Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Mar 2;49(1):67–79. doi: 10.1016/0378-1135(95)00167-0

Identification of bovine viral diarrhea virus receptor in different cell types

Wenzhi Xue 1, Harish C Minocha 1,
PMCID: PMC7117299  PMID: 8861644

Abstract

Anti-idiotypic antibodies (anti-ids) have been used successfully in studies on bovine viral diarrhea virus (BVDV) receptor(s) in our laboratory. The anti-ids specifically bound to cultured cells and identified a 50 kDa cellular membrane protein, which is thought to be a specific receptor for BVDV. In this study, flow cytometric analyses demonstrated that the anti-ids also specifically bound to different cell types, namely MDBK, EBK, BT, PK15, MA104, and Vero. Experiments on virus attachment and replication showed that BVDV adsorbed to all cells and replicated in them except monkey kidney cells MA104 and Vero (non-permissive). Results from plaque reduction assays indicated that cellular membrane proteins from all cell lines competitively inhibited BVDV attachment to cultured MDBK cells, suggesting the presence of BVDV receptor on all cells. Immunoblotting of cell membrane proteins with the anti-ids revealed a 50 kDa protein in both permissive and nonpermissive cells. Subcloned or synchronized MDBK cells demonstrated no significant difference of binding with anti-ids as compared to normal cultured cells.

Keywords: BVDV, diagnosis-bovine viral diarrhea virus; Different cells; Subclones; Synchronization

References

  1. Baker J.C. Bovine viral diarrhea virus: a review. J. Am. Vet. Med. Assoc. 1987;190:1449–1458. [PubMed] [Google Scholar]
  2. Basak S., Turner H., Compans R.W. Expression of SV40 receptors on apical surfaces of polarized epithelial cells. Virol. 1992;190:393–402. doi: 10.1016/0042-6822(92)91225-j. [DOI] [PubMed] [Google Scholar]
  3. Choi A.H.C., Paul R.W., Lee P.W.K. Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Virol. 1990;178:316–320. doi: 10.1016/0042-6822(90)90412-k. [DOI] [PubMed] [Google Scholar]
  4. Co M.S., Gaulton G.N., Tominaga A., Homcy C.J., Fields B.N., Greene M.I. Vol. 82. 1985. Structural similarities between the mammalian β-adrenergic and reovirus type 3 receptors; pp. 5315–5318. (Proc. Ntl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collett M.S., Moennig V., Horzinek M.C. Recent advances in pestivirus research. J. Gen. Virol. 1989;70:253–266. doi: 10.1099/0022-1317-70-2-253. [DOI] [PubMed] [Google Scholar]
  6. El-Ghorr A.A., Gordon D.A., George K., Maratos-Flier E. Regulation of expression of the reovirus receptor on differentiated HL60 cells. J. Gen. Virol. 1992;73:1961–1968. doi: 10.1099/0022-1317-73-8-1961. [DOI] [PubMed] [Google Scholar]
  7. Eppstein D.A., Marsh Y.V., Schreiber A.B., Newman S.R., Todaro G.J., Nestor J.J., Jr. Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature. 1985;318:663–665. doi: 10.1038/318663a0. [DOI] [PubMed] [Google Scholar]
  8. Fingeroth J.D., Weis J.J., Tedder T.F., Strominger J.L., Bird P.A., Fearon D.T. Vol. 81. 1984. Epstein-Barr virus receptor of human B lymphocytes is the C3D receptor CR2; pp. 4510–4514. (Proc. Ntl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., editors. Fifth report of the international committee on Taxonomy of Viruses. 1991. pp. 223–233. (Arch. Virol.). (Suppl. 2) [Google Scholar]
  10. Gabel C.A., Dubey L., Steinberg S.P., Sherman D., Gershon M.D., Gershon A.A. Varicella-zoster virus glycoprotein oligosaccharide are phosphorylated during post-translational maturation. J. Virol. 1989;63:4264–4276. doi: 10.1128/jvi.63.10.4264-4276.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gallagher T.M., Buchmeier M.J., Perlman S. Cell receptor-independent infection by a neurotropic murine coronavirus. Virol. 1992;191:517–522. doi: 10.1016/0042-6822(92)90223-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harding M.J., Molitor T.W. A monoclonal antibody which recognizes cell surface antigen and inhibits porcine parvovirus replication. Arch. Virol. 1992;123:323–333. doi: 10.1007/BF01317267. [DOI] [PubMed] [Google Scholar]
  13. Horzinek M.C. The structure of togaviruses. Prog. Med. Virol. 1973;16:109–156. [PubMed] [Google Scholar]
  14. Kaner R.J., Baird A., Mansukhani A., Basilico C., Summers B.D., Florkiewicz, Hajjar D.P. Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type-1. Science. 1990;248:1410–1413. doi: 10.1126/science.2162560. [DOI] [PubMed] [Google Scholar]
  15. Kucera P., Dolivo M., Coulon P., Flamand A. Pathway of the early propagation of virulent and avirulent rabies strains from eye to brain. J. Virol. 1985;55:158–162. doi: 10.1128/jvi.55.1.158-162.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kute T.E., Quadri Y. Measurement of proliferation nuclear and membrane marker in tumor cells by flow cytometry. J. Histochem. Cytochem. 1991;39:1125–1130. doi: 10.1177/39.8.1856460. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lentz T.L. Rabies virus receptors. Trends of Neurosci. 1985;8:0–4. [Google Scholar]
  19. Maddon P.I., Dalgleish A.G., McDougal J.S., Clapham P.R., Weiss R.A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  20. Martin C.F.C., Correale J., Kam-Hanson S., Ehrnst A. Cell cycle-dependent expression of CD4 antigen in a monocytoid cell lines. Scand. J. Immunol. 1991;36:483–489. doi: 10.1111/j.1365-3083.1991.tb01571.x. [DOI] [PubMed] [Google Scholar]
  21. Matherly L.H., Schuetz J.D., Westin E., Goldman I.D. A method for synchronization of cultured cells with aphidicolin: Application to the large-scale synchronization of L1210 cells and the study of cell cycle regulation of thymidylate synthase and dihydrofolate reductase. Anal. Biochem. 1989;182:338–345. doi: 10.1016/0003-2697(89)90605-2. [DOI] [PubMed] [Google Scholar]
  22. Nowlin D.M., Cooper N.R., Compton T. Expression of a human cytomegalovirus receptor correlates with infectivity of cells. J. Virol. 1991;65:3114–3121. doi: 10.1128/jvi.65.6.3114-3121.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paul R.W., Lee P.W.K. Glycoprtein is the reovirus receptor on human erythrocytes. Virology. 1987;159:94–101. doi: 10.1016/0042-6822(87)90351-5. [DOI] [PubMed] [Google Scholar]
  24. Radostits O.M., Littlejohns I.R. New concepts in the pathogenesis, diagnosis, and control of disease caused by the bovine viral diarrhea virus. Can. J. Vet. Res. 1988;29:513–528. [PMC free article] [PubMed] [Google Scholar]
  25. Ubol S., Griffin D.E. Identification of a putative alphavirus receptor on mouse neural cells. J. Virol. 1991;65:6913–6921. doi: 10.1128/jvi.65.12.6913-6921.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Urbain J., Slaori M., Mariame B., Leo O. Idiotype and internal image. In: Kohlor H., Urbain J., Cazinave P.A., editors. Idiotype in Biology and Medicine. Academic Press; New York: 1984. pp. 15–28. [Google Scholar]
  27. Verdin E.M., King G.L., Maratos-Flier E. Characterization of a common high affinity receptor for reovirus serotypes 1 and 3 on endothelial cells. J. Virol. 1989;63:318–1325. doi: 10.1128/jvi.63.3.1318-1325.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang K.-S., Schmaljohn A.L., Kuhn R.J., Strauses J.H. Anti-idiotypic antibodies as probes for the sindbis virus receptor. Virology. 1991;181:694–702. doi: 10.1016/0042-6822(91)90903-o. [DOI] [PubMed] [Google Scholar]
  29. Westaway E.G., Brinto M.A., Gaidamovich S.Y.A., Horzinek M.C., Igarashi A., Kaariainen L., Lvov D.K., Porterfield J.S., Russel P.K., Trent D.W. Togaviridae. Intervirology. 1985;24:125–139. doi: 10.1159/000149632. [DOI] [PubMed] [Google Scholar]
  30. Wudunn D., Spear P.G. Initial interaction of herpes simplex virus with cells is binding to heparin sulfate. J. Virol. 1989;63:52–58. doi: 10.1128/jvi.63.1.52-58.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xue W., Elecha F., Minocha H.C. Antigenic variations in bovine viral diarrhea viruses detected by monoclonal antibodies. J. Clin. Microbiol. 1990;28:1688–1693. doi: 10.1128/jcm.28.8.1688-1693.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xue W., Orten D.J., Abdelmagid O.Y., Rider M., Blecha F., Minocha H.C. Anti-idiotypic antibodies mimic bovine viral diarrhea virus neutralizing antigens. Vet. Microbiol. 1991;29:201–212. doi: 10.1016/0378-1135(91)90128-3. [DOI] [PubMed] [Google Scholar]
  33. Xue W., Minocha H.C. Identification of the cell surface receptor for bovine viral diarrhea virus by using anti-idiotypic antibodies. J. Gen. Virol. 1993;74:73–79. doi: 10.1099/0022-1317-74-1-73. [DOI] [PubMed] [Google Scholar]
  34. Yokomori K., Lai M.M. The receptor for mouse hepatitis virus in the resistant mouse strain SJL is functional: Implications for the requirement of a second factor for viral infection. J. Virol. 1992;66:6931–6938. doi: 10.1128/jvi.66.12.6931-6938.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES