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1. Introduction

Tuberculosis (TB) is a major global health threat caused by Mycobacterium tuberculosis (Mtb) that most often affects the
lungs (pulmonary TB) but can affect other sites as well (extrapulmonary TB). Fortunately, TB is a preventable and curable
disease. Following the World Health Organization (WHO), more than 51 million patients have been successfully treated
in countries that adopted the WHO strategy since 1995 [1]. However, the global burden of TB remains enormous. In 2011,
there were an estimated 8.7 million new cases of TB (13% co-infected with HIV) and 1.4 million people died from TB [1].
In 2013, there were 9 million new TB cases and 1.5 million TB deaths (in which 0.4 million are HIV-positive patients) [2].
The increase of new cases lies in multiple factors such as the spread of HIV, the collapse of public health programs, the
emergence of drug-resistant strains of Mtb [3-5] and exogenous re-infections, where a latently-infected individual acquires
a new infection from another infectious individual (see, for example, [6,7] and references therein). The TB control approach
is the chemoprophylaxis treatment in the absence of an effective vaccine. Neglecting the compliance with drug treatments
might result in a relapse and antibiotic resistant TB, i.e. multidrug-resistant TB (MDR-TB) [8]. MDR-TB is one of the most
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serious health problems and the progress in curing that is slow. Critical funding gaps for TB care and control make it
difficult to sustain recent gains, promote further research and develop new drugs and vaccines [1].

It is well known that the mathematical models play vital roles in the dynamics and control of many epidemics including
malaria, severe acute respiratory syndromes (SARS) and TB (see, for example, [9-17] and references therein). Many mathe-
matical dynamic models for TB have been studied extensively in the literature; for instance we refer the reader to [18-23].
“Fast progressors” and “slow progressors” are two different ways considered by most models to progress to active disease
after infection. The probability of latent and treated individuals who might be reinfected [24] is also taken into account
by some latest models as the infection and/or disease do not confer full protection which is already well recognized [25].
Some previous models of TB, especially the predictive models endeavor to calculate a threshold called basic reproductive
number. The dynamics of transmission of the disease has been analyzed in terms of the reduction of the basic reproductive
number. Since the first paper published by Jung et al. [8] in 2002, the time dependent optimal control strategies have been
employed in the study of dynamics of TB mathematical models by many authors (see, for example, [8,26-34]). Valuable
theoretical results generated by both approaches of studying control strategies can be used to guide epidemic control
programs. Various objective criteria may be adopted, according to a chosen goal (or goals).

In 2011, considering that the treated individuals are also infectious, Liu and Zhang [24] proposed a nonlinear TB model
system as follows:

B =A-BSU+pT) - (u+Dp)S.
W = pS—paBV(I+ piT) — V.,
&L =1BSU+ p1T) + p2BV U+ p1T) — (u + 8)L + pT,

A =A-DBSU+pT)+8L— (u+a+y)l

& =yl—(n+p)T,

N(t) =S() +V(t) + L(t) +1(t) + T(0),

where a population of size N(t) is partitioned into five subclasses: susceptible (S(t)), vaccinated (V(t)), individuals infected
with TB in latent stage (L(t)), individuals infected with TB in the active stage (I(t)) and treated individuals infected with TB
(T(t)). The parameter A represents the constant recruitment rate of susceptible individuals. Parameter p is the rate at which
susceptible individuals are moved into the vaccination process. The natural death rate is p. The disease-induced death rate
coefficient for individuals in compartment I is «. Parameter p represents the rate that individuals successfully treated of TB
return to the latent TB stage and parameter y is the treatment rate in the infective class. It is assumed that the time before
latent individuals become infectious obeys an exponential distribution, with mean waiting time %. Thus, § is the rate at
which an individual leaves the latent compartment to become infectious. Susceptible individuals acquire TB infection from
individuals with active TB at rate 8S(I + p1T), where B is the disease transmission coefficient, and the parameter p; <1
accounts for the reduction in infectiousness among individuals with active TB who are treated (in comparison to those who
are not treated). Fraction I of susceptible individuals who acquire TB infection is assumed to enter the latent TB class (L),
at the rate SS(I+ p;T), while the remainder moves to the active TB class (I). It is assumed that individuals in the latent
class do not transmit infection. The vaccinated individuals are infected at rate p,8V(I+ p1T), where p; <1 represents
the reduction in risk of infection owing to vaccination (for a vaccine that offers 100% protection, p, = 0; thus in reality
0 < py < 1). For model (1.1), Liu and Zhang [24] first obtained the basic reproduction number

R (P +yP1)(BSPaVO + BIS° + Bl - DS)
0 L+ (w+p)(+a+y)—8py

(11)

)

where
0 A 0 Ap

=, yo=-_£
n+p n(u +p)

After that they showed that if the basic reproduction number R; of the model system is below one then disease dies out
otherwise it persists. This indicates that the basic reproduction number, Ry, plays a crucial role in characterizing dynamics
of the disease and could be used to suggest or design TB control strategies. However, they did not further investigate time
dependent control strategies since their discussions had been concentrated on prevalence of TB at equilibria. Note that,
for system (1.1), p represents successful treatment rate. Computing the partial derivative of Ry with respect to p gives

3Ry - us . . : .
that W|(1A1) <0if pg > eIyl Therefore, improving successful treatment rate helps to reduce TB infection when

8 . aR s . .
p1 > W‘W. Using the fact that T,,O|(1.1) <0 as long as p; < %, Liu and Zhang [24] pointed out that the

treatment of TB-infected individuals in the active stage would have positive impact if p; < %. In other words,
if p; lies between two certain thresholds, then increasing p and y have positive meaning on controlling TB infection.
Furthermore, 33%’“1_1) < 0, also due to Liu and Zhang [24], which implies that increasing the vaccination rate of susceptible
individuals against infection of TB is conducive to disease control.

In order to understand the dynamics under what circumstances TB can be controlled or curtailed, we implement the the-
ory of optimal control. Three intervention strategies, called controls, are included in model system (1.1). We write controls
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as functions of time and assign reasonable upper and lower bounds to them. First, a “case finding” (identification of latently
infected individuals) control mechanism is incorporated in model (1.1) by replacing constant vaccination rate with uq(t). Sec-
ond, a “case holding” (treatment of individuals with active TB) control mechanism is incorporated in model (1.1) by replacing
constant successfully treatment rate with u,(t). Finally, another “case holding” is instituted in model (1.1) by replacing
constant treatment rate with us(t). It is required that u(t), u,(t) and us(t) are bounded Lebesgues integrable functions. We
intend to determine optimal control strategies that minimize not only the infected individuals but also the cost of these
three controls. As mentioned by Kumar and Srivastava [14], the larger proportion of population is covered, the higher efforts
and expenditure is required to provide vaccination. Hence, it is suitable to use the nonlinearity of order four to describe the
high expensiveness concerned with the vaccination process. Following the idea of Kumar and Srivastava [14], in this paper,
the cost constructions that account for high nonlinear relationship (nonlinearity of order four i.e. u‘ll(t)) between cost and
efforts during vaccination process has been employed in the application of optimal control to TB mathematical models.

Using the same parameters and class names as in model system (1.1), the system of differential equations describing the
controlled model is as follows:

B=A-BSU+mT) = (1 +u ()8,

& =1 (O)S— P2V I+ piT) — v,

AL — 1BS(I+ p1T) + p2BV U+ p1T) — (i + 8)L + uz ()T,
=1 -DBSU+pT) +8L— (u+a +us(t)I,

4 = us () — (0 + ux ()T,

N(t) =S) +V () + L) + 1) +T(t).

In view of the fact that vaccination and treatment are easily available and implementable control strategies to stop TB,
we obtain model system (1.2) by considering vaccination and treatment as control variables from model system (1.1). The
detailed analysis of optimal control problem is given in the following sections. The subsequent part of this paper is as
follows: we present the formulation of the optimal control problems in Section 2. In Section 3, we investigate the existence
of an optimal control function and derive an optimal system characterizing the optimal control. In Section 4, we analyze the
uniqueness of the optimal system, in which the state system coupled with co-states. It is worth pointing out that the proof
of existence and uniqueness involving biquadratic form of the control variables has not been explored so far as we know.
We perform numerical simulations to illustrate our theoretical results in Section 5. The paper ends with a conclusion in
Section 6.

2. The control problem

This section is devoted to the study of our model system (1.2), when we administered vaccination and treatment policies
over a fixed time window. For that we design an objective functional by keeping the biomedical goal in our mind. Our
goal is to minimize the number of infected individuals (including latent, infectious, being treated individuals) with TB
virus while at the same time keeping the cost of implementing these three control strategies very low. In mathematical
perspective, for a fixed terminal time t;, the problem is to minimize the objective functional

tr
J(uy, uz, u3) = /O [BiL(t) + Bl () + BsT(t) + Baug () + Bsuj () + Beu3 (1) |dt. (2.1)

Here, the total cost on a finite time horizon [0, tf] consists of the cost induced by the disease itself and the cost
induced by vaccination and treatment efforts. We split the disease cost into the cost induced by latent group, fof B{L(t)dt,

proportional to the number of individuals infected with TB in latent stage, the cost induced by infected group, féf ByI(t)dt,
proportional to the number of individuals infected with TB in the active stage, and the cost induced by treated group,
féf B3T(t)dt, proportional to the number of treated individuals infected with TB. Modeling the control cost is a more
delicate issue. The cost involved in vaccination process requires relatively higher efforts and expenditure because of
covering larger proportion of population. For example, vaccination efforts target first quarter of population will be less than
the next quarter and so on. Therefore, the cost for covering larger proportion of population involved in vaccination process
will be not only increasing but also growth of cost will be faster and steeper. Hence, we consider the biquadratic form in
the vaccination control to represent high expensiveness of vaccination process [16]. That is, the cost involved in vaccination
process is taken as forf B4u‘l‘(t)dt. It is also assumed that cost of treatment is nonlinear and takes a quadratic nature,
which is found to be consistent with previous works in the literature (see, e.g. [8]). In other words, the cost incurred in

improving successfully treatment rate (the efforts such as regularity of drug intake) is taken as féf Bsu§ (t)dt. Similarly, the

cost incurred in providing treatment is taken as féf BGu§ (t)dt. The coefficients, B;(i=1,2,...,6) are the weight constants
of the infected TB individuals and control measures. They can be chosen to balance cost factors due to size and importance
of the parts of the objective functional.

We assume that there are practical limitations on the maximum rate at which individuals may be vaccinated or treated
during a given period of time and the maximum successfully treated rate. In the rest of this paper, for simplicity of notation,
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we represent uq(t) = uq, Uy (t) = uy and us(t) = u3. We seek optimal controls u4, u; and us in Uy, such that

min J(uy,uy,u3) subject to (1.2), (2.2)
where

Ugg = {(uq, uz, us)|uy, uy and us are Lebesgue integrable, 0 < u; < Ujmay, i =1, 2,3}

is the control set. In optimal control theory, there are several basic problems included such as to prove the existence of an
optimal control, to characterize the optimal control, to prove the uniqueness of the control, to compute the optimal control
numerically and to investigate how the optimal control depends on various parameters in the model.

3. The necessary and sufficient conditions of optimal control

In this section, we will study the sufficient condition for the existence of an optimal control of our system of ordinary
differential equations (1.2). We refer to the conditions in Theorem III 4.1 and its corresponding Corollary in [35]. After
that, we characterize the optimal control functions by using Pontryagin’s Maximum Principle [36,37], and then we derive
necessary conditions for our control problem.

3.1. The existence of an optimal control

In this subsection, we will investigate the existence of an optimal control of our model (1.2). The boundedness of solu-
tions to system (1.2) for finite time interval is needed to establish the existence of an optimal control and the proof of the
uniqueness of the optimality system. We begin by examining the priori boundedness of the state solutions of model (1.2).

For model system (1.2) to be epidemiologically meaningful, it is important to prove that all its state variables are
nonnegative for all time. In other words, solutions of model system (1.2) with nonnegative initial data remain nonnegative
for all time t> 0. Suppose, for example, the variable S becomes zero for some time t > 0, i.e. S(t) =0, while all other
variables are nonnegative. Then, from the S equation, we have % > 0. Thus, S(t)>0 for all t> 0. Similarly, it can be
shown that V(t)>0, L(t)>0, I(t)>0 and T(t)> 0 for all t> 0. To establish the upper bounds for the solutions, we consider an
equation for the total population size N. The rate of change of the total population, obtained by adding all the equations in
model (1.2), is given by

Z—T:A—,uN—ozlfA—uN,

which implies that

S

N(t) < (N(O) - 2)(3—/“ + % <

provided that N(0) < l% otherwise, N is bounded above by N(0). Thus, N is bounded above by max{N(0), %}. The upper
bound for N is also the upper bound for S, V, L, I and T since they are all nonnegative. The remainder of this section will be
devoted to the proof of existence of optimal control on the premise that the solutions to each state variables is bounded.

For convenience we let ¥=[S,V,L,I,T|T and i = [u;, uy, u3]” denote the vector of model states and controls, respectively.
Theorem 3.1. There exists an optimal control (uf, u3, u3) to problem (2.2).

Proof. To prove this theorem, we follow the requirements from Theorem 4.1 and Corollary 4.1 in [35] and verify nontrivial
requirements. Let r(t, X, ) be the right-hand side of (1.2). We need to show the following conditions are satisfied:

(1) ris of class C! and there exists a constant C such that

[r(t,0,0)| <C, [|rz(t,x, )| <CA+|d]), |[rz(t, X W) <G
(2) The admissible set .# of all solutions to system (1.2) with corresponding control in U,; is nonempty;
3) r(t,x. ) = a(t,x) + b(t, X\)T;
(4)
(5)

The control set U = [0, U1max] % [0, Upmax] x [0, Usmax] is closed, convex and compact;
The integrand of the objective functional is convex in U.

In order to verify above conditions, we write
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A = BSU+ piT) = (e +uy(t))S
ur(t)S — p2BVUI+ o1 T) — uv
r(t, X, ) = | IBSU+ p1T) + p28V U+ p1T) — ( + 8)L +up (0)T
(1 -DBSU+ p1T) + 6L — (u + o +us(t)I
us (O = (1 +uz(6))T

Then it is easy to see that r(t, %, @) is of class C! and |r(t, 0, 0)| = A. Moreover, one has

an 0 0 -pBS -BpiS
U axn 0 4 -p1,BY
|re(t. X, W) = IBU+ piT) p2BUA+pT)  —(u+8) IBS+ 2BV IBp1S+ p1p2BV + 1z
(1 -DBUd+piT) 0 ) 44 (1 -Dp:1BS
0 0 0 us —(+uy)
where ayy = =B+ 01T) — (L +u1), a2 = =2 B+ 1T) — 1, age = (1 = DBS — (1 +a +u3), and
-S 0 0
S 0 0
[ra(t,x, W) =|] O T o0
0 0 -1
0 -T I

Since S, V, L, I and T are bounded, there exists a constant C such that
[r(t,0,0)] <C, |re(t, X, 0)| <CA + i), |rz(t, %, )| <C.

This means that condition (1) holds.

Thanks to condition (1), there exists a unique solution to system (1.2) for a constant control, which further implies that
condition (2) holds.

In addition,
A= BSU+pT) = (1 +ur (0)S

U ()S — p2BV U+ p1T) — v
rE %) = [ 1BSU+piT) + paBV I+ piT) = (1 + O+ ur (OT
(1 -DBSU+p1T) + 0L — (L +a +us(t))]
s (O = ( + Uy ()T

A — BSU+ piT) — uS S 0 0
—02BV(I+ o1 T) — uv s 0 0 uy
= |1B8SU+p1T)+ p28VU+01T) —(u+8)L+] O T 0| x|u
(1 -DBSU+ p1T) +6L— (L +a)l 0 0 - U3

—uT 0 -T I

Thus, condition (3) is satisfied.
Condition (4) is obvious from the definition and the proof of this theorem can be completed by verifying condition (5).
In order to show the convexity of the integrand in the objective functional g(t, X, if), we have to prove that

(1 —q)g(t. x.u) + qg(t, X. V) = g(t. X, (1 — Q)i + qV),
where
g(t, X, 1) = B1L(t) + BoI(t) + B3T(t) + B4uj (t) + Bsu3 (t) + Bsu(t)
and i, ¥ are two control vectors with g <[0, 1]. It follows that
(1—q)g(t, %, 1) +qg(t, X, U) = BiL(t) + Bl (t) + B3T () + (1 — q)[Baui{ (t) + Bsu3 (t) + Bsu3 ()]
+q[Bavi (t) + Bsv3 (t) + Bst3 ()]
and
g(t. X, (1 - @) +q¥) = BiL(t) + BoI(£) + B3T(£) + Ba[ (1 — @)ty + qui I* + Bs[(1 — )uz + qua
+Bs[(1 — q)us + qus]*.
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Furthermore, we have
(1 -q)g(t, %, 0) 4 qg(t, %, V) — g(t, %, (1 — q)T + q7)
= Ba[(1 — @)u} + qui] + Bs[(1 — @)u3 + qu3] + Bs[ (1 — q)u3 + qv3]
= By[(1 = @)us + qu1]* = Bs[(1 — @)uz + quz]* — B[ (1 — q)us + qus]?
=By (1 — @ui + qu} — [(1 — Quy + quy ]*} + Bs{ (1 — @)ud + qvf — [(1 - Quz + qu]*}
+Bs{ (1 — ) +qv3 - [(1 — Q)uz + qus*}
=By{[(1 = Qui + qui] - [(1 = Qui + qvi* + [(1 — Qui + qvi]* - [(1 — Quy + quy]*}

2 2
+Bs [\/q(l —quz —/q(1 - q)vz] +Bs [\/q(l —q)uz —/q(1 - Q)Ua]

=Ba{q(1 — ) (W] —v))* +[(1 — i +qv} + (1 — Q1 +qu1)*][g(1 — @) (ur —v1)?]}

+Bsq(1 — ) (uz — v2)* + Bsq(1 — q) (u3 — v3)?
>0,

and so the proof is complete. O

Remark 3.1. It is easy to see that Theorem 3.1 still holds if u‘% or ul.2 (i=2,3) are replaced by convex functions of u;(i =
1,2,3).

3.2. Characterization of an optimal control

Since there exists an optimal control for minimizing function (2.2) subject to system (1.2), we drive the necessary
conditions for this optimal control by using Pontryagin’s Maximum Principle [36,37]. We need to define Hamiltonian for
deriving the necessary conditions as,

H(S,V,L,I,T,uy,up, u3, &) = BiL 4 Bol + BsT + Byu} + Bsu + BsuZ + A1[A — BSU+ p1T) — (i + u1)S]
+A2[usS = p2BV U+ 1 T) — V]
+A3[1BSU + p1T) + p2BV I+ p1T) — (1t + 8)L + uT]
+x[(1=DBSU+ p1T) + 6L — (0 + & + us)I] + As[usl — (u +uz)T]. (3.1)
Here, A = (A1, A2, A3, A4, A5) € R° is known as adjoint variable. The optimality system of equations is found by taking the

appropriate partial derivatives of Hamiltonian (3.1) with respect to the associated state variables.
The following theorem is a consequence of the maximum principle.

Theorem 3.2. Given an optimal control pair (uf,u3, u}) and corresponding solutions to the state system S*, V*, L*, I*, T*, that
minimize objective functional (2.2), there exists adjoint variables A1, Ao, A3, A4 and As, satisfying

% = )\.1,31+)\.]ﬂ/01T+)\.1[L+)\.]U1 —)\.2U1 —)\.31,81—)\.31,01,3’1“—)\.4(1 — l)/g]—)\.4,01 (1 — l)/gT,

% = A 02B1+ X201 02 8T + Aot — A3 p2 1 — A3 0102 8T,
%=)»3(M+3)—)»45—317 (3.2)

i = MBS+ X228V + (U + &) hg + Ushg — A31BS — A3p2 BV — Aa(1 — 1) BS — Asus — By,
% =A101BS+ Xp1028V + Asp + Asuy — A3l p1 BS — A3 p1 028V — Azuy — Ag(1 —1)p1 BS — Bs,
with transversality conditions
M) =0, Aa(t) =0. As(t)=0. Aalty)=0. As(ty)=0. (33)

Furthermore, we may characterize the optimal pair by the piecewise continuous functions

1
_ A1 —A2)S )’
uj} = min max{O, ((14342)) },mmax},

u3 = min { max O,M s Upmax ¢
2Bs

uj = min { max {O, Ga— 2o } u3max}, (34)
2Bs

Proof. The result follows from a direct application of a version of Pontryagin’s Maximum Principle for bounded controls
[36,37]. The differential equations governing the adjoint variables are obtained by differentiation of Hamiltonian function
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(3.1), evaluated at the optimal control. Then the adjoint system can be written as follows:

drq oH dx, 0H dAs OH diy  OH das oH

GO9S d v d -l dt -9l dt = aT (3.5)

and
Ai(tp) =0,i=1,2,...,5, (3.6)
evaluated at the optimal control and corresponding states, which results in adjoint system (3.2) with transversality condi-
tions (3.3).
Finally, the optimality conditions require that,
OH _0H _3H _
ou; Oduy Oduz
for the optimal pair (u}, uj, u%), on the interior of the control set, and this condition is simplified in Egs. (3.4) with special

attention on control arguments involving the bounds on the controls as defined with U,; in Eq. (3.2). This completes the
proof. O

0,

Remark 3.2. It is easy to see that Theorem 3.2 still holds if u‘ll or ui2 (i=2,3) are replaced by differential convex functions
of u;(i=1,2,3).

We point out that the optimality system consists of the state system (1.2) with the initial conditions, adjoint system
(3.2) with transversality conditions (3.3), and optimality condition (3.4). Thus, we have the following optimality system:

8 — A~ BSU+piT) — (n+ur(6)S,

W = ()S— p2BV U+ p1T) — uV,

AL — 1S+ p1T) + p2BV (I + p1T) — (1 + 8)L + ua ()T,

4= (1= DBSU+pT) +8L— (u+a +us (D),

4L = uz () - (4 + ua ()T

% = MBI+ BT + A + Ay — Aatg — As3lBI— A3l BT — Mg (1 = DBI — dgp1 (1 = 1) BT,
% = X202B81 4+ 2201 028T + Aot — A3 0281 — A3 0102 8T,

By — 3 (+8) — had — By,

Da — 31 BS+ A2 2BV + (1 + @)k + Uk — A3l BS — 3 p2BV — Aa(1 = 1)BS — Asus — By,

Bs — 71p1BS + hap102BV + Aspt + Astiy — Aslp1 BS — A3 01028V — Asuy — ha(1 — 1) p1 BS — Bs,
5(0),Vv(0),L(0),1(0).T(0) = 0,

Ai(tp) =0,i=1,2,...,5,

, o =225\’
Uy = min max{O, <(14342)) },umax},

Uy = min { max {0, M} uzmax},

where

2Bs

U3 = min { max O,M , U3 max | -
2Bg

4. Uniqueness of the optimality system

Due to the boundedness for the state system, the adjoint system has bounded coefficients which is linear in each of the
adjoint variables. Therefore, the adjoint system have finite upper bounds. We will state the following proposition (without
proof) needed for the proof of the uniqueness of the optimality system for the small time window.

Proposition 4.1. [13] The function u*(m) = min{max{m, a}, b} which is Lipschitz continuous in m, with a <b for some fixed
nonnegative constants.
Now, we are in position to prove the uniqueness of the optimality system in the same way as shown in [12, 13, 17].

Theorem 4.1. For sufficiently small t;, the solution to the optimality system (3.7) is unique.

Proof. The proof is done by contradiction. Note that the boundedness for the state system and the adjoint system, the Lip-
schitz continuity of optimal control functions, and some elementary inequalities play key roles in obtaining a contradiction.
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Now we proceed to prove this theorem. Suppose (S, V, L, I, T, A1, A3, A3, A4, As) and (S,V,L I, T, Ay, Ay, A3, Ag, A5) are two
non-identical solutions to the optimal system (3.7). To show that the two solutions are equivalent, it is convenient to make
a change of variables.

Let

S=eMx;,V =eMxy, L = eMx3, [ = e*xy, T = eMxs,
Mo=e My =eMyy s =eMys, Ay = e Mya, As = e Mys,
S=eMxy,V = oM, L = eM%5, 1 = x5, T = eMx;,
ho=e My hy = e My, Ay = e MY5, Ay = e MY s = e M,
where A is a positive constant to be chosen later. With the new variables the optimality conditions become

. X
Uy = min max{O,(Ojl 4522) 1) },ulmax};

Uy = min { max

U3 = min { max

— X
O,W},u3m3x}§

U7 = min max{0,<(yl4é‘;2)x1> },umax};

U; = min { max

5 — min max{o,w},um}.

For ease of notation, we generally omit the dependence on time in the following except in the case that a specific time

is intended. We consider the difference of the resulting equations for x; and x;, y; and y;, i=1,2,...,5. From the first
equation of (3.7), we get
dx
dt] +Ax1 = e MA — Bxie (x4 + p1xs) — (1 + U)X
and
dxy
dt1 +Ax7 = e MA - BR1eM Rz + p1X5) — (U + U7X
It follows from the above two equations that
dx dxy _ . _ .
T; - T; + A+ ) (X1 —x7) = —BeM[x1 (x4 + p1X5) — X1 Xz + p1X5)] — (W1X1 — 17 - X7). (4.1)

Multiplying both sides of (4.1) by (x; —x7) and then integrating both sides from 0 to t;, one has
1 ()12 i )2
St =X A)P + Gt o) [0 w02

=-p /Otf eM[X1 (x4 + p1Xs) — X1 (X5 + p1X5)] (X1 — X7)dt — /Otf (X1 — Uy - X7) (%1 — Xp)dt. (4.2)
In order to simplify the right-hand expressions of (4.2), we need some elementary inequalities. An elementary inequality
(a+ b)? < 2(a? + b%) shows that
la—bl® < [2(a® + b*)]?
= 23(a® + 3a*b® + 3a®b* + bP)
< 23(a® + (a® + a® + b®) + (a® + b® + B®) + b°)
= 32(a® + b°).
It follows that |a — b| < m and thus
lat —b3| < ¥/32(a2 + b2). (4.3)
By the elementary inequality (a + b)? < 2(a? + b?), we have
(ay1 — X - y1)% = (Y1 — X171 + X191 — X1 -V1)?
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(X101 = Y1) + V104 = X))
= max{2x3, 257"} (% = X0) + (1 =51’}

< Cl( = %)+ (1 —VD)21, (44)
where C depends on bounds for xq, y7.

Another inequality is also needed to obtain the specific estimate: If O0<b<a, then Y¥a—Ib< Ja—b. Using
Proposition 4.1 and the above inequalities, we have the following estimation of |u; —u7|%2. We divide our estimation
in five cases as follows.

(I) case of x1(y1 —y2)X1 (¥y1 —¥2) < 0. It follows from (4.3) that

A

lug - |* <

143 [
r&) ‘(Xl(% -¥2))3 =X (1 —¥2))3

(
< (é)gﬁym 01—y + @G0 —73))2
(

%&Y@\S/[M 01 —y2) X1 —-y2)?

2
1\3 — — —
< <4TL;) v 32M\3/(X1 —X1)2+ 1 —y1)?+ (2 —2)>
where M depends on bounds for X7, y1, y>.
(I) case of x; (y1 —¥2) > X1 (y1 —¥2) > 0. By the inequality Ef —¥b < Ya—b and (4.4), one has

uy — 2 (14) a0 -y} - GG - il

<1

4) \/[Xl(.VI -y2) —xi1(1 —y)?

4B
(4LB4) IMY (1 —X0)2 + (1 — D)2 + (V2 — V2)2.
(I case of X7 (¥1 —¥2) > X1 (¥1 —y2) > 0. By means off—ﬁ<¢fand (4.4), we get
juy — w2 < (4%4) 1 -y - @ -5 |
1
=(TB4> [\/Xl()ﬁ ~¥2) — xi (1 - YZ)]
1 —
< (4—34) G —72) %101 —y2) P
< (%) IMY (6 =502+ 01— T2 + 02— T2
4

(IV) case of x;(y; —¥2) < X1 (7 — ¥2) < 0. By aid of ¥a— ¥b < ¥/a— b and (4.4), we have
2
1 - 2
X1 (1 —¥2)3 — B (57 —¥2))

<\3/—|X1 01—yl - \3/_|ﬁ(yil_y72)|>‘2

lug — )% <

S
e~ ]
N

- B
— oo —
N

<_\3/|X1 1 -yl +\3/|E(}Tl_}72)|)‘2

)
)
)
) (V30— - VG )|
)
)
)

NS
e~}
N

3
2
3
2
3

2
3

‘ —

NN
e~}
N

i

IA

Y —y2)| - X -72) |12

\ ‘“\
— | -
N

IA

V%11 —y2) =% (1 —72) 12

=

(
(
(
(
(
(
(a,

S
UU'-‘UJ
N~

~

IMY (6 —%0)2 + (1 = V)% + (v2 = ¥2)%
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(V) case of X{(J7 — ¥3) < X1 (y1 —¥>) < 0. Using the inequality ¥a — ¥/b < ¥/a— b and (4.4) again, we obtain

2
3 2

x1 (1 —y2)3 — (7 - )3

win

2
S —y2)l - V—mm—m\

2
%mﬂ—ﬁ)l—%xlm—ml\

i/[lﬂ(ﬂ—?z)l — a1 = y)IP

TG - - x5 -yl

< (%)jwz/oﬁ — X2+ 01—+ (2 - )%
4

An easy induction gives that

2
_ 1\3 — — —
luy - |* < (TB) J32MY (1 — %)% + (1 = V1)? + (V2 — 2)2-
2
Set M = (ﬁ) > . ¥32M and
4
d = max{ly; - yil*, Ixi - xil*} > 0.

Then

N

luy 2 < M- /G =X + 01 — Y02 + (2 — ¥2)2
141+ (0 =X+ 01 =YD + 02 —72)?
3

=l

=

=

w| =

24 (1 —XD)2 4 (X2 —X2)% + (X3 —X3)2 + (X4 — X2)? + (X5 — X5)?

+On — V) + 02—V + (13 =¥3)* + (Va —Va)* + (5 — ¥5)?]

=<

IA

3 K[ =% + (2 = %) + (X3 = X3)* + (Xa = Xa) + (X5 — X5)?
T -T2+ 2 =322+ (3 =332+ (a —Ya)* + (5 — ¥5)°].
where K > 1+ %.
In order to simplify the right-hand of (4.2), another common expression can be used repeatedly,
Ry =X-y)(W—w) = Xy =Xy +xy —X-y) (W — W)
=yx—-X)(w-w) +x(y —y)(w-w)
<V x-02+R Y -7 + 2w —W)?
<Cdx-%%+ @ -)7*+ w-w)>],
where C depends on bounds for X and y.
Based on the above arguments, we find

t
S ) =T + G o) [0 - w02de
< Myes /Otf[(xl —X1)? + (x4 — X3)* + (X5 — X5)°]dt

t
+N1/Of[(X1 S 4+ (-1 4 (5 —15) 4 (X —Xa)? + (X5 — X5)?

+ 01 =YD+ 2 =72 + (Y3 = ¥3)2 + (va — ¥a)* + (5 — ¥5)21dt,

(4.5)

where My, N; are appropriate upper-bounds. Similarly, we can obtain the following inequalities for (x;(tr),x;(t;)) and

(¥j(0),y;(0)) withi=2,3,4,5and j=1,2,3,4,5:

Sl =T P + G ) [0 -3
0
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< Myett /Otf[(Xz —%2)% 4+ (X4 — X2)* + (x5 — X5)*]dt
t
+szo’l(x1 XD (X~ K2+ (%3 —T5)2 4 (4 — Xa)? + (%5 — %5)°
+ 1 =Y1)?+ 02—V + 3 =V3)? + (4 — V2)* + (s — ¥5)?]dt,
t
St) TP + G+ 8) [ -t
< Mses /Otf[(xl X2+ (0 —X)? + (3 —X3)2 + (X4 — X3)2 + (X5 — X5)2]dt
t
+N3/Of[(x3 %)+ (% — %) + (V3 — 73)7 + (s — F5)2ldt.
1 — 2 g —\2
SWalt) =T )P + Ot v o) [~ o)l
0
< Mye*ts /(J[f[(xl —X1)? + (x4 — X3)* + (x5 — X5)*]dt
t
+N4/Of[<x3 “X)? 4+ (4 — ) + (Va0 + (vs — ¥5)2dt.
Ss(e) =T + Gt ) [ s )
0
< Ns/Of[(sz —X)? + (X5 —%)2 + (V3 —V3)% + (V4 —V2)* + (ys — ¥5)21dt,
t
S0 =P + G+ ) [0 -7y
0
< Myt fo =T + (65— )2 + 1 =D + (3 — 73)° + (va — J2)2Idt
+N6/Of[<><1 XD () 4 (X3~ )P+ (X —Ta) + (X5 — K5)?
+ 1=V + 2 = ¥2)2 + (V3 —¥3)* + (va — Ya)* + (¥s — ¥5)?]dt,
t
S20) =P + Gt ) [0 -7y
0

[f o o o .
< Mee'\tf/O [(Xa —X2)? + (x5 = X5)2 + (2 = ¥2)? + (y3 — ¥3)?]dt,

1 == ()2 s Toy2 i oy =2
ib’a(o)—}@(o)] +()»+M+5)/ ¥3—¥3) df§N7/ [(3 =¥3)° + (ya —ya)“ldt,
0 0

S04 ~FAOP + Gt u+ ) [ e —mide
0

t
< My /0 T =% + (o =R + (1 — V102 + 02— F2)? + 03 — )% + (va — Ya)21dt

t
+Ns/0’[<x4—m2+cy4—y7>2+cys—y?)21dr,

S50 =55 + G+ ) [ s -5
0

< Mse'\tf‘/of[(xl XD P+ X —X) 1 —V)P 4+ 02—V + (13 = V3)2 + (Ya —Ya)* + (¥5 — ¥5)21dt

+N9/Of[<x5 —X9)2+ (s —¥3) + (ys — ¥5)2 dt.

57

(4.8)

(4.10)

(4.11)

(4.12)

(413)

(4.14)

where M;(i=1,2,...,8) and N;(j=1,2,..., 9) depend on the coefficients and the bounds of the state variables and

co-state variables.
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Now it follows from (4.5), (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), (4.14) that

ty
[+ 1) = (My + M3 + My + M7 + Mg)e*s — (Ny + N + Ne)]/ (X1 —X7)2dt
0

ty
+ [0+ 1) = (M + Ms + My + Mg)eMs — (N, +N2+N6)]/ (X —%5)%dt
0

4 ty
+| A+ +8) — Mze?r — (ZNi+N6>:|/ (x3 — X3)*dt
0

L i=1

6 te
+ ()L+M+Ol)*ZMi€Mf7(N]+N2+N4+N5 +N5+N3):|f (X4fﬂ)2dt
i=1 0

6 tr
+ | A+ ) =) Mie*s — (Ny + Ny + N3 + N5 + Ne +N9)] / (xs — X5)*dt
i=1 0

ty
[ 1) = (Ms M7+ Me)es — (Vs Ny 8N6)] [0 =2

8 tr
| A+ p) = Y Mie"s — (Ny + N, +N6>} / (2 —¥2)%dt
i—6 0

8 3 7 t
ot p+8) = Mt — <ZNi+ZNi+N9):|/[(V3—)’3)Zdt
i=5 i1 i—5 0

8

ty
+ |+ e+ @) — (Ms + My + Mg)e*s — [ Ny + Ny + ) N /(m—y?)zdt
i—4 0

6 tr
+ ()\"‘//«)—Mse“f_(ZNi+N8+N9):| [ -5yt <o, (415)
0

i=1

Notice that the coefficients of all of integrals in (4.15) are nonnegative if we choose a sufficiently large A and a sufficiently
small t;. For example, if we fix A > My + M3 + My 4+ M7 + Mg + Ny + N, + Ng — o and

i~ Ly G4 ) = (N + Ny + No)

F= X7 My +Ms + My +M; + Mg’

then the coefficient (A + ) — (Mg +Ms + My + M7 + Mg)e*s — (N + N, + Ng) for the integral féf (x1 —X7)2dt will be
nonnegative. Similar arguments apply to remaining integral terms, we can obtain all of the other As and ¢s. Take the
maximum of all of the As used as A and the minimum of the ts used as tr, then the coefficient of each integral term in
(4.15) is nonnegative. This implies that

X1 =X1,X =X3,X3 =X3,X4 =X4,X5 =X5, Y1 =Y1. Y2 =Y2. Y3 =Y3.Ya=Ya. Y5 =Y5
and

S=S V=V, L=LI=IT=T, A=A, A=A, A3 =2A3, Ay =Ag A5 = As.
Hence the solution of (3.7) is unique for small time. This ends the proof. O

Remark 4.1. We note that Theorem 4.1 shows that the solution of (3.7) is unique when ¢ is small. As pointed out by Lenhart
and Workman [36], we can usually obtain uniqueness of the solutions for (3.7), but only for small time t;. This small time
condition is due to reverse time orientations of the state equation and adjoint equation.

5. Numerical results and discussion

In this section, a fourth-order Runge-Kutta algorithm is used to solve optimal system (3.7) numerically. With initial
conditions for the states, chosen an initial guess for the controls, the state differential equations (1.2) are solved forward
in time by a fourth-order Runge-Kutta scheme. With the application of the current iteration solution of the state equations
(1.2) and the transversality conditions (3.3), the adjoint system (3.2) is solved backward in time, again, by a fourth-order
Runge-Kutta scheme. Both state and adjoint values are used to update the controls with the characterizations given by (3.4),
and then the iterative process is repeated. This procedure is continued iteratively till current state, adjoint, and control
values converge sufficiently.
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Table 1
Parameter values used for model simulations.
Parameter Value Unit Source
A 1428 Person year ~! [34]
B 0.003 Person ~! year ~! [34]
£1 0.25 None [32]
u x5 Year ! [11]
P2 0.3 None Assumed
l 0.9 None [32]
8 0.00368 Year ! [10]
4 017 Year ! [2]
Ulmax» U3max 1 None []4]
Upmax 1125 Year ! [34]
4500 T T
- _u1=u2=u3=0
4000 u1¢0,u2¢0,u3¢0 b

3500

3000

2500
b

2000

1500

1000

500

0 2 4 6 8 10

12 14 16 18 20

t(time in years)

Fig. 1. Dashed line: susceptible population without optimal control. Solid line: susceptible population with

20, B, = 100, B; = 200, B, = 100, Bs = 8000, Bs = 150, and other parameter values are presented in Table 1.

8000

7000
6000
5000

£ 4000
3000
2000t

1000

. L L

0 L - . L -

0 2 4 6 8 10

Fig. 2. Dashed line: vaccinated population without optimal control. Solid line: vaccinated population with

"
12 14 16 18 20
t(time in years)

20, B, = 100, B3 = 200, B4 = 100, Bs = 8000, Bs = 150, and other parameter values are presented in Table 1.

optimal control. Weight constants are B;

59

optimal control. Weight constants are B; =

We employed parameters values similar to those reported in previous studies whenever possible. Table 1 pro-

vides a summary of the parameter values used in numerical simulation of model (3.7).

Due to lack of data, we

make hypothesis on some parameter values within realistic ranges. The initial values for the states are given by

S(0) = 4500,V (0) = 3000, L(0) = 4000, 1(0) = 500, T(0) = 480,

respectively. The weights in the objective function

are By = 20,B, =100 and B3 = 200, which means that minimization of the number of latent, infectious, and treated has
different importance. We choose optimal control for a period of 20 years in keeping with what is in other literature on

treatment of tuberculosis such as [34] with references.
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3 T

- - =Uu_ =U,

1=U,=Ug=0
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8 10 12
t(time in years)

14 16 18

Fig. 3. Dashed line: latent population without optimal control. Solid line: latent population with optimal

100, B; = 200, B, = 100, Bs = 8000, Bs = 150, and o

ther parameter values are presented in Table 1.
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Fig. 4. Dashed line: infectious population withou

8 10 12
t(time in years)

14 16 18

t optimal control. Solid line: infectious population with

20, B, = 100, B3 = 200, B4 = 100, Bs = 8000, Bs = 150, and other parameter values are presented in Table 1.
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optimal control. Weight constants are By =
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14 16 18

20

Fig. 5. Dashed lines: treated population without optimal control. Solid lines: treated population with optimal control. Weight constants are B; = 20, B, =
100, B3 = 200, B4 = 100, Bs = 8000, Bs = 150, and other parameter values are presented in Table 1.
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Fig. 6. Three optimal control strategies profiles during 20 years. Weight constants are B; = 20, B, = 100, B; = 200, B4 = 100, Bs = 8000, Bs = 150, and other
parameter values are presented in Table 1.
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Fig. 7. Infected individuals (including latent, infectious, being treated individuals) profiles under various control strategies during 20 years. Other parameter
values are the same as those in Figs. 1-6.

We start comparing the case of the population with optimal control actions and without control actions. In Figs. 1-5,
the population with optimal control actions are shown in solid lines, compared with the population without control actions
which are shown in dashed lines. We observe from Fig. 1 that the susceptible population is higher under control compared
to the case without control. The results in Fig. 2 predict a higher level of vaccinated population for the aforementioned
tuberculosis intervention strategies under control compared to the case without control. The results depicted in Figs. 3 and
4 clearly suggest that the optimal control results are very effective in control of individuals infected with TB in latent stage
and in the active stage, as expected. In Fig. 5, the population of treated humans declines sharply in the first 18 years and
after that decrease further, while Fig. 4 shows slight increase in the last two years of the intervention strategy. This is due to
the fact that the treatment control u; becomes zero after 18 years. The simulation results in Fig. 6 suggest that this strategy
would require that the vaccination control u; should be at maximum for almost the entire period of intervention, while
treatment controls u, and u3 should maintain maximum efforts for 13 years and 18 years respectively before decreasing to
zero.

In what follows, we consider different control strategies in the reduction of infected individuals (including latent,
infectious, being treated individuals). We observe in Fig. 7 that the infected individuals are lowest when three controls are
considered. As the cost is one of the important parameter to decide for applicable strategy, we performed the cost design
analysis and made comparative study of the cost for various strategies. The cost profiles for various control strategies are
given in Fig. 8. Note that the cost is least when three controls are considered, that is, the implementation of three control

measures to restrict the epidemic while at the same time keeping the cost of vaccination and treatment very low are good
policies for the achievement of our goal.
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Fig. 8. Cost profiles under various control strategies during 20 years. Other parameter values are the same as those in Figs. 1-6.
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Fig. 9. Simulations of TB model (1.2) showing the effect of varying transmission rates. Other parameter values are the same as those in Figs. 1-6.

In Fig. 9 we present the effect of varying the disease transmission coefficient 8 on the number of individuals infected
with TB in the active stage (I(t)). We observe that after about 12 years the effect of 8 is negligible on individuals infected
with TB in the active stage. Fig. 10 shows the effect of varying fraction coefficient [ on the number of individuals infected
with TB in the active stage (I(t)). It is easy to see that the individuals infected with TB in the active stage affected much by L

6. Conclusion

In this work, we have studied a simple mathematical model of TB presented by Liu and Zhang [24]. In order to control
the spread of TB, we applied a preventive control in the form of vaccination and two treatment controls to susceptible,
latent, and individuals infected with TB in the active stage. Next, we established the objective functional by remembering
the fundamental biomedical goals in our mind. Theoretically, we proved the existence of optimal control and studied the
characterization of optimal control by Pontryagin’s Maximum Principle. In order to assure that the optimal control is unique
in the depictions, we investigated the uniqueness of the optimal control system.

Numerically, the simulations of the extended TB model (1.2) indicate that the vaccination and treatment strategies are
effective in reducing TB disease transmission, especially we may get maximum disease control by using minimum cost as
shown in Figs. 7 and 8. It could therefore be concluded that the comprehensive effect of all the three controls not only
minimizes cost burden but also keeps a tab on infective population.

Undoubtedly, dynamics of TB infection is far more complicated and varied than the one captured by this mathematical
model. Therefore, we will incorporate the time delay for drug resistance into the present model so as to provide us a better
assessment for designing TB dynamics. In addition, we note that the principle technique for optimal control problem is to
solve a set of “necessary conditions” that an optimal control and corresponding state must satisfy. If the Hamiltonian is
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Fig. 10. Simulations of TB model (1.2) showing the effect of varying fraction coefficients. Other parameter values are the same as those in Figs. 1-6.

linear in the control variable u, it would be difficult to solve for u* from the optimality equation. We will leave these cases
as our future work.
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