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Abstract

The tumor microenvironment is marked by gradients in the level of oxygen and nutrients, with 

oxygen levels reaching a minimum at the core of the tumor, a condition known as tumor hypoxia. 

Mediated by members of the HIF family of transcription factors, hypoxia leads to a more 

aggressive tumor phenotype by transactivation of several genes as well as reprogramming of pre-

mRNA splicing. Intragenic DNA methylation, which is known to affect alternative splicing in 

cancer, could be one of several reasons behind the changes in splicing patterns under hypoxia. 

Here, we have tried to establish a correlation between intragenic DNA methylation and alternative 

usage of exons in tumor hypoxia. First, we have generated a custom hypoxia signature consisting 

of 34 genes that are up-regulated under hypoxia and are direct targets of HIF-1α. Using this gene 

expression signature, we have successfully stratified publicly available breast cancer patient 

samples into hypoxia positive and hypoxia negative groups followed by mining of differentially 

spliced isoforms between these groups. The Hypoxia Hallmark signature from MSigDB was also 

used independently to stratify the same tumor samples into hypoxic and normoxic. We found that 

821 genes were showing differential splicing between samples stratified using a custom signature, 

whereas, 911 genes were showing differential splicing between samples stratified using the 

MSigDB signature. Finally, we performed multiple correlation tests between the methylation 

levels (α) of microarray probes located within 1 kilo base pairs of isoform-specific exons using 

those exons’ expression levels in the same patient samples in which the methylation level was 

recorded. We found that the expression level of one of the exons of DHX32 and BICD2 

significantly correlated with the methylation levels, and we were also able to predict patient 

survival (p-value: 0.02 for DHX32 and 0.0024 for BICD2). Our findings provide new insights into 

the potential functional role of intragenic DNA methylation in modulating alternative splicing 

during hypoxia.
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1 Introduction

One of the most defining features of the microenvironment of solid tumors is hypoxia 

caused by an inadequate supply of oxygen owing to the lack of proper vasculature in the 

core of the tumor (Vaupel and Harrison 2004). Low oxygen levels induce several changes in 

cancer cells as well as in other associated components of the tumor microenvironment. 

These changes, which can be mainly attributed to Hypoxia Inducible Factors (HIFs), help in 

augmenting the metastatic potential of cancer cells (Petrova et al. 2018). The major effector 

of the hypoxia pathway and the most studied member of HIF family of transcription factors 

is HIF-1, a heterodimer protein consisting of a stable HIF-1β subunit along with HIF-1α, 

which undergoes ubiquitin-mediated degradation under normal oxygen levels. Upon 

stabilization, during hypoxia, HIF-1α forms a complex with HIF-1β, which along with 

cofactors like CBP and p300 activate the transcription of a wide variety of genes involved in 

processes that are vital for the survival and spread of tumor cells to metastatic sites (Wang et 
al. 1995; Jaakkola et al. 2001; Petrova et al. 2018).

Like other solid tumors, the activation of the hypoxia pathway in breast cancer has been 

shown to play an important role by contributing to processes like the formation of new blood 

vessels (angiogenesis), remodeling of the extracellular matrix, establishment of pre-

metastatic niche, invasion and extravasation at metastatic site, among others (Semenza 

2016). Apart from the change in the transcriptional activity of genes downstream of HIF-1α, 

hypoxia has also been shown to induce changes in the alternative splicing of pre-mRNA 

transcripts, the latter being relatively less understood. Previous studies have reported 

changes in alternative splicing due to hypoxia in breast cancer cells (Hirschfeld et al. 2009; 

Han et al. 2017); however, epigenetic regulation of alternative splicing under hypoxia has 

not been reported.

There is increasing support for epigenetic mechanisms like DNA methylation as one of the 

major players that drive cancer progression (Flavahan et al. 2017). Moreover, intragenic 

DNA methylation has also been shown to modulate the alternative splicing of pre-mRNA 

(Maunakea et al. 2013). Earlier, we have reported the role of intragenic methylation in the 

expression of cancer-specific PKM2 isoform in breast cancer (Singh et al. 2017). Also, 

epigenetics plays a crucial role in cellular response to hypoxia (Watson et al. 2010; Wu et al. 
2015).

Furthermore, hypoxia is shown to result in global changes in DNA methylation due to 

alterations in DNMTs and TET activities (Watson et al. 2012; Thienpont et al. 2016). 

Considering that DNA methylation is known to regulate alternative splicing, it is possible 

that hypoxia-induced response contributes to cancer-specific, alternatively spliced 

transcripts, due to changes in DNA methylation. Hence, we hypothesized that alteration in 

the level of DNA methylation at a global level in tumor hypoxia could be the reason behind 

widespread changes in alternative splicing that occur in response to hypoxia. In this study, 

we have identified a gene expression signature indicative of the hypoxia pathway activation. 

We use this gene expression signature to perform in silico stratification of the publicly 

available TCGA (The Cancer Genome Atlas) breast cancer RNA-seq gene expression data 

into hypoxia-positive or hypoxia-negative individuals. This stratification of patient samples 
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was used to identify differentially used splice isoforms. Finally, to evaluate the possible 

functional role of intragenic DNA methylation in altering RNA splicing, we looked for 

statistically significant correlations between exon expression and methylation levels in the 

genes that were found to be differentially spliced between the hypoxia-positive and hypoxia-

negative individuals. The expression level of one of the exons of DHX32 (DEAH-Box 

Helicase 32) and BICD2 (Protein Bicaudal D Homolog 2) genes showed significant 

correlation with DNA methylation. Moreover, with the same exons, we were able to predict 

the overall survival of breast cancer patients, further strengthening our hypothesis.

2 Materials and methods

The complete computational pipeline used in this study is represented in figure 1. Individual 

steps are described in detail in the following sections. The complete code has been uploaded 

at https://github.com/erpliiserb/Hypoxia.

2.1 Differential gene expression analysis

Microarray gene expression profiling data of MCF7 cells under hypoxia (cultured at 0% 

oxygen) was obtained from Gene Expression Omnibus (GSE41491) (Starmans et al. 2012) 

and converted to.CHP format using Expression Console (v 4.1). Expression at 0-hour time-

point (normoxia) was compared to expression at hypoxic time-points (1 h to 24 h) using 

Transcriptome Analysis Console (v 4.0.1.36), as given in table 1.

A fold change ≥ + 1.2 or ≤ − 1.2, with FDR-corrected p-value < 0.05 was considered 

significant. The list of differentially expressed genes was annotated with the microarray 

probe locations downloaded using the (Affymetrix HG U133 Plus 2.0) biomaRt (Durinck et 
al. 2009) package in R. To address the issue of a gene being detected by multiple probe sets, 

we used the jmap function of Jetset (Li et al. 2011) package in R to obtain a single, most 

representative probe set for each gene.

2.2 Identification of HIF-1 α binding sites using ChIP-Seq data

HIF-1α ChIP-sequencing dataset (containing both control and experiment data) was 

downloaded from GEO (GSE28352) (Schödel et al. 2017) and converted to FASTQ format, 

followed by mapping with Bowtie (v 1.2.2) (Langmead et al. 2009). With SAM files 

generated after mapping, peak calling was performed using 3 peak callers MACS2 (v 2.1.2) 

(Zhang et al. 2008), GEM (v 3.4) (Guo et al. 2012) and CCAT (included in Peak Ranger v 

1.18) (Xu et al. 2010; Feng et al. 2011). To detect the presence of the HIF-1α binding site at 

the promoter region, the positions of transcription start sites (TSS) for all the differentially 

expressed genes were downloaded from BioMart on Ensembl genome browser 96 

(GRCh38.p12 version of the human genome was used). To assign the nearest peak to each of 

the genes, output of peak calling was intersected with the positions of microarray probes 

corresponding to differentially expressed genes using closest function of bedtools (v 2.27.1) 

(Quinlan and Hall 2010). Genes which had HIF-1α ChIP-seq peaks within 2000 base pairs 

upstream or downstream (promoter region) were considered to be targets of HIF-1α.
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2.3 Generation of custom hypoxia signature

To find overlap between genes having HIF-1α ChIP-seq peaks in promoter region and genes 

up-regulated in at least one of the comparisons mentioned in table 1, a Venn diagram was 

constructed using an online tool InteractiVenn (Heberle et al. 2015). The expression level of 

the overlapping genes, across all time points (0 h to 24 h) (supplementary table 1) obtained 

from the microarray dataset (GSE41491) (Starmans et al. 2012) was visualized using a heat 

map generated by the online tool Morpheus (https://software.broadinstitute.org/morpheus/). 

Those genes which showed a consistent increase in gene expression level across all time-

points were included in the custom hypoxia signature. Kendall’s correlation coefficient (τ) 

between the expression level of genes included in the custom hypoxia signature and time (in 

hours) was found to be largely positive (supplementary table 2). Overlap between up-

regulated genes, HIF-1α ChIP-seq peak containing genes and genes included in the Hypoxia 

Hallmark signature from the Molecular Signature Database (MSigDB) collection (Liberzon 

et al. 2015) was visualized using a five-panel Venn diagram (supplementary figure 1).

2.4 Collection of TCGA data

All of the cancer patient data used in this study were obtained from the TCGA PANCAN 

(Pan-Cancer) (Network et al. 2013) dataset provided on https://xenabrowser.net/. The details 

of the data obtained are provided in table 2. The set of 787 patient samples for which DNA 

methylation has been measured using the 450K array are also found in the gene expression 

estimated using RSEM, transcript expression estimated using kallisto, exon expression 

estimated based on read counts and curated clinical dataset. These patient samples with 

multiple types of data form the basis of our study.

2.5 Stratification of TCGA breast cancer samples

A subset of PANCAN gene expression data containing only breast cancer patient sample 

(Primary tumor and metastatic) data was used (n = 1,099) for this analysis. The arithmetic 

sum of expression levels of genes included in our custom hypoxia signature was calculated 

for each patient tumor sample to get the total hypoxia activation score. The samples were 

then stratified on the basis of the hypoxia activation score, similar to a protocol by Yang et 
al. (2018). The tumor samples having higher scores (top 25%, 20% and 10%) were assumed 

to be hypoxic, whereas those having lower scores (bottom 25%, 20% and 10%) were 

assumed to be normoxic. Same procedure was repeated with genes of the Hypoxia Hallmark 

signature from MSigDB (Liberzon et al. 2015). To verify the distinctiveness of these two 

groups of individuals we performed unsupervised clustering of gene expression data using 

K-means clustering implemented in R (v 3.6). The sensitivity, specificity and accuracy of 

stratification were calculated using confusionMatrix function of R package caret (Kuhn 

2008). This package calculates these parameters using two lists. One list contains clusters 

generated on the basis of hypoxia activation score (‘True Clusters’) and the other contains 

clusters generated after K-means clustering (‘Predicted Clusters’). The functioning of this 

package is explained in table 3.

The sensitivity, specificity and accuracy are thus calculated as follows:
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Sensitivity = TP /TP + FN,
Specificity = TN /TN + FP ,

Accuracy = (Sensitivity + Specificity)/2.

Clusters were defined at the thresholds of 25%, 20% and 10%. The stratification accuracy, 

sensitivity and specificity were highest for the top and bottom 10% cluster (table 4). Thus, 

the top 10% (n = 110 samples) and bottom 10% samples (n = 110 samples), according to the 

hypoxia activation score, were chosen for further analysis. The clusters identified by K-

means clustering were visualized in a Principal Component Analysis (performed using 

prcomp function in R) of the gene expression values with each individual sample colored as 

either red (normoxia) or blue (hypoxia). The Receiver Operating Characteristic (ROC) 

curves were generated using the R package ROCR (Sing et al. 2005).

2.6 Differential isoform expression analysis

Transcript expression data from TCGA (see table 2 for details) was used to calculate the 

Isoform fraction (IF) for all transcripts, for only those samples included in our hypoxic and 

normoxic clusters. The transcript expression level (est_counts) was converted into raw 

counts (i) by using the formula

antilog2 est_count − 1

Gene and transcript ID for all human genes (GRCh38.p12) were downloaded from BioMart 

on Ensembl genome browser 96. Isoform fraction was calculated for all isoforms (i1-n) of 

each gene as follows:

IF =
in

Σi1 − n
.

The mean of IF for both hypoxic and normoxic individuals was calculated, and the absolute 

difference in isoform fraction was obtained (|dIF|). Only those genes were considered to 

have had a switch in isoform usage for which at least 2 isoforms were showing a |dIF| value 

> 0.2 change between hypoxia and normoxia.

2.7 Correlation test for functional intragenic methylation

Methylation data measured in the form of Beta values (β) corresponding to Illumina 450K 

methylation probes spanning different positions in the genome for breast cancer patients was 

obtained from the TCGA database. The isoform-specific exons were identified using 

bedtools subtract function with the—A flag (i.e., remove entire feature if it overlaps any 

other exon) with the setting—f 0.99 (i.e., at least 1% of the exon should be isoform specific). 

Moreover, isoforms with expression less than 1 TPM across all TCGA breast cancer samples 

were not considered when identifying isoform-specific exons. Using closest function of 

bedtools (Quinlan and Hall 2010), bed file containing methylation probe positions was 

overlapped with the file having hypoxia/normoxia isoform-specific exon positions. The 5 

closest probes present within 1 kb upstream or downstream to each hypoxia/normoxia 
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isoform-specific exon were identified. Correlation tests was performed between exon 

expression and methylation level, both of which were measured in the same patient samples 

(n = 787 samples). Both Kendall and Pearson’s correlation coefficients were calculated for 

each probe–exon pair using R. The criteria followed to perform correlation test between 

exon expression and DNA methylation has been explained by a model in figure 2.

2.8 Survival analysis based on isoform-specific exon expression

Curated clinical data for TCGA cancer samples was downloaded from https://

pancanatlas.xenahubs.net. The expression level of exons belonging to DHX32 and BICD2 

that showed significant correlation with methylation was used in this analysis. The dataset 

used was Exon Expression RNASeq data (HiSeqV2_exon). The 1,104 samples for which 

exon expression data is available were sorted based on the expression levels of normoxia-

specific exons of DHX32 (ENSE00001447872) and BICD2 (ENSE00001404188) that 

showed correlation with methylation. The samples with highest exon expression levels (top 

25%, n = 276) were assumed to be normoxic and the samples with the lowest exon 

expression levels (bottom 25%, n = 276) were assumed to be hypoxic. The cohort of these 

552 TCGA samples was used to perform survival analysis using survival package in R. The 

survminer package in R was then used to construct a Kaplan–Meier curve.

3 Results

3.1 Generating a novel gene expression signature to distinguish tumor sample data on 
the basis of hypoxia pathway activation

Our first objective was to narrow down upon a set of genes that are indicative of hypoxia. 

The Hypoxia Hallmark signature from MSigDB (Liberzon et al. 2015) is a previously 

published gene set that has been generated using 87 founder gene sets. These 87 founder 

gene sets vary considerably in their model of study, techniques used for quantifying mRNA 

expression and tissue of origin. More than 50% of the 87 gene sets consist of genes are 

involved in various metabolic pathways and represent the healthy state of human cells (for 

example REACTOME_GLUCOSE_METABOLISM dataset, 

KEGG_PYRUVATE_METABOLISM dataset, etc.). Out of the 22 datasets originating from 

cancer cell lines (mouse and human), only 4 are derived from breast cancer (MCF7) 

(Elvidge et al. 2006) (supplementary table 3). A dataset consisting of HIF-1α target genes 

has also been included as a founder gene set, but it is not derived from breast cancer model 

(Semenza 2001). Thus, in order to generate a signature that is more specific to our model of 

study, we came up with a custom hypoxia signature.

Using expression levels of the genes included in our signature, we must be able to stratify 

tumor samples in silico into hypoxia positive or hypoxia negative. For this, we wanted to 

prioritize those genes that are both up-regulated under hypoxia and also have a HIF-1α 
binding site in their promoter region. We used publicly available microarray transcriptome 

profile (Starmans et al. 2012) (GSE41491) of MCF7 cells under several time-points after 

hypoxic exposure. After performing differential gene expression analysis, we found that 

3,682 genes were getting differentially expressed under hypoxia, out of which 1,818 were 

getting up-regulated. To check whether the genes differentially expressed in our analysis are 
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having HIF-1α binding site, we analyzed the ChIP-sequencing dataset for HIF-1α 
(GSE28352) (Schödel et al. 2017). For identifying HIF-1α binding sites, we performed 

ChIP-seq peak calling using 3 different peak callers (MACS2, GEM and CCAT). Only those 

peaks that were present within 2 kilo base pairs upstream or downstream of the transcription 

start sites of differentially expressed genes were considered. The number of differentially 

expressed genes having putative binding site for HIF-1α at promoter region was 67, 74, and 

153 for MACS2, GEM, and CCAT, respectively. Out of the 1818 upregulated genes, 43 were 

also having HIF-1α binding site (identified as having a HIF-1α peak by all 3 peak callers) 

(figure 3A). The trend of gene expression for these 43 genes was visually evaluated to 

shortlist 34 genes based on a consistent trend of increase in gene expression across all time-

points. These 34 genes were selected to be a part of our custom hypoxia signature (figure 

3B, supplementary table 1). On comparison with the Hypoxia Hallmark signature from 

MSigDB, we found that only 17 genes show up-regulation upon hypoxia treatment, have 

HIF-1α binding site in their promoter regions and are also contained in the MSigDB 

signature (supplementary figure 1). This could be due to the fact that many genes included in 

the signature from MSigDB are not direct targets of HIF-1α.

3.2 Stratification of TCGA tumor samples

Gene expression data of breast cancer patients from The Cancer Genome Atlas was used to 

stratify patient samples into normoxic or hypoxic separately using the custom hypoxia 

signature and Hypoxia Hallmark signature from MSigDB. After getting the hypoxia 

activation scores for each of the genes included in our signature, the patient samples with 

highest scores (top 10%) were considered hypoxia positive and the samples with lowest 

activation score (bottom 10%) were considered hypoxia negative. We were able to stratify a 

total of 220 samples of invasive breast carcinoma into hypoxic (n = 110 samples) and 

normoxic clusters (n = 110 samples) (supplementary table 4). K-means clustering revealed 

that the two clusters are partitioning distinctively (figure 4A). Similarly, for the Hypoxia 

Hallmark signature from MSigDB, we stratified the same number of samples into hypoxic 

and normoxic clusters on the basis of hypoxia activation scores calculated using the 200 

genes included in this signature (supplementary table 4). Again, on performing K-means 

clustering, these two set of samples partitioned into distinct clusters (figure 4C). The 

accuracy, sensitivity and specificity of the stratification were 1.0, as indicated by the ROC 

curves (figure 4B and D).

3.3 Global changes in alternative splicing under hypoxia

After distinguishing samples on the basis of activation of the hypoxia pathway, we now 

checked the differences in isoform usage at a global level between hypoxic and normoxic 

samples. On calculating the difference between mean Isoform Fraction for all isoforms 

across hypoxic and normoxic samples (|dIF|), we found that a total of 821 genes had at least 

2 transcripts that were showing large changes between the hypoxic and normoxic samples 

(supplementary table 5). One of the genes showing such a change was BARD1 (BRCA1 

Associated RING Domain 1) (supplementary figure 2A and B). It is known that BARD1 can 

be both oncogenic and tumor suppressor, depending on which of the several transcripts is 

getting expressed (Cimmino et al. 2017). The full-length transcript acts as a tumor 
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suppressor in breast and ovarian cancer, whereas isoforms that lack the RING domain act as 

protooncogene.

Similarly, for samples stratified using the MSigDB signature 911 genes showed at least 2 

isoforms with significant changes between hypoxia and normoxia (supplementary table 6). 

One of the genes showing change was CPEB1 (cytoplasmic polyadenylation element 

binding protein 1) (supplementary figure 2C, 2D). CPEB1 is known to suppress metastasis 

in breast cancer by post-transcriptional modification of mRNAs of metastasis associated 

genes (Nagaoka et al. 2015). Another gene Lethal 3 Malignant Brain Tumor-Like Protein 4 

(L3MBTL4), had 3 isoforms, which were showing differential expression between hypoxia 

and normoxia (supplementary figure 3A and B). L3MBTL4 acts as a tumor suppressor and 

is known to have deletions in a protein coding region in breast cancer cell lines and tissue 

(Addou-Klouche et al. 2010).

3.4 Correlation between intragenic DNA methylation and exon expression level

While isoform expression is biologically more intuitive than exon expression level, 

estimation of isoform expression level using short read sequencing data has been shown to 

be error prone (Soneson et al. 2016). Moreover, we have hypothesized that intragenic 

methylation would affect the inclusion/exclusion of nearby exons resulting in alteration of 

isoform expression level. Hence, comparison of exon expression level with the methylation 

level of nearby probes is better than comparing the isoform expression level with 

methylation level of all the probes located within the gene. Based on this rationale we 

performed correlation test between DNA methylation and expression of isoform-specific 

exons belonging to genes that show differential splicing between samples stratified as 

hypoxic and normoxic (figure 2).

In order to evaluate the potential role of intragenic DNA methylation in modulating 

alternative splicing we correlated the expression levels of hypoxia-/normoxia-specific exons 

with the DNA methylation levels of microarray probes located within 1 kb of these exons. 

The correlation tests between exon-microarray probe pairs were restricted to isoform-

specific exons from only those transcripts that showed a large change in the isoform usage 

pattern between hypoxic and normoxic patient samples. A negative correlation between exon 

expression and DNA methylation indicates that fewer transcripts with that exon occur when 

the adjoining (within 1 kb) DNA is hyper-methylated. Whereas, a positive correlation 

between exon expression and DNA methylation indicates more transcripts with that exon 

occur when the adjoining DNA is hypermethylated. The correlation test can only be 

performed if a methylation array probe is located within 1 kb of an isoform-specific exon. 

However, we found that the distribution of methylation probes and presence of isoform-

specific exons is variable across the genome. This results in many genes lacking probes and 

isoform-specific exons. Even if probes and isoform-specific probes exist within the same 

gene, they might not be located within 1 kb. In all these cases, it is not possible to test for a 

correlation between exon expression level and DNA methylation. The complete set of 

differentially spliced isoforms and the presence of probe pairs are provided in supplementary 

table 7. The summary of how many genes lack methylation array probes, isoform-specific 

exons and exon-probe pairs is provided in table 5.
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We used the criteria of both Pearson and Kendall rank correlation coefficients less than – 0.1 

or more than 0.1, after FDR correction with a threshold of q-value < 0.01. While considering 

normoxia-specific exon expression and DNA methylation, 60 exon–probe pairs 

corresponding to 16 genes were identified using custom signature based stratification of 

samples (supplementary table 8). Similarly, for the exons that were hypoxia-specific, we 

found significant correlations for 158 exon–probe pairs corresponding to 48 genes. One of 

the genes for which a normoxia-specific exon showed positive correlation was DHX32 

(DEAH Asp-Glu-Ala-His Box Polypeptide 32). The 1st exon of the normoxic-specific exon 

of DHX32 was showing positive correlation with DNA methylation at a probe located within 

1 kb of the exon (figure 5A and B). DHX32 is an RNA helicase and belongs to DEAD/H-

box family of proteins. It is up-regulated in colorectal cancer and is known to induce 

expression of Vascular Endothelial Growth Factor A (VEGFA) in a β-catenin dependent 

mechanism, contributing to angiogenesis, which is a hypoxia dependent process (Lin et al. 
2017).

The correlation tests were also repeated for isoform-specific exons belonging to 

differentially used isoforms in samples stratified using MSigDB signature. A total of 116 

exon–probe pairs belonging to normoxia-specific exons corresponding to 40 genes were 

showing significant correlation. For hypoxia-specific exons in MSigDB set, 202 exon–probe 

pairs belonging to 86 genes were showing significant correlation between exon expression 

and DNA methylation (supplementary table 8). One of the genes from this set was BICD2 

(Protein Bicaudal D Homolog 2). The expression of 7th exon belonging to the normoxia-

specific isoform of BICD2 negatively correlated with DNA methylation levels (figure 5C 

and D). BICD2 is a motor adaptor protein. In a recent study it was found that BICD2 

mediates the translocation of HIF-1α into the nucleus under hypoxia in umbilical cord 

blood-derived mesenchymal stem cells. Depletion of this protein caused increased ROS 

(reactive oxygen species) accumulation and apoptosis establishing its role as a major factor 

involved in adaptation towards hypoxia (Lee et al. 2019). Interestingly, in the CELSR2 gene 

we found seven exon–probe pairs that showed negative correlation between the expression 

level of hypoxia-specific exons and DNA methylation of nearby probes (supplementary 

figure 4). However, the hypoxia-specific isoform of CELSR2 was protein coding and the 

normoxia-specific isoform does not code for any protein.

3.5 Prediction of patient survival based on isoform-specific exon expression level

The association between the expression levels of differentially expressed isoform-specific 

exons corresponding to all TCGA breast cancer samples (n = 1,104 samples) and overall 

patient survival was evaluated. The normoxia-specific exons of DHX32 (1st exon) and 

BICD2 (7th exon) that showed significant correlation with methylation were used in this 

analysis. This was done to assess the prognostic significance of changes in alternative 

splicing under hypoxia in breast cancer. It was found that the 1st exon of normoxia-specific 

isoform of DHX32 that showed positive correlation with methylation was significantly 

associated with patient survival (p-value = 0.02) (figure 6A). This implies that the higher 

expression of this exon due to increased methylation in the downstream region is more 

favorable for the survival of patients of breast cancer. Whereas, decreased level of this exon 

leading to increased usage of the longer isoform of DHX32 is associated with increased 
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mortality in breast cancer patients. Similarly, the 7th exon of normoxia-specific isoform of 

BICD2 was also significantly associated with patient survival (figure 6B). This exon showed 

significant negative correlation with methylation indicating that its decreased expression in 

hypoxic patient samples is associated with higher mortality. On the other hand, the patients 

stratified as having hypoxia-negative tumors had better chances of survival.

4 Discussion

Hypoxia is one of the most distinctive features of breast cancer that contributes to increased 

invasion and metastasis. Hypoxia can also reduce the responsiveness of tumor towards 

chemotherapeutic drugs by decreasing susceptibility to DNA damage, which subsequently 

leads to less favorable patient prognosis (Rundqvist and Johnson 2013). Apart from the 

transcriptional activation of genes, changes in alternative splicing events also contribute to 

an aggressive phenotype of breast cancer under hypoxia. The rewiring of alternative splicing 

under hypoxia and its underlying causes are under explored. In the present study, we have 

used publicly available breast cancer data and stratified patient samples into hypoxic and 

normoxic, independently, using two hypoxia signatures. Hypoxic and normoxic conditions 

can vary within a patient and is known to exhibit cell to cell heterogeneity (Sutherland et al. 
1996). Thus, identification of a hypoxic niche at the cellular level would require data 

resolution at the single cell level for a large number of cells. We have used the hypoxia 

signature to stratify the patients into hypoxic/normoxic groups as an alternative to analysis 

of gene expression of hypoxic/normoxic regions of the same tumor. Hence, our hypoxia-

signature-based stratification of patients into hypoxic/normoxic groups reflects the 

magnitude of hypoxia activation. Following the stratification of samples, we also 

investigated changes in the usage of differentially spliced isoforms between hypoxic and 

normoxic samples. Finally, we found frequent correlation between differential splicing and 

the change in intragenic DNA methylation levels.

We began our analysis by generating a custom hypoxia signature by shortlisting a set of 

genes that have HIF-1α binding site at the promoter and, also, show up-regulation in our 

analysis. We have also taken into consideration another set of genes from the Molecular 

Signature Database (MSigDB) (Liberzon et al. 2015) to stratify our tumor samples. None of 

TCGA breast cancer samples classified as hypoxic by either of the signatures was found to 

be normoxic by the other signature. Similarly, none of the samples classified as normoxic by 

either of the signatures was found to be hypoxic by the other signature. However, 29 of the 

110 samples were found to be hypoxic by both signatures, and 27 of the 110 samples were 

found to be normoxic by both signatures. The hypoxia gene signature from MSigDB 

consists of 200 genes that include both direct and indirect targets of HIF-1α, as evident from 

our data (supplementary figure 1). The advantage of using the custom hypoxia signature in 

our analysis is that it only includes direct targets of HIF-1α, which makes our signature 

more reliable. Moreover, our signature is derived from datasets that are based on breast 

cancer cell line (MCF7). On the other hand, the signature from MSigDB has been generated 

using several founder datasets, out of which only a few are derived from breast cancer cells 

(supplementary table 3). However, both signatures are able to demonstrate a correlation 

between exon expression level and DNA methylation.
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To evaluate the proposed role of DNA methylation in modulating mRNA splicing, we 

correlated estimates of exon expression level obtained from RNA-seq data with the 

methylation level of micro-array probes located within 1 kb of the differentially spliced 

exons. Both, the methylation and gene expression levels, were measured in the same patient 

samples. Since we rely upon a micro-array dataset to measure the methylation level, the 

entirety of the genome cannot be covered. However, we found that a majority of the 

differentially spliced isoform-specific exons were located within 1 kb of micro-array probes 

(table 5). Future efforts that provide genome-wide methylation level measurements using 

sequencing-based approaches will be able to overcome this shortcoming. Performing such 

pairwise correlations for all exon and micro-array probes is computationally very expensive 

and will lead to a very large number of statistical tests. By focusing only on those exons that 

are unique to isoforms that show a striking change in the pattern of isoform usage between 

hypoxic and normoxic cancer samples, we reduce the number of statistical tests that need to 

be performed. This focused approach resulting in increased statistical power is motivated by 

our hypothesis that functional intragenic DNA methylation is involved in modulating 

splicing during hypoxia.

In conclusion, we utilize both publicly available microarray gene expression estimates at 

different time points after hypoxia induction and HIF-1α ChIP-seq data to identify a custom 

hypoxia signature. Based on this custom signature, we assign a subset of the TCGA breast 

cancer cohort into hypoxic and normoxic samples. Differentially spliced exons between the 

normoxic and hypoxic patient samples are identified based on changes in isoform fraction. 

Correlations between the expression levels of isoform-specific exons and DNA methylation 

level of microarray probes within 1 kb are seen in 16 genes (for normoxia-specific exons) 

and 48 genes (for hypoxia-specific exons) while using the custom signature. While using the 

MSigDB signature for patient sample stratification, normoxia-specific exons from 40 genes 

and hypoxia-specific exons from 86 genes show correlations between exon expression level 

and DNA methylation. Our results strongly support a potentially functional role for 

intragenic DNA methylation in modulating alternative splicing during hypoxia. Candidates 

identified in our genome-wide screen can form the basis of future studies to understand the 

mechanism of intragenic DNA-methylation mediated alternative splicing under hypoxia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the computational pipeline. The genes showing consistent increase in 

expression in hypoxia and having HIF-1α binding site in the promoter region were 

shortlisted to be a part of a custom hypoxia signature. The gene expression profile of genes 

included in this custom signature was used to stratify TCGA breast cancer samples into 

hypoxia positive or hypoxia negative. Hypoxia Hallmark signature from MSigDB was also 

used independently for stratification. Isoform-level expression data was used to mine 

differentially used isoforms between hypoxic and normoxic samples. This was followed by a 

correlation test between intragenic methylation levels and expression of isoform-specific 

exons belonging to transcripts differentially spliced in normoxic vs. hypoxic samples. 

Finally, survival analysis was performed with the exons showing significant correlation 

between expression and DNA methylation levels. (TAC: Transcriptome analysis console, 

MACS2: Model-based Analysis of ChIP-Seq, GEM: Genome-wide event finding and motif 

discovery, CCAT: Control- based ChIP-Seq analysis tools).
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Figure 2. 
Hypothetical gene and transcript structure showing criteria followed for calculating 

correlation between exon expression and DNA methylation. Exons exclusively present in 

one of the transcripts that were found to be differentially expressed in hypoxic and normoxic 

samples were considered. The isoforms that had an expression level of less than 1 TPM 

across all breast cancer samples were excluded from this analysis. Further, only those exons 

having methylation probes within 1 kb were selected for the correlation test.
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Figure 3. 
Generation of Custom Hypoxia Signature. (A) Venn diagram showing common genes which 

have HIF-1α binding site and, also, show up-regulation under hypoxia. The three panels for 

MACS2, GEM and CCAT represent those genes that show HIF-1α ChIP-seq peaks in the 

promoter region for these three respective peak callers. Panel named UP_Genes include 

those genes which are up-regulated in hypoxia. (B) Heatmap showing mean of expression 

level (normalized probe intensities) across all probes corresponding to genes included in 

custom hypoxia signature at various time-points under hypoxia.
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Figure 4. 
Stratification of breast cancer samples into hypoxia pathway positive or hypoxia pathway 

negative. (A, C) Scatter plot of principal component 1 (PC1) vs. principal component 2 

(PC2) showing the presence of two clusters each of which correspond to either hypoxic 

(blue) or normoxic (red) samples. Stratification was done using either custom hypoxia 

signature (A) or Hypoxia Hallmark signature from MSigDB (C). (B, D) ROC (Receiver 

operating characteristic) curve showing accuracy of stratification done using custom hypoxia 

signature (B) and Hypoxia Hallmark signature from MSigDB (D).
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Figure 5. 
Results of correlation test. (A and C) Diagrammatic representation of isoforms of DHX32 

(A) and BICD2 (C) showing differential expression between samples stratified as hypoxic 

and normoxic using custom and MSigDB signatures for DHX32 and BICD2, respectively. 

Isoform with exons colored in red is normoxia-specific, while the one with blue-colored 

exons is hypoxia-specific. Positive correlation was seen between methylation level and 

expression of 7th exon of normoxia-specific DHX32, whereas, negative correlation was seen 

with expression of 1st exon of normoxia-specific isoform of BICD2. (B and D) Boxplot 

showing differential isoform usage for DHX32 (B) and BICD2 (D) between samples 

stratified as normoxic and hypoxic (τ: Kendall’s rank correlation coefficient).
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Figure 6. 
Kaplan–Meier curve showing association of expression level of exons (that showed 

significant correlation with DNA methylation) belonging to DHX32 (A) and BICD2 (B), 

with patient survival (p-value: 0.02 for DHX32 and 0.0024 for BICD2). All TCGA breast 

cancer samples were sorted based on the expression level of normoxia-specific exons of 

DHX32 and BICD2. The top 25% samples were considered normoxic and the bottom 25% 

were considered hypoxic, followed by evaluation of survival predictability between these 

groups.
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Table 1
Comparative analysis of differential expression between hypoxic and normoxic time-
points

Normoxic timepoint (in hours) Hypoxic timepoint (in hours)

0 1 and 2

0 2 and 4

0 4 and 8

0 8 and 12

0 12 and 16

0 16 and 24

J Biosci. Author manuscript; available in PMC 2020 April 02.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Pant et al. Page 21

Table 2
Summary of the TCGA datasets used in the study

Type of 
Data Dataset ID Version Unit

Total 
no. of 

samples

No. of 
samples 

used

Gene 
Expression 
RNAseq

tcga_RSEM_gene_fpkm 2016-09-01 log2(fpkm
+0.001)

 10,535 1,099

Transcript 
Expression 
RNAseq

tcga_Kallisto_est_counts 2016-02-29 log2(est_counts
+1)

 10,535 1,099

Exon 
Expression 
RNAseq

TCGA.PANCAN.sampleMap/HiSeqV2_exon 2016-08-16 log2(rpkm+1)  10,459 1,099

DNA 
Methylation

jhu-usc.edu_PANCAN_Human 
Methylation450.betaValue_whitelisted.tsv.synapse_download_5096262.xena

2016-12-29 Beta value     9639 787 (Only 
Illumina 
450 K 
Methylation 
array data 
used)

Curated 
Clinical 
Data

Survival_Supplemental Table_S1_20171025_xena_sp 2018-09-13 Days  12,591 1,099
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Table 3
Definition of confusion matrix in the R package caret

True hypoxic True normoxic

Predicted hypoxic True positive (TP) True negative (TN)

Predicted normoxic False negative (FN) False positive (FP)
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Table 4
Stratification evaluation parameters used for choosing custom and MSigDB clusters

Signature used Threshold used Accuracy Sensitivity Specificity

Custom 25%   0.9945   0.9964   0.9927

20%   0.9977   1.0   0.9955

10%   1.0   1.0   1.0

MSigDB 25%   0.9891   1.0   0.9782

20%   0.9977   1.0   0.9955

10%   1.0   1.0   1.0
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Table 5
Overview of correlation tests performed

No. of genes having at 
least 1 probe

No. of genes having 
at least 1 transcript 

specific exon

No. of genes 
having at least 1 
exon-probe pair

No. of genes showing 
significant correlation after 

FDR correction

Custom: Test for Normoxia-
specific isoforms

808 (out of 821) 152 60 16 (16 exons)

Custom: Test for Hypoxia-
specific isoforms

808 (out of 821) 221 158 48 (75 exons)

MSigDB: Test for Normoxia-
specific isoforms

894 (out of 911) 189 116 40 (44 exons)

MSigDB: Tests for Hypoxia-
specific isoforms

894 (out of 911) 245 202 86 (112 exons)

The actual number of genes that were found to contain methylation probes, isoform-specific exons, exon-probe pairs and genes showing significant 
correlation after FDR correction are provided.

J Biosci. Author manuscript; available in PMC 2020 April 02.


	Abstract
	Introduction
	Materials and methods
	Differential gene expression analysis
	Identification of HIF-1 α binding sites using ChIP-Seq data
	Generation of custom hypoxia signature
	Collection of TCGA data
	Stratification of TCGA breast cancer samples
	Differential isoform expression analysis
	Correlation test for functional intragenic methylation
	Survival analysis based on isoform-specific exon expression

	Results
	Generating a novel gene expression signature to distinguish tumor sample data on the basis of hypoxia pathway activation
	Stratification of TCGA tumor samples
	Global changes in alternative splicing under hypoxia
	Correlation between intragenic DNA methylation and exon expression level
	Prediction of patient survival based on isoform-specific exon expression level

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

