Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;24(3):307–326. doi: 10.1016/0378-1135(90)90180-4

Development of specific nucleic acid probes for the differentiation of porcine rotavirus serotypes

Michael E Johnson a, Prem S Paul a, Mario Gorziglia b, Ricardo Rosenbusch a
PMCID: PMC7117278  PMID: 2175528

Abstract

A dot blot hybridization assay is described for the detection and differentiation of porcine rotavirus serotypes. Recombinant complementary DNA (cDNA) representing gene 9 (the gene encoding the neutralization antigens in VP7 glycoprotein) from OSU (porcine rotavirus serotype 1) and Gottfried (porcine rotavirus serotype 2) strains were used to determine the optimal hybridization conditions which allow specific detection of group A porcine rotaviruses. Probes were prepared by excision of the inserts from the recombinant plasmids and radiolabeling of cDNA with 32P by the random primer extension method. Probes were hybridized at various stringencies with viral RNA from different rotavirus serotypes bound to nylon membranes. Hybridization at low stringency (26% base pair mismatch for stable hybrid formation) had high sensitivity but low specificity. Hybridization at high stringency (16% base pair mismatch for stable hybrid formation) produced high specificity but decreased the sensitivity observed at low stringency. Probes were specific for rotavirus at both stringencies and did not hybridize with nucleic acids from other porcine viruses. Subgenomic gene 9 fragments were then tested to provide more specific probes. A 322 bp fragment from OSU gene 9 between nucleotides 382 and 704 and a 266 bp fragment from Gottfried gene 9 between nucleotides 230 and 496 were found to be specific as hybridization probes. These studies demonstrated the feasibility of the dot blot hybridization assay using subgenomic fragments of gene 9 to detect and differentiate serotypes of porcine rotavirus. Additional studies are warranted to further evaluate the sensitivity and the capability of these probes to detect porcine field isolates of the same serotype.

References

  1. Bohl E.H., Theil K.W., Saif Isolation and serotyping of protein rotaviruses and antigenic comparison with other rotaviruses. J. Clin. Microbiol. 1984;19:105–111. doi: 10.1128/jcm.19.2.105-111.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Coulsen B., Unicomb L.E., Pitson G.A., Bishop R.F. Simple and specific immunoassay using monoclonal antibodies for serotyping human rotaviruses. J. Clin. Microbiol. 1987;25:509–515. doi: 10.1128/jcm.25.3.509-515.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis L.G., Dibner M.D., Battey J.F., editors. Basic Methods in Molecular biology. Elsevier Scientific Publishing Company; Amsterdam, New York: 1986. p. 388. [Google Scholar]
  5. Dimitrov D.H., Graham D.Y., Estes M.K. Detection of rotaviruses by nucleic acid hybridization with cloned DNA of simain rotavirus SA11 genes. J. Infect. Dis. 1985;152:293–299. doi: 10.1093/infdis/152.2.293. [DOI] [PubMed] [Google Scholar]
  6. Dyall-Smith M.L., Lazdine I., Tregear G.W., Holmes I.H. Vol. 83. 1986. Location of the major antigenic sites involved in rotavirus serotype-specific neutralization; pp. 3465–3468. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Estes M.K., Palmer E.L., Obijeski J.F. Rotaviruses: A Review. Curr. Top. Microbiol. Immunol. 1983;105:124–184. doi: 10.1007/978-3-642-69159-1_3. [DOI] [PubMed] [Google Scholar]
  8. Flewett T.H., Woode G.N. The rotaviruses. Brief Review. Arch. Virol. 1978;57:1–23. doi: 10.1007/BF01315633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flores J., Boeggeman E., Purcell R.H., Sereno M., Perez I., White L., Wyatt R.G., Chanock R.M., Kapikian A.Z. A dot hybridization assay for detection of rotavirus. Lancet. 1983;1:555–559. doi: 10.1016/s0140-6736(83)92811-8. [DOI] [PubMed] [Google Scholar]
  10. Flores J., Midthun K., Hoshino Y., Green K.Y., Gorziglia M., Kapikian A.Z., Chanock R.M. Conservation of the fourth gene among rotaviruses recovered from asymptomatic newborn infants and its possible role in attenuation. J. Virol. 1986;60:972–979. doi: 10.1128/jvi.60.3.972-979.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flores J., Green K.Y., Garcia D., Sears J., Perez-Schael I., Avendano L.F., Rodriguez W.B., Taniguchi K., Urasawa S., Kapikian A.Z. Dot hybridization assay for distinction of rotavirus serotypes. J. Clin. Microbiol. 1989;27:29–34. doi: 10.1128/jcm.27.1.29-34.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gorziglia M., Cashdollar L.W., Hudson G.R., Esparza J. Molecular cloning of human rotavirus genome. J. Gen. Virol. 1983;64:2585–2595. doi: 10.1099/0022-1317-64-12-2585. [DOI] [PubMed] [Google Scholar]
  13. Gorziglia M., Nishikawa K., Green K., Taniguchi K. Gene sequence of the VP7 serotype specific glycoprotein of Gottfried procine rotavirus. Nucleic Acids Res. 1988;16:775. doi: 10.1093/nar/16.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green K.Y., Midthun K., Gorziglia M., Hoshino Y., Kapikian A.Z., Chanock R.M., Flores J. Comparison of the amino acid sequences of the major neutralization protein of four human rotavirus serotypes. Virology. 1987;161:153–159. doi: 10.1016/0042-6822(87)90181-4. [DOI] [PubMed] [Google Scholar]
  15. Green K.Y., Sears J.F., Taniguchi K., Midthun K., Hoshino Y., Gorziglia M., Nishikawa K., Urasawa S., Kapikian A.Z., Chanock R.M., Flores J. Prediction of human rotavirus serotype by nucleotide sequence analysis of the VP7 protein gene. J. Virol. 1988;62:1819–1823. doi: 10.1128/jvi.62.5.1819-1823.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greenberg H.B., Flores J., Kalica A.R., Wyatt R.G., Jones R. Gene coding assignments for growth restriction, neutralization and subgroup specificities of the Wa and DS-1 strains of human rotavirus. J. Gen. Virol. 1983;64:313–320. doi: 10.1099/0022-1317-64-2-313. [DOI] [PubMed] [Google Scholar]
  17. Greenberg H.B., MacAuliffe V., Valdesuso J., Wyatt R., Flores J., Kalica A., Hishino Y., Singh N. Serological analysis of the subgroup protein of rotavirus using monoclonal antibodies. Infect. Immun. 1983;39:91–99. doi: 10.1128/iai.39.1.91-99.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greenberg H.B., Valdesuso J., Van Wyke K., Midthun K., Walsh M., McAuliffe V., Wyatt R.G., Kalica A.R., Flores J., Hosjino Y. Production and preliminary characterization of monoclonal antibodies directed at two surface proteins of Rhesus rotavirus. J. Virol. 1983;47:267–275. doi: 10.1128/jvi.47.2.267-275.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Herring A.J., Inglis N.F., Ojeh C.K., Snodgrass D.R., Menzies J.D. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J. Clin. Microbiol. 1982;16:473–477. doi: 10.1128/jcm.16.3.473-477.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoshino Y., Wyatt R.G., Greenberg H.B., Flores J., Kapikian A.Z. Serotypic similarity and diversity of rotaviruses of mammalian and avian origin as studied by plaque-reduction neutralization. J. Infect. Dis. 1984;149:694–702. doi: 10.1093/infdis/149.5.694. [DOI] [PubMed] [Google Scholar]
  21. Hoshino Y., Sereno M.M., Midthun K., Flores J., Chanock R.M., Kapikian A.Z. Analysis by plaque reduction neutralization assay of intertypic rotaviruses suggests that gene reassortment occurs in vivo. J. Clin. Microbiol. 1987;25:290–294. doi: 10.1128/jcm.25.2.290-294.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Janke B.H., Morehouse L.G., Solorzano R.F. Single and mixed infections of neonatal pigs with rotaviruses and enteroviruses: Virological studies. Can. J. Vet. Res. 1988;52:360–363. [PMC free article] [PubMed] [Google Scholar]
  23. Kalica A.R., Wyatt R.G., Kapikian A.Z. Detection of differences among human and animal rotavirus, using analysis of viral RNA. J. Am. Vet. Med. Assoc. 1978;173:531–537. [PubMed] [Google Scholar]
  24. Kalica A.R., Greenberg H.B., Wyatt R.G., Flores J., Sereno M.M., Kapikian A.Z., Chanock R.M. Genes of human (strain Wa) and bovine (strain UK) rotaviruses that code for neutralization and subgroup antigens. Virology. 1981;112:385–390. doi: 10.1016/0042-6822(81)90285-3. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lin M., Imai M., Ikegami N., Bellamy A.R., Summers D., Nuss D.L., Deibel R., Furuichi N. cDNA probes of individual genes of human rotavirus distinguish viral subgroups and serotypes. J. Virol. Methods. 1987;15:285–289. doi: 10.1016/0166-0934(87)90151-0. [DOI] [PubMed] [Google Scholar]
  27. Liu M., Offit P.A., Estes M.K. Identification of Simian rotavirus SA11 genome segment 3 product. Virology. 1988;163:26–32. doi: 10.1016/0042-6822(88)90230-9. [DOI] [PubMed] [Google Scholar]
  28. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1990. [Google Scholar]
  29. McCrae M.A. Double-stranded RNA viruses. In: Mahy B.W.J., editor. Virology: a Practical Approach. IRL Press; Oxford: 1985. pp. 151–168. [Google Scholar]
  30. Morita Y., Taniguchi K., Urasawa T., Urasawa S. Analysis of serotype-specific neutralization epitopes of VP7 of human rotavirus by the use of neutralizing monoclonal antibodies and antigenic variants. J. Gen. Virol. 1988;69:451–458. doi: 10.1099/0022-1317-69-2-451. [DOI] [PubMed] [Google Scholar]
  31. Nagesha H.S., Holmes I.H. New porcine rotavirus serotype antigenically related to human rotavirus serotype 3. J. Clin. Microbiol. 1988;26:171–174. doi: 10.1128/jcm.26.2.171-174.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olive M.D., Sethi S.K. Detection of human rotavirus by using an alkaline phosphatase-conjugated synthetic DNA probe in comparison with enzyme-linked immunoassay and polyacrylamide gel analysis. J. Clin. Microbiol. 1989;27:53–57. doi: 10.1128/jcm.27.1.53-57.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Paul P.S., Mengeling W.L. Evaluation of a modified live-virus vaccine for the prevention of porcine parvovirus-induced reproductive disease in swine. A. J. Vet. Res. 1980;41:2007–2011. [PubMed] [Google Scholar]
  34. Paul P.S., Mengeling W.L., Pirtle E.C. Differentiation of pseudorabies (Aujeszky's disease) virus strains by restriction endonuclease analysis. Arch. Virol. 1982;73:193–198. doi: 10.1007/BF01314727. [DOI] [PubMed] [Google Scholar]
  35. Paul P.S., Lyoo Y.S., Andrews J.J., Hill H.T. Isolation of two new serotypes of porcine rotavirus from pigs with diarrhea. Arch. Virol. 1988;100:139–143. doi: 10.1007/BF01310917. [DOI] [PubMed] [Google Scholar]
  36. Paul P.S., Lyoo Y.S., Woode G.N., Zheng S., Greenberg H.B., Matsui S., Schwartz K.J., Hill H.T. Isolation of a bovine rotavirus with a “super short” RNA electrophoretic pattern from a calf with diarrhea. J. Clin. Microbiol. 1988;26:2139–2143. doi: 10.1128/jcm.26.10.2139-2143.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pedley S., McCrae M.A. A rapid screening assay for detecting individual RNA species in field isolates of rotaviruses. Virol. Methods. 1984;9:173–181. doi: 10.1016/0166-0934(84)90009-0. [DOI] [PubMed] [Google Scholar]
  38. Pedley S., Bridger J.C., Chasey D., McCrae M.A. Definition of two new groups of atypical rotaviruses. J. Gen. Virol. 1986;67:131–137. doi: 10.1099/0022-1317-67-1-131. [DOI] [PubMed] [Google Scholar]
  39. Ruiz A.M., Lopez I.V., Lopez S., Espejo R.T., Arias C.F. Molecular and antigenic characterization of porcine rotavirus YM, a possible new rotavirus serotype. J. Virol. 1988;62:4331–4336. doi: 10.1128/jvi.62.11.4331-4336.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shaw R.D., Stoner-Ma D.L., Estes M.K., Greenberg H.B. Specific enzyme-linked immunoassay for rotavirus serotypes 1 and 3. J. Clin. Microbiol. 1985;22:291–296. doi: 10.1128/jcm.22.2.286-291.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shockley L.J., Kapke P.A., Lapps W., Brian D.A., Potgieter L.N.D., Woods R. Diagnosis of porcine and bovine enteric coronavirus infection using cloned cDNA probes. J. Clin. Microbiol. 1987;25:1591–1596. doi: 10.1128/jcm.25.9.1591-1596.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Taniguchi K., Urasawa T., Morita Y., Greenberg H.B., Urasawa S. Direct serotyping of human rotavirus in stools by an enzyme-linked immunosorbent assay using serotype 1-, 2-, 3-, and 4-specific monoclonal antibodies to VP7. J. Infect. Dis. 1987;155:1159–1166. doi: 10.1093/infdis/155.6.1159. [DOI] [PubMed] [Google Scholar]
  43. Wahl G.M., Berger S.L., Kimmel A.R. Molecular hybridization of immobilized nucleic acids: theoretical concepts and practical considerations. Methods Enzymol. 1987;152:399–407. doi: 10.1016/0076-6879(87)52046-8. [DOI] [PubMed] [Google Scholar]
  44. Woode G.N., Bridger J.C., Hall G., Demmi M.J. The isolation of reovirus-like agent associated with diarrhoea in colostrum-deprived calves in Great Britain. Res. Vet. Sci. 1974;16:102–105. [PubMed] [Google Scholar]
  45. Woode G.N., Bridger J.C., Jones J.M., Flewett T.H., Bryden A.S., Davies H.A., White G.B. Morphological and antigenic relationships between viruses (rotaviruses) from acute gastroenteritis of children, calves, piglets, mice, and foals. Infect. Immun. 1976;14:804–810. doi: 10.1128/iai.14.3.804-810.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Woode G.N., Kelso N.E., Simpson T.F., Gaul S.K., Evans L.E., Babiuk L. Antigenic relationships among some bovine rotaviruses: serum neutralization and cross-protection in gnotobiotic calves. J. Clin. Microbiol. 1983;18:358–364. doi: 10.1128/jcm.18.2.358-364.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES