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Abstract

Purpose of Review: This review will cover what is known regarding exosomes and allergy, and 

furthermore discuss novel mechanism of exosome mediated immune modulation and metabolic 

regulation via the transfer of mitochondria.

Recent Findings: Exosomes are nano-sized extracellular vesicles (EVs) derived from the 

endosome that play a direct role in governing physiological and pathological conditions by 

transferring bioactive cargo such as proteins, enzymes, nucleic acids (miRNA, mRNA, DNA), and 

metabolites. Recent evidence suggest that exosomes may signal in autocrine but, most importantly, 

in paracrine and endocrine manner, being taken up by neighboring cells or carried to distant sites. 

Exosomes also mediate immunogenic responses, such as antigen presentation and inflammation. 

In asthma and allergy, exosomes facilitate cross-talk between immune and epithelial cells, and 

drive site specific inflammation through the generation of proinflammatory mediators like 

leukotrienes. Recent studies suggest that myeloid cell-generated exosomes transfer mitochondria 

to lymphocytes.

Summary: Exosomes are nano-sized mediators of the immune system which can modulate 

responses through antigen presentation, and the transfer of pro- and anti-inflammatory mediators. 

In addition to conventional mechanisms of immune modulation, exosomes may act as a novel 

courier of functional mitochondria that is capable of modulating the recipient cells bioenergetics, 

resulting in altered cellular responses. The transfer of mitochondria and modulation of 

bioenergetics may result in immune activation or dampening depending on the context.
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Introduction

Allergy is a multifaceted immunologic disease where our innate and adaptive defense 

mechanisms become activated by what should be a benign signal, resulting in rampant and 
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deregulated immune responses and chronic inflammation [1]. Many different cell types are 

involved and they each secrete unique soluble mediators of inflammation that drive disease 

pathology [1, 2]. Some well described cell types include, but are not limited to, CD4+ T cells 

(Th2, Th17 and hybrid Th2/Th17 subsets) [3, 4], dendritic cells (DCs) [5, 6], macrophages, 

myeloid derived regulatory cells (MDRCs) [6-12], natural killer (NK) cells [13-15], and 

epithelial cells [16, 5, 17]. For an effective immune system, various signaling mechanisms 

must come to play. The same is true in the case of allergy, where a coordinated, albeit 

inappropriate, immune signaling cascade results in persistent inflammation that is harmful 

for the host. Generally, these signaling cascades are mediated by soluble factors, such as 

cytokines and chemokines, as well as membrane-bound receptors, such as class-II 

molecules, the CD1 family of receptors, and Fcε receptor [2, 1]. Class-II molecules, such as 

HLA-DR, are antigen presentation molecules usually found on antigen presenting cells 

which play an important role in activating CD4+ T cells through the engagement of the T 

cell receptor (TCR) [18-20]. The CD1 family of receptors is a type of scavenger molecule 

found on macrophages and dendritic cells that can activate T cells [21-23]. These scavenger 

receptors recognize foreign lipids, such as of bacterial and fungal origin [23, 24]. Fcε 
receptor is an important player in allergy and is found on mast cells and basophils [25]. This 

receptor binds free IgE and activates degranulation of mast cells and basophils. All three of 

these molecules play an important role in activating the immune system, and have been 

found on exosomes.

Extracellular vesicles (EVs), such as exosomes, are essentially couriers of bioactive material, 

such as nucleotides, proteins, lipids, and metabolites, which have a substantial impact on the 

phenotype of the recipient cell [26]. In recent years, exosomes, which are secreted by many 

types of cells, have emerged as a key signaling mediators in various immunologic diseases 

[27]. The roles of exosomes pertaining to lung pathology are being increasingly described. 

In particular, exosomes are being appreciated as immunogenic potentiators especially in the 

context of allergy [28-32]. Many studies have reported a pro-inflammatory role of exosomes 

in allergy as well as in asthma [29-32]. Exosomes have been described to transfer pro-

inflammatory mediators, such as leukotrienes, and processed antigens on surface class-II 

receptors [29, 30, 32, 33]. Similarly in allergic skin diseases, exosomes have been shown to 

transfer antigens that activate immune responses [30, 34]. In addition to host cell generated 

exosomes, microbial EVs have also been implicated in immune activation and 

hypersensitivity [35-37].

In addition to transfer of bioactive materials, recent studies have also described the 

packaging and transfer of mitochondria via EVs and exosomes [38-40]. The transfer of 

mitochondria results in alterations in the host cell bioenergetics and may have lasting 

consequences on cellular function and tissue homeostasis. For example, our laboratory has 

observed the transfer of exosomes containing mitochondria by myeloid derived regulatory 

cells (MDRCs) and subsequent internalization of these exosomes by CD4+ T lymphocytes 

[40]. Together, the discovery of novel exosome-mediated mechanisms in modulating cellular 

and tissue homeostasis, and the host immune system will help us understand the intricate 

and complex mechanism of allergic disease pathology, which will indubitably aid in fruitful 

advances in the research and development of improved therapies. This review intends to 
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explore in detail each of the unique mechanisms by which exosomes modulate immune 

responses in the context of asthma and other allergic diseases.

Exosome Biogenesis

Exosomes were first described in the calcification of collagen in the extracellular matrix 

[41]. Since then, various “blebbings” from cells have been described as extracellular 

vesicles. The classification and nomenclature to describe EVs have been based on mode of 

biogenesis and biochemical properties [42, 43]. Currently, exosomes are described as 

vesicles derived from the endosome and released to the extracellular space [44-48]. 

Tetraspanins are highly enriched in exosomes and are used as reliable markers of exosomes 

[49]. Tetraspanins are transmembrane proteins which interact with one another and with 

other transmembrane proteins, such as integrins and receptors, acting as a scaffold to 

organize surface proteins and support cellular signaling [50]. When studying exosomes, 

reliable markers used in the field include CD63, CD81, CD9, tumor susceptibility 101 

(TSG101) and ALG-2 interacting protein X (ALIX). Specifically, endosomal markers or 

markers that are part of the endosomal sorting complexes required for transport (ESCRT) 

complex (such as TSG101, CD81, and ALIX) are preferred as they indicate an endosomal 

origin of the extracellular vesicle, which is part of the definition of an exosome [49, 51]. The 

biogenesis of exosomes starts with the outward invagination of the endosome, resulting in 

the formation of vesicles within the endosomal body, referred to as a multi-vesicular body 

(MVB) [44]. Although the biogenesis of exosomes results from the invagination of the 

endosome, the process is described as an ‘outward invagination’ to clarify that the lipid 

bilayer topology is maintained throughout the biogenesis and secretion process. The MVB 

can either merge with a lysosome, resulting in the degradation of its cargo, or it can fuse 

with the cytoplasmic membrane, causing the release of exosomes into the extracellular 

space. Exosomes are released from various different cell types, and can be isolated from 

several sources of biological fluids, such as bronchoalveolar lavage (BAL) fluid, synovial 

fluid, serum, urine, breast milk, and semen [52, 27, 53, 54, 33, 55]. Although the biological 

functions of these vesicles are still being characterized, and their association with disease 

being elucidated, exosomes have been thought to be part of a complex intercellular and 

systemic messaging system, that also play a role in cellular homeostasis via the autophagy 

pathways [26, 56]. Exosomes impart their effects on recipient cells through receptor 

interactions or by transfer of bioactive cargo [57, 58, 29, 30, 59, 60]. Studies have shown 

that in addition to antigen specific activation, immune cells can use adhesion molecules to 

“capture” exosomes [61, 62]. We explore the various mechanisms by which exosomes can 

modulate the immune system in the following sections.

Exosomes and Inflammation

Exosomes have been described as efficient cell-to-cell messengers that can cross biological 

barriers and modulate the immune system [27, 63-65, 26]. Inflammation can be triggered by 

many mechanisms, such as antigen presentation, cytokines, chemokines, leukotrienes and 

other lipid mediators of inflammation. Exosomes have been characterized with several 

membrane-associated immunogenic markers found on the surface, such as class-I and class-

II major histocompatibility complex (MHC) molecules, co-stimulatory molecules (CD86, 
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CD80, and CD54), and even functional enzymes that produce lipid mediators of 

inflammation [66-68, 55, 30, 31].

Antigen loaded exosomes have been demonstrated to induce strong antigen-specific immune 

responses. Specifically, dendritic cells pulsed with antigens produce exosomes that can 

activate CD8+ T cells in an antigen specific manner likely through antigen presentation by 

MHCI-peptide complexes [69]. Antigen loaded exosomes, as well as peptide class-II 

complexes associated with exosomes, have been found to be attached to the surface of 

follicular dendritic cells (FDCs). This exosome-mediated transfer of antigens is suggested as 

a mechanism by which exosomes can promote antigen-specific activation of T and B cells in 

primary and secondary lymphoid nodes [70]. Furthermore, adhesion of exosomes to the 

surface of FDCs is through the oligomerization and binding of tetraspanins between the 

exosomes and FDCs. We speculate that the adhesion of exosomes may be facilitated by 

adhesion molecules such as CD54 [71]. CD54 (ICAM-1) has been reported by others and 

our lab to be expressed on exosomes [72, 33, 29]. Segura et al., have shown that CD8+ 

dendritic cells use LFA-1 (the ligand for CD54) to capture MHC-peptide complexes from 

exosomes [61]. Furthermore, Hao et al., has reported that the internalization of exosomes in 

immune cells may be mediated by CD54/LFA-1 interactions on dendritic cells [73]. Nolte-’t 
Hoen et al., has also shown that LFA-1 is important for the recruitment of exosomes to T 

cells and their subsequent activation [62]. Bone marrow-derived mesenchymal stromal cells 

internalized PC12 pheochromocytoma cell-derived exosomes through clathrin-dependent 

endocytosis, resulting in delivery of miR-21 [74]. Additionally, endothelial cells have been 

shown to internalize exosomes via a dynamin-dependent matter through endocytosis [75]. 

Together, these observations suggest different modes of internalization that may be cell type 

specific. Furthermore that the effects imparted by the exosomes are multi-modal (receptor-

ligand interaction, or through transfer of cargo).

Exosomes have been found to transfer or even help generate pro-inflammatory lipid 

mediators. For example, exosomes from human macrophages and dendritic cells contain 

enzymes for the biosynthesis of leukotrienes and promote migration of granulocytes [68]. 

Furthermore, pulmonary epithelial cell-derived exosomes metabolize myeloid cell derived 

leukotriene C4 to leukotriene D4 [76]. In addition to leukotrienes, ceramides and 

sphingolipids have been found in exosomes and potentially implicated in inflammation [77, 

67]. Pro-inflammatory cytokines, such as TNF-α and IFN-γ haven been shown to drive 

release of ceramides into exosomes, which become mediators of cell death signaling [78]. 

Additionally, hepatocytes have been shown to also release pro-inflammatory ceramide-

enriched extracellular vesicles under stress [79].

Exosomes can package miRNA which have various different functional implications to the 

target cells which internalize these vesicles, and is often dependent on the context of disease. 

In one study, serum exosomes from rats treated with zinc oxide nanoparticles were identified 

with 16 different pro-inflammatory miRNAs [80]. Additionally, miR-155 and miR-146a, 

two pro-inflammatory miRNAs, were found enriched in exosomes purified from dendritic 

cells following treatment with endotoxin [60]. From a clinical perspective, a pro-

inflammatory miRNA signature was found from serum exosomes isolated from septic 

patients admitted to the ICU [81]. In asthma, the exosomes from human bronchoalveolar 
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lavage fluid have been found to contain miRNAs with pro-inflammatory signatures [31]. The 

study identified numerous miRNA involved in immune modulation, such as miR-27 and 

miR-24 (important for Th2 responses [82]), miR-21 (important for metabolic regulation of 

pathogenic Th17 [83]), and Let-7c (M2 polarization [84]). This indicates that exosomal 

transfer of miRNA can modulate gene programing and promote inflammation in an antigen-

independent manner.

Novel Mechanisms of Exosome-Mediators

As discussed earlier, exosomes are couriers of various biological cargo with functional 

effects [26]. In recent years, exosomes and other extracellular vesicles (EVs) have been 

shown to alter cellular metabolism by transfer of metabolites to recipient cells or by altering 

regulation of metabolic enzyme pathways [85, 86, 40, 87-90, 39]. Metabolism has been 

appreciated beyond fulfilling cellular energy requirements, and is connected to various 

cellular processing such as epigenetic control [91, 92] and gene regulation [93, 94]. The 

cellular changes induced by metabolism then may impact at an organismal level, such as in 

immune response [95, 96], tissue repair [97, 98], and disease pathology [99-101]. In 

particular, the transfer of mitochondria from one cell to another has garnered much attention 

as a novel mechanism of cellular energetic repair [85, 86, 39, 87-90].

The transfer of mitochondria from one cell to another has been previously described through 

a structural mechanism called tunneling nanotubes (TNTs) (Figure 1) [102-106]. TNTs are 

membrane nanotube protrusions that extend from the plasma membrane and bridge the 

cytoplasm of two cells over a distance [103, 105]. Jackson et al., has shown that TNTs are 

important for the transfer of functional mitochondria from mesenchymal stem cells (MSCs) 

to macrophages to promote antimicrobial functions in in vitro and in vivo models of acute 

respiratory distress syndrome (ARDS) [107]. Their study demonstrates that the transfer of 

mitochondria from MSCs to macrophages increases their bioenergetics and phagocytic 

activity. However, inhibition of TNT formation by Cytochalasin B did not completely block 

intercellular transfer of mitochondria, suggesting an alternative cell-contact independent 

mechanism.

Transfer of mitochondria from MSCs to macrophages can occur in EVs secreted from MSCs 

[39]. Morrison et al., demonstrate that the MSC-derived EVs contain mitochondria, and 

when transferred to macrophages, promote M2 polarization and enhance oxidative 

phosphorylation. The authors further demonstrate that functional mitochondria are being 

transferred by MSCs to macrophages by showing that EVs from rhodamine treated MSCs, 

which generate dysfunctional mitochondria, have no effect on macrophages. These results 

are supported by other studies that illustrate MSC-derived EVs can recapitulate the 

beneficial effects of cell-based MSC therapies [90, 89, 88, 87].

The ability of cells to release EVs containing mitochondria has been previously described 

[86, 38]. Our lab has also reported that exosomes from bronchoalveolar lavage (BAL) fluid 

of asthmatics and exosomes derived from myeloid-derived regulatory cells from the airways 

of asthmatics contain mitochondria, which can be internalized by CD4+ T lymphocytes [40]. 

We observe that functional mitochondria that are capable of producing ROS are internalized 
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by CD4+ T cells and merge with the host mitochondrial network. Our studies align with 

published reports that implicate the importance of mitochondria transfer by EVs and their 

role in altering cellular function in response to injury and inflammation.

The transfer of healthy mitochondria to cells with damaged mitochondria is an important 

mechanism for cellular repair. Human mesenchymal stem cells (hMSCs) were shown to 

package healthy mitochondria inside membrane-bound vesicles that were secreted and 

subsequently acquired by epithelial cells that were co-cultured in vitro [85]. The study 

shows that when cultured with A549 ρ˚ (ρ˚ phenotype lack mitochondrial DNA) that have 

defective mitochondria, the transfer of mitochondria by hMSC-derived EVs rescued 

metabolic activity and aerobic respiration in the A549 ρ˚ cells.

Functional mitochondrial complex proteins have been reported in exosomes, and viable for 

the generation of ATP [108]. Panfoli, et al report that hMSCs from >37-week old newborns 

generated exosomes that contained functional complex proteins that were capable of 

generating ATP while, hMSC from 28-30 week old newborns generated exosomes that were 

unable to produce ATP despite having mitochondria complex proteins [108]. They implicate 

this difference as potential vulnerability factors between newborn and preterm, such as 

reduced ability to cope with anoxic environments and repair damaged tissue in preterm.

In addition to the transfer of healthy mitochondria, cells may use EVs to package damaged 

mitochondria as a danger signal to others as a result of disease pathology, and to maintain 

mitochondrial quality control [109, 110]. Studies have demonstrated that mitochondria can 

generate vesicles of various types that are shuttled to the lysosome [111] or peroxisome for 

degradation [112]. This pathway shares the same pathway as exosome generation – through 

the late endosome and multivesicular body [111] – and thus would not be alarming if these 

mitochondrially derived vesicles (MDVs) were secreted. Cells that have damaged 

mitochondria are undergoing cellular stress that may overwhelm or even shutdown 

mitophagy and autophagy pathways. The unique coincidence that these pathways are shared 

with exosome generation may suggest an alternative survival mechanism for cells to shed 

damaged cellular components extracellular while attempting to regain homeostasis. To 

support this theory, Davis et al., has shown that damaged mitochondria can be transported to 

adjacent cells to aid in degradation, which they have coined the term transmitophagy [113].

Conclusions

In allergy, exosomes have been shown to activate T cells in an antigen specific manner 

without the need of an APC [30]. The activation is most likely through the engagement of 

MHCII-peptide complexes on the surface of exosomes with the TCR of CD4+ T cells. The 

modulation of the immune system by exosomes is not limited to surface receptor 

interactions. Transfer of RNA by exosomes, such as those produced by mast cells, can alter 

the transcriptomic landscape of the recipient cell, potentially promoting upregulation of pro-

inflammatory genes [59, 60, 28]. Together, exosomes can activate T cells and other immune 

subsets in a multi-modal manner, such as receptor interaction or fusion and cargo transfer, 

without the aid of traditional APCs.
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Furthermore, we gather that the transfer of mitochondria between cells is not an uncommon 

occurrence and happens in both healthy and diseases states. Furthermore, new evidence 

suggests that mitochondria can be packaged into extracellular vesicles, such as exosomes, 

and transported to recipient cells. Importantly, this transfer has the ability to induce 

functional changes to the recipient cell, implicating the potential for such transfer to be 

important in cellular homeostasis and disease pathogenesis. Although the exact pathway by 

which exosomes package mitochondria is still unknown, we speculate that two possible 

mechanisms exist: 1. mitochondrial fission; and 2. mitophagy. Proteins such as Drp1 induce 

fission of mitochondria that may promote their packaging into exosomes or other types of 

EVs. Similarly, the mitophagy pathway may shuttle mitochondria through pathways that are 

shared with exosome biogenesis. These pathways need to be studied in the context of 

exosome biogenesis and mitochondrial packaging to better understand how cellular 

organelles, such as the mitochondria, can be packaged and delivered.
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Figure 1 –. 
Mechanism for the transfer of mitochondria between cells. Tunneling nanotubes and 

extracellular vesicles, such as exosomes, have been shown to carry mitochondria from donor 

to recipient cells.
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