substrate specificity, further complicating the use of generic reporters. Thus, it will 

be important to, in parallel, determine the native substrate pool for ER-RQC, building on 
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existing data that identify some substrates potentially prone to ER-RQC (Arakawa et al., 

2016). Novel approaches utilising sucrose-gradient fractionation and quantitative mass 

spectrometry have recently been used to identify the co-translational regulator EDF1, which 

acts at collided ribosomes (Sinha et al., 2020). Similar approaches may also prove valuable 

in investigating RQC at the ER.

It remains to be established how certain specific pauses avoid recognition by the RQC 

machinery; for example, SRP-mediated translational slowing. Although the extent of stalling 

induced by SRP binding to the ribosome is unclear in living cells (Pechmann et al., 2014; 

Schibich et al., 2016), it likely results in at least some slowing down of translation. Whether 

or not additional machinery is required to specifically shield SRP-bound ribosomes from 

RQC is unclear. Similarly, the relative interplay between the UPR and XBP1-u regulation 

via RQC (Han et al., 2020) remains to be explored, as well as how ER-RQC integrates into 

the cellular proteostasis network more broadly. Hartl and colleagues note that one potential 

reason for increased ribosome stalling at the ER could be the non-specific nuclease activity 

of Ire1 α (also known as ERN1) (Trentini et al., 2020), which can produce truncated 

transcripts at the ER that would ultimately require rescue via RQC. Non-specific mRNA 

cleavage by Ire1 α has been demonstrated to form an integral part of the protective 

proteostasis network and has been termed regulated Ire1-dependent decay (RIDD) (Hollien 

and Weissman, 2006; Hollien et al., 2009). By degrading mRNAs destined for insertion at 

the ER, RIDD relieves pressure on folding and insertion resources at the ER during acute ER 

stress. RQC pathways would be necessary to resolve ribosomes that translate to the end of a 

truncated mRNA with no stop codon. Such a potential relationship between RIDD and ER-

RQC substrates merits further investigation, especially considering the significance of Ire1 

function in human disease (Maurel et al., 2014; Yan et al., 2019).

One final area of interest with respect to ER-RQC is the interplay between productive 

protein folding and the avoidance of ribosome stalls. Single-molecule experiments have 

recently revealed the folding trajectory of a multi-pass MP at the scale of helix-bundle 

formation (Jefferson et al., 2018; Choi et al., 2019; Krainer et al., 2019). In models of 

misfolding-induced RQC, it will be important to establish the potential sources of force 

generation at multiple stages of MP biogenesis. Folding measurements of ER-RQC 

substrates in the presence or absence of potential modifiers, such as the EMC, will help 

dissect the contribution of insertases and chaperones in TMD insertion and folding. Such an 

approach has been previously used to probe the role of the EMC3 homolog YidC in the 

folding of the LacY MP (Serdiuk et al., 2016). These experiments can be conducted under 

tightly regulated conditions using lipid nanodiscs, allowing precise control over relative 

stoichiometries and lipid composition. As such, they provide a unique opportunity to directly 

measure the contribution of probiogenesis factors in the absence of confounding cellular 

machinery. However, it will also be necessary to investigate force generation in relation to 

RQC and MP biogenesis in the cellular context. Arrest peptides can be finely tuned to 

function as force sensors (Cymer et al., 2015a), which will be useful in studying force 

generation during MP insertion. Force sensors could be used to probe the impact of disease-

causing mutations, defined ER-RQC substrates and EMC substrates. Such approaches have 

been used previously to investigate force generation during insertion by the Sec61 translocon 
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(Ismail et al., 2015) and during both conventional MP folding (Cymer and Von Heijne, 

2013) and soluble protein folding (Farías-Rico et al., 2018).

Clearly there is much future work to be done to expand on our understanding of the scope, 

role and mechanism of ER-RQC in cells. In order to maximise efficiency of protein 

biogenesis while protecting against proteotoxicity, the cell must identify and neutralise the 

threats posed by misfolded proteins as early as possible. ER-RQC complements the variety 

of kinetic filters employed by membrane targeting machinery (Guna and Hegde, 2018) to 

ensure high fidelity in the earliest stages of integral MP biogenesis.
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Box 1

ER-RQC

RQC in the cytosol monitors the translation state of a ribosome to give a readout of the 

quality of the translated product. Because mRNA-dependent RQC should be agnostic to 

the location of the protein encoded by the mRNA, it likely occurs at comparable 

frequencies at the membrane and in the cytosol. The fact that almost a quarter of nascent 

proteins are produced at the ER (Fagerberg et al., 2010) suggests that MPs and soluble 

proteins that are translocated into the ER lumen account for a significant fraction of total 

cellular RQC substrates. However, RQC of membrane and secretory proteins presents a 

distinct set of challenges, since stalled peptides may need to be extracted both from the 

ribosome and the membrane and/or translocon prior to degradation. Artificially induced 

stalls on a truncated nascent chain demonstrated that listerin and NEMF can function at 

the ER membrane (Von Der Malsburg et al., 2015) and are not sterically impeded in 

accessing substrates as they ‘backslide’ out of the translocon. Additional studies support 

a role for Dom34–Hbs1 in the degradation of non-stop constructs targeted to the ER or 

mitochondria, with the substrate either released into the lumen or degraded (Izawa et al., 

2012; Crowder et al., 2015; Arakawa et al., 2016). Although these studies demonstrated 

that RQC can occur at the ER, it was still considered to mostly be triggered by 

inappropriate polyadenylation (Ozsolak et al., 2010; Pelechano et al., 2013; 

Chandrasekaran et al., 2019), which is presumed to be broadly agnostic to the specific 

biology or cellular localisation of substrates. More recently, the regulatory XBP1-u 

mRNA(Ron and Walter, 2007) has been revealed as a target of RQC at the ER (Han et al., 

2020). The relative contribution of aberrant mRNAs compared to misfolding-driven RQC 

at the ER is an important area for further study.
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Box 2

Constraints influencing ribosome collisions on the membrane

An important question in ER-RQC is how the recruitment of ribosomes to the ER 

membrane influences the likelihood of collisions and induction of quality control events. 

Early modelling suggested that the arrangement of the co-translational insertion 

machinery still permitted access of listerin to the nascent chain (Von Der Malsburg et al., 

2015), and it was later suggested that the collided disome structure could still form stably 

at the membrane if both ribosomes were bound to a minimal Sec61 translocon complex 

(Juszkiewicz et al., 2018). The potential steric impact of translocon-associated accessory 

factors, such as the oligosaccharyl transferase (OST) complex (Braunger et al., 2018) and 

others (McGilvray et al., 2020), remains to be explored. It is clear that a stable collided 

disome structure requires significant bending of the ER membrane, though not beyond 

levels of curvature regularly observed in electron micrographs. It is even less clear how 

tethering translating ribosomes to the membrane surface impacts the likelihood of 

collisions occurring. It is possible that binding translating ribosomes to Sec61 channels 

reduces the chance of collisions occurring compared to cytosolic ribosomes, by 

introducing an extra level of spatial restriction. The only clue regarding the impact of 

translocon spacing on ER-RQC comes from experiments where a large expansion of the 

ER was triggered by the deletion of OPI1, a negative regulator of ER lipid biosynthesis. 

This expansion does not increase the abundance of the Sec61 translocon (Schuck et al., 

2009). As a result, the translocons are spaced further apart from each other, a condition 

that rescued the degradation of Yor1-ΔF, an ER-RQC substrate (Lakshminarayan et al., 

2020). Because expansion of the ER can improve folding capacity independent of 

chaperone levels, it will be important to investigate the impact of translocon surface 

density on ER-RQC more rigorously in future.
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Fig. 1. Potential sites of error during co-translational insertion of membrane proteins at the ER.
Membrane protein biogenesis at the ER begins with targeting of a translating nascent chain 

to an hour-glass shaped channel called the Sec61 translocon. The nascent chain is inserted 

into the Sec61 translocon and then partitions into the phospholipid bilayer through a lateral 

gate. During this process there are several instances where errors may arise. (A) Orientation 

of the first TMD as it enters the membrane, where the N-terminus must be correctly 

localised to the ER lumen (Nexo) or cytoplasm (Ncyt). This orientation defines the topology 

of the subsequent TMDs, meaning errors at this stage can result in incorrect topology of the 

entire protein. (B) Failed insertion of poor TMDs. Some TMDs are weakly hydrophobic or 

charged and, as a result, may not insert correctly in the absence of their cognate binding 

TMDs. (C) Misfolding of soluble domains. In some instances, MPs contain large soluble 

domains, which are required to fold correctly for overall protein fold. Failure to fold such 

domains can therefore also impact TMD packing.
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Fig. 2. Membrane protein biogenesis defects result in ER-RQC.
Defects in TMD insertion through the EMC or Sec61, attempted insertion of poorly 

hydrophobic TMDs or poor shielding of TMD charges might all contribute to ribosome 

stalls. Additionally, insertion of TMDs after large soluble domains might also present a 

challenge due to release of the ribosome from the translocon while cytoplasmic domains are 

synthesised. Translational stalls at the ER that result in ribosome collisions are recognised 

by the ubiquitin ligase Hel2, followed by splitting of the ribosome by the RQT complex (and 

potentially also Dom34-Hbs1). Following splitting of the ribosome, the exposed nascent 

chain-tRNA complex is recognised by Rqc2 and listerin (Ltn1). This complex ubiquitylates 

the nascent chain, targeting it for degradation. The final step of extraction and degradation of 

the chain is less well understood, and evidence concerning details of this process at the ER is 

sparse. Extraction and degradation of substrates at the ER may involve as yet unidentified 

proteins, potentially including ERAD machinery.
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Fig. 3. Sources of tension to overcome ribosome stalls.
Interactions between nascent TMDs and the ribosomal exit tunnel may result in a slowing 

down in translation. There are multiple sources of tension that may provide the force on the 

nascent chain required to overcome this type of stall. Tension may be generated by any of 

the following: interactions between the nascent chain and the Sec61 translocon, favourable 

partitioning of a TMD into the lipid bilayer, action of the EMC (either as an insertase or as a 

chaperone), inter-TMD interactions within the MP, or interactions between TMDs and a 

chaperone.
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