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Abstract

Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both 

sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is unclear. 

Both sleep and anesthesia comprise states of varying levels of arousal and consciousness, 

including states of largely maintained conscious experience (sleep: N1, REM; anesthesia: sedated 

but responsive) as well as states of substantially reduced conscious experience (sleep: N2/N3; 

anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical connectivity will exhibit 

clear changes when transitioning into states of reduced consciousness, and (2) these changes will 

be similar for arousal states of comparable levels of consciousness during sleep and anesthesia. 

Using intracranial recordings from five adult neurosurgical patients, we compared resting state 

cortical functional connectivity (as measured by weighted phase lag index, wPLI) in the same 

subjects across arousal states during natural sleep [wake (WS), N1, N2, N3, REM] and propofol 

anesthesia [pre-drug wake (WA), sedated/responsive (S), and unresponsive (U)]. Analysis of 

alpha-band connectivity indicated a transition boundary distinguishing states of maintained and 
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reduced conscious experience in both sleep and anesthesia. In wake states WS and WA, alpha-

band wPLI within the temporal lobe was dominant. This pattern was largely unchanged in N1, 

REM, and S. Transitions into states of reduced consciousness N2, N3, and U were characterized 

by dramatic changes in connectivity, with dominant connections shifting to prefrontal cortex. 

Secondary analyses indicated similarities in reorganization of cortical connectivity in sleep and 

anesthesia. Shifts from temporal to frontal cortical connectivity may reflect impaired sensory 

processing in states of reduced consciousness. The data indicate that functional connectivity can 

serve as a biomarker of arousal state and suggest common mechanisms of LOC in sleep and 

anesthesia.
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1. Introduction

Elucidating the changes in the brain that occur upon loss and recovery of consciousness 

(LOC, ROC) is critical to our understanding of the neural basis of consciousness. It is a 

prerequisite for improving diagnosis and prognosis of disorders of consciousness, as well as 

noninvasive monitoring of awareness in clinical settings (Bayne et al., 2017; Bernat, 2017; 

Stein and Glick, 2016). A primary hurdle is identifying changes that are specific to LOC and 

ROC, as opposed to nonspecific changes in brain activity in response to endogenous or 

exogenous factors (e.g. neuromodulators during sleep or anesthetic agents). This can be 

clarified by investigating common features of LOC and ROC during sleep and anesthesia 

(Mashour, 2006; Shushruth, 2013; Tung and Mendelson, 2004). A handful of studies have 

compared the changes in neural activity that occur during transitions between arousal states 

during sleep versus anesthesia in human subjects (Li et al., 2018; Murphy et al., 2011), but 

commonalities in neural mechanisms have been elusive, perhaps because sleep and 

anesthesia data in these studies were obtained in different subjects, or because of the metrics 

investigated, or both. Here, we compare changes in functional connectivity in the same 

subjects during sleep and propofol anesthesia.

Although endogenous sleep and arousal centers play a role in initiating changes in arousal 

state during LOC/ROC (Lydic and Baghdoyan, 2005), these mechanisms likely only 

partially overlap for sleep and anesthesia (Akeju and Brown, 2017). Importantly, changes in 

the contents of consciousness are likely secondary to actions in neocortex (Voss et al., 2019), 

which is the focus of the current study. That is, we sought to identify changes in cortical 

activity or connectivity that occurred upon LOC, independent of the underlying mechanisms 

initiating changes in arousal state. Common cortical signatures of LOC under sleep and 

anesthesia include similar effects of LOC on sensory cortex observed under both conditions. 

For example, primary sensory cortex is still responsive to environmental stimuli, and basic 

organizational features such as frequency tuning in auditory cortex are preserved (Nir et al., 

2015; Raz et al., 2014), while responses in higher order cortical sensory areas are largely 

suppressed (Liu et al., 2012; Wilf et al., 2016). In addition, cortical connectivity, which is 

central to leading theories of consciousness (Dehaene and Changeux, 2011; Friston, 2005; 
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Tononi et al., 2016), is altered upon LOC during anesthesia (Boly et al., 2012a; Lee et al., 

2017; Lee et al., 2013b; Murphy et al., 2011; Ranft et al., 2016; Sanders et al., 2018) and 

non-rapid eye movement (NREM) sleep (Boly et al., 2012b; Spoormaker et al., 2010).

These studies suggest that LOC under a variety of conditions converges on specific changes 

in cortical connectivity. However, a major impediment to identifying these changes is a lack 

of consensus on key details, for example whether overall or long-range connectivity 

decreases (Boly et al., 2012a; Lee et al., 2013b; Ranft et al., 2016; Spoormaker et al., 2010) 

or increases (Boly et al., 2012b; Lee et al., 2017; Monti et al., 2013; Murphy et al., 2011) 

upon LOC. Moreover, despite the evidence for common mechanisms of LOC under 

anesthesia and during NREM sleep, there are obvious differences between sleep and 

anesthesia as well (Akeju and Brown, 2017). Specifically, subjects are arousable from the 

latter but not from the former, and this maintained connectedness with the environment 

likely involves cortical activation. The structure of natural sleep, in its transitions between 

REM and multiple stages of NREM sleep, is not mimicked by steady-state anesthesia. A 

recent imaging study found substantial differences in the changes in functional magnetic 

resonance imaging (fMRI) functional connectivity that occur during sleep and propofol 

anesthesia (Li et al., 2018). Slow wave components of EEG signals during sleep and 

anesthesia in animal models exhibit distinct patterns of activity as well (MacIver and Bland, 

2014). Furthermore, delta-band activity during the deepest stages of NREM sleep (N3) most 

closely resembles brain activity under anesthesia (Murphy et al., 2011), but 

unresponsiveness (and presumably reduced level of consciousness) occurs as well in stage 2 

NREM (N2) sleep (Strauss et al., 2015). Direct comparisons of changes in connectivity 

associated with LOC under natural sleep and anesthesia may help resolve these 

discrepancies.

Here, we investigated changes in cortical functional connectivity across arousal states under 

natural sleep and anesthesia. Intracranial recordings obtained from neurosurgical patients 

with pharmacologically resistant epilepsy allowed us to compare connectivity using data 

obtained from the same recording sites in the same subjects.

2. Materials and Methods

2.1. Subjects

Experiments were carried out in five neurosurgical patients diagnosed with medically 

refractory epilepsy who were undergoing chronic invasive electrophysiological monitoring 

to identify seizure foci prior to resection surgery (Supplementary Table 1). Research 

protocols were approved by the University of Iowa Institutional Review Board and the 

National Institutes of Health, and written informed consent was obtained from all subjects. 

Research participation did not interfere with acquisition of clinically necessary data, and 

subjects could rescind consent for research without interrupting their clinical management. 

Subjects were right-handed, left language-dominant native English speakers. All subjects 

underwent standard neuropsychological assessment prior to electrode implantation, and 

none had cognitive deficits that would impact the results of this study. The subjects were 

tapered off their antiepileptic drugs (AEDs) during chronic monitoring when overnight sleep 

data were collected (see below). All subjects had their medication regimens reinstated at the 
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end of the monitoring period, prior to induction of general anesthesia for the resection 

surgery.

2.2. Experimental procedures

Electrocorticographic (ECoG) recordings were made using subdural and depth electrodes 

(Ad-Tech Medical, Racine, WI). Subdural arrays consisted of platinum-iridium discs (2.3 

mm diameter, 5–10 mm inter-electrode distance), embedded in a silicon membrane. Depth 

arrays (8–12 electrodes, 5 mm inter-electrode distance) were stereotactically implanted 

along the anterolateral-to-posteromedial axis of Heschl’s gyrus (HG). Additional arrays 

targeted insular cortex and provided coverage of planum temporale and planum polare. This 

allowed for bracketing suspected epileptogenic zones from dorsal, ventral, medial, and 

lateral aspects (Nagahama et al., 2018; Reddy et al., 2010); Supplementary Fig. 1). Depth 

electrodes also targeted amygdala and hippocampus, and provided additional coverage of the 

superior temporal sulcus. A subgaleal electrode, placed over the cranial vertex near midline, 

was used as a reference in all subjects. All electrodes were placed solely on the basis of 

clinical requirements, as determined by the team of epileptologists and neurosurgeons 

(Nourski and Howard, 2015).

Two sets of no-task, resting-state (RS) data were recorded: overnight sleep data were 

collected first, followed several days later by anesthesia data. RS ECoG, EEG, and video 

data were collected from subjects during natural overnight sleep (Supplementary Fig. 2a). 

Sleep data were collected in the dedicated, electrically shielded suite in The University of 

Iowa Clinical Research Unit while the subjects lay in the hospital bed. Sleep data were 

collected 6 days after ECoG electrode implantation surgery in subjects L372, R376 and 

L403, 7 days after surgery in subject L423, and 8 days after surgery in subject L409. Data 

were recorded using a Neuralynx Atlas System (Neuralynx Inc., Bozeman, MT), amplified, 

filtered (0.1–4000 Hz bandpass, 12 dB/octave rolloff), sampled at 16 kHz.

Stages of sleep were defined manually using facial EMG and scalp EEG data based on 

standard clinical criteria (Berry et al., 2017) independently by two individuals who 

participate in the inter-scorer reliability program of the American Academy of Sleep 

Medicine: a licensed polysomnography technologist, certified by the Board of Registered 

Polysomnography Technologists, and a physician certified in Sleep Medicine by the 

Accreditation Council for Graduate Medical Education. The final staging report was agreed 

upon by the two scorers after a collaborative review. Scalp and facial electrodes were placed 

by an accredited technician, and data were recorded by a clinical acquisition system (Nihon 

Kohden EEG-2100) in parallel with research data acquisition. Facial electrodes were placed 

following guidelines of the American Academy of Sleep Medicine (Berry et al., 2017) at the 

left and right mentalis for EMG, and adjacent to left and right outer canthi for EOG. EEG 

was obtained from electrodes placed following the international 10–20 system at A1, A2, 

F3, F3, F4, O1, and O2 in all subjects, with the following additional electrodes: C3 and C4 

in all subjects but R376; E1 and E2 in L372 and R376; CZ and FZ in L409 and L423; and 

F8 in L423. All subjects had periods of REM, N1 and N2 sleep identified; three out of five 

subjects had N3 sleep periods as well. One subject (L403) experienced multiple seizures in 

the second half of the night; those data were excluded from analysis. The durations of 
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recordings for each sleep stage in each subject are provided in Supplementary Table 2; all 

data were used in the analyses.

Anesthesia RS data were collected in the operating room prior to electrode removal and 

seizure focus resection surgery (6 days after collection of overnight sleep data in subject 

L409, 7 days in subjects L372 and L423, and 8 days in subjects R376 and L403). Data were 

recorded using a TDT RZ2 processor (Tucker-Davis Technologies, Alachua, FL), amplified, 

filtered (0.7–800 Hz bandpass, 12 dB/octave rolloff), and digitized at a sampling rate of 

2034.5 Hz. We note that the highpass cutoff frequency on this hardware precluded analysis 

of frequencies below 1 Hz. Although no specific instructions were given about keeping eyes 

open or closed, subjects were observed to have eyes closed during nearly all resting state 

recordings. Data were recorded in 6-minute blocks, interleaved with an auditory stimulus 

paradigm as part of a separate study (Nourski et al., 2018a, b). Data were collected during an 

awake baseline period and during induction of general anesthesia with incrementally titrated 

propofol infusion (50 – 150 μg/kg/min; Supplementary Fig. 2b).

Awareness was assessed using the Observer’s Assessment of Alertness/Sedation (OAA/S) 

scale (Chernik et al., 1990) and using bispectral index (BIS) (Gan et al., 1997) using BIS 

Complete 4-Channel Monitor (Medtronic plc, Minneapolis, MN). OAA/S was assessed just 

before and just after collection of each RS data block. Wake state (WA) and two levels of 

anesthesia (arousal states) were targeted: sedated but responsive to command (S; OAA/S ≥ 

3) and unresponsive (U; OAA/S ≤ 2) (Nourski et al., 2018a). Estimated plasma propofol 

concentrations were calculated on a minute-by-minute basis for each subject based on their 

age, weight, gender, and propofol infusion rate using a pharmacokinetic model (Schnider et 

al., 1998).

In four of five subjects, OAA/S values crossed the boundary between S and U over the 

course of the 6-minute RS block (e.g. RS block #1 in subject L372; see Supplementary Fig. 

2b). In these cases, only the first and last 60-second segments of the block were analyzed; 

data from the first segment were assigned to the S state, and data from the second segment 

were assigned to the U state. BIS data were recorded continuously throughout the 

experiment and were manually logged on a minute-by-minute basis. BIS was summarized as 

median values for each of the three states (WA, S, and U) as well as median values 

immediately prior to and following each OAA/S assessment. The durations of recordings for 

each arousal state during the anesthesia experiment in each subject are provided in 

Supplementary Table 2; all data were used in the analyses.

2.3. Data analysis

2.3.1. Band power analysis—Data were assigned to specific arousal states based on 

sleep scoring and OAA/S assessment. For each subject, sleep and anesthesia data were 

divided into segments of length 60 seconds for all analyses except the classification analysis 

(see Fig. 5 below), for which 10-second segments were used. Time-frequency analysis was 

performed using the demodulated band transform (DBT; Kovach and Gander, 2016), which 

optimizes frequency resolution for each frequency band specified, while minimizing spectral 

leakage across bands. PSDs were estimated for each data segment from the squared 

magnitude of the DBT. For each subject, PSDs were averaged across segments assigned to 
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identical arousal states. ECoG band power was calculated as the average power across 

frequency in each band. Band power within ROI group was computed as the average across 

all recording sites in that ROI group, and arousal state-dependent changes in band power 

were evaluated using linear mixed effects models as follows. The data were normalized to 

total power and log transformed, then fit with a model incorporating fixed effects of state, 

ROI, and the interaction of state and ROI, and random effects for channels nested within 

subjects and with random slopes for brain state by subject, using the R package lme4 (Bates 

et al., 2015). Estimated marginal means and 95% CIs for each ROI and state were 

calculated, as well as pairwise between-states contrasts within each ROI with p-values 

adjusted by multivariate t for all comparisons within a band, using the R package emmeans 

(Lenth, 2019).

2.3.2. Connectivity analysis—Connectivity was measured using the debiased 

weighted phase lag index (wPLI) (Vinck et al., 2011), a non-directed measure of phase 

synchronization that eschews synchronization near zero phase lag to avoid artifacts due to 

volume conduction. For each data segment, wPLI was estimated for every electrode pair 

from the sign of the imaginary part of the DBT-derived cross-spectrum at each frequency 

and averaged across frequencies within each band of interest (delta: 1–4 Hz, theta: 4–8 Hz, 

alpha: 8–13 Hz, beta: 13–30 Hz, gamma: 30–70 Hz; high gamma: 70–120 Hz). As the 

analysis results tended to be correlated in the frequency domain, we chose to present only 

the results for the delta, alpha and gamma band. Alpha-band wPLI in particular is a 

commonly used measure of functional connectivity (Blain-Moraes et al., 2014; Blain-

Moraes et al., 2015; Lee et al., 2013a; Lee et al., 2017; van Dellen et al., 2014). In addition, 

we observed evidence for alpha-band oscillatory components in the resting state power 

spectra, further motivating focus on this band. Therefore, our primary measure of functional 

connectivity was alpha-band wPLI, but connectivity in delta and gamma bands is presented 

as well for comparison.

2.3.3. Anatomical reconstruction and ROI parcellation—Electrode localization 

relied on post-implantation T1-weighted structural MR images and post-implantation CT 

images. All images were initially aligned with pre-operative T1 images using linear 

coregistration implemented in FSL (FLIRT) (Jenkinson et al., 2002). Electrodes were 

identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as 

metallic hyperdensities. Electrode locations were further refined within the space of the pre-

operative MRI using three-dimensional non-linear thin-plate spline warping (Rohr et al., 

2001), which corrected for post-operative brain shift and distortion. The warping was 

constrained with 50–100 control points, manually selected throughout the brain, which 

aligned to visibly corresponding landmarks in the pre- and post-implantation MRIs.

To compare functional connectivity between arousal states, the dimensionality of the 

adjacency matrices (i.e. the wPLI connectivity matrices) was reduced by assigning 

electrodes to one of 37 specific ROIs organized into 7 ROI groups (see Fig. 3; Table 1; 

Supplementary Table 3) based upon anatomical reconstructions of electrode locations in 

each subject. For subdural arrays, it was informed by automated parcellation of cortical gyri 

(Destrieux et al., 2010; Destrieux et al., 2017) as implemented in the FreeSurfer software 
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package. For depth arrays, ROI assignment was informed by MRI sections along sagittal, 

coronal, and axial planes. For recording sites in HG, delineation of core auditory cortex and 

adjacent non-core areas (HGPM and HGAL, respectively) was based on physiological 

criteria (Brugge et al., 2009; Nourski et al., 2016). Specifically, recording sites were 

assigned to the HGPM ROI if they exhibited phase-locked ECoG responses to 100 Hz click 

trains and if the averaged evoked potentials to these stimuli featured short-latency (<20 ms) 

components. Such response features are not present within HGAL. Additionally, correlation 

coefficients between average evoked potential waveforms recorded from adjacent sites were 

examined to identify discontinuities in response profiles along HG that could be interpreted 

as reflecting a transition from HGPM to HGAL. Recording sites identified as seizure foci or 

characterized by excessive noise, and depth electrode contacts localized to the white matter 

or outside brain, were excluded from analyses and are not listed in Supplementary Table 3.

2.3.4. ROI-based connectivity analysis—Connectivity between ROIs was computed 

as the average wPLI value between all pairs of recording sites in the two ROIs. For analyses 

in which connectivity was summarized across subjects (see Fig. 4 and Supplementary Figs. 

6 & 7), ROIs were only included if at least 3 out of 5 subjects had electrode coverage in that 

ROI; 29 out of 37 ROIs met this criterion. For all other analyses, data from all ROIs, 

including those contributed by fewer than three subjects, were used. For display purposes 

only, adjacency matrices for each subject were averaged across segments assigned to 

identical arousal states, and the matrices thresholded to retain only the 10% strongest 

connections. All quantitative analyses were based on unthresholded adjacency matrices.

Changes in connectivity with arousal state were evaluated by computing differences between 

adjacency matrices, and quantified by calculating the operator norm (d) of the difference 

matrix; smaller values of d indicate more similar matrices. This difference metric was 

chosen instead of either the Pearson correlation or the Frobenius norm because it retains 

information about the structure of the matrix. Specifically, for a matrix M, dM is the 

maximum, over all vectors v with ||v|| = 1, of ||Mv||, and indicates how much M stretches 

these vectors; with M representing the difference between adjacency matrices measured in 

two arousal states, v could represent the inputs to or the activity of the nodes of the network 

at a particular time point, and Mv would then be the effect on that activity of the difference 

in brain state. The operator norm [computed in Matlab as norm (M)] is related to the 

spectrum of MTM: dM = the square root of the maximum eigenvalue of MTM.

To compare arousal state-dependent differences in d (for example, to see whether dWS,N1 is 

different than dN1,N2), effect sizes were calculated as Cliff’s delta, δ (Cliff, 1993). Cliff’s 

delta ranges from -1 to 1 where 0 indicates completely overlapping distributions, and -1 or 1 

indicate distributions where all observed values of one group are less/greater than all 

observed values of the comparison group. Effect sizes were first calculated for each subject, 

and then reported as the mean effect size across subjects, δ. A permutation method was used 

to estimate p-values for these comparisons; within each subject and each experiment (sleep 

and anesthesia), restricted random permutations of state labels for the data segments, 

preserving the order of observations, produced an estimated distribution under the null 

hypothesis that the comparisons do not depend on arousal state (Besag and Clifford, 1989; 
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Winkler et al., 2015). Independent p-values obtained within individual subjects for a given 

test were combined across subjects using Stouffer’s Z-transform method (Heard and Rubin-

Delanchy, 2018; Stouffer et al., 1949). Non-parametric approaches (Cliff’s delta and 

permutation method) were preferable to parametric statistics for these data, as the 

distributions of operator norms and differences were skewed, and the magnitude varied 

between subjects. Given the small number of subjects, these statistical methods treat each 

subject as a single-case and then combine results in a meta-analysis. Because p-values and 

effect sizes were first estimated in single subjects, this approach reduces the influence of 

possible outlier subjects and non-normally distributed measures.

2.3.5. Classification analysis—We used a classification analysis as an additional 

evaluation of changes in connectivity as a function of arousal state. Here, data from each 

subject was divided into 10-second segments, and adjacency matrices were computed for 

each segment. To ensure that the data from the two experiments (sleep and anesthesia) were 

on the same scale, adjacency matrices computed from the anesthesia data were scaled by the 

slope derived from a regression analysis that related wPLI values computed for sleep vs. 

anesthesia data for each subject. A linear classifier (implemented using SGDClassifier from 

Python’s Scikit-Learn library) was trained on a subset (80%) of WS and N2 segments, and 

then applied to unseen data from all arousal states (WS, N1, N2, N3, REM, WA, S, U) in 

each subject. Models were trained on data from the sleep experiment because there were 

many more segments available compared to anesthesia (see Supplementary Fig. 2). Given an 

unequal number of segments in WS and N2 stages (see Supplementary Table 2), training 

sets were balanced via random sampling. Rather than using a binary classification scheme, 

we assigned each segment a prediction score from 0 (most ‘N2-like’) to 1 (most ‘WS-like’) 

via logistic regression. We report the median logistic prediction scores across all 750 model 

permutations (25 pairwise permutations of WS and N2 train/test splits (4/5 train, 1/5 test) in 

each subject; 30 random shuffles of each pre-balanced training dataset). A tolerance 

threshold (i.e. when to stop training a given model) hyperparameter was optimized for each 

training set permutation using three-fold cross-validation. Specifically, each training set was 

split into three folds, and one of those three folds was used to evaluate the performance of a 

given hyperparameter value. For each hyperparameter value evaluated, this process was 

repeated three times to average over all (hyperparameter) test sets. The hyperparameter value 

yielding the lowest average test set error was then used in the final model applied to unseen 

data for each train/test permutation. Probability density functions for each arousal state and 

each subject were estimated from logistic prediction scores using kernel density estimation 

(ksdensity function in Matlab) and are represented as violin plots (see Fig. 5 and 

Supplementary Fig. 8).

2.3.6. Regional connectivity analysis—State-dependent differences in regional 

connectivity were quantified by dividing ROIs into a posterior (‘back’) group [temporal 

(HGPM, HGAL, PT, PP, STGA, STGM, STGP, Ins, STS, MTGP, MTGM, MTGA, ITG, 

PHG, FG, TP), parietal (AG, SMG, PostCG, SPL), and occipital (IOG, MOG) ROIs], and an 

anterior (‘front’) group [i.e. frontal ROIs (IFGop, IFGtr, IFGor, MFG, SFG, CGA, OG, 

TFG, PreCG, PMC, LG, CGM, GR) as well as Amyg and Hipp]. Mean alpha-band wPLI 

across all pairs of recording sites within each group were used to calculate bias in 
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connectivity, defined as the difference between within-posterior and within-anterior 

connectivity. State-dependence of long-range alpha-band connectivity was assayed by 

measuring wPLI across the top 25% most distant pairs of recording sites. Euclidean 

distances between sites were measured using standard 3D coordinates (Right-Anterior-

Superior, RAS). Changes in within-posterior versus within-anterior connectivity and 

changes in long-range connectivity were assessed using permutation analysis as described 

above for state-dependent differences in d.

3. Results

3.1. Electrode coverage

Data from a total of 864 recording sites from five subjects (Supplementary Table 1), 

spanning a total of 37 regions of interest (ROIs) were analyzed (Table 1). Each subject 

contributed between 154 and 198 sites (median 172; Supplementary Table 3, Supplementary 

Fig. 1). The focus of this study was on changes in cortical connectivity across arousal states. 

As sensory awareness is a key element of consciousness (Boly et al., 2017), we centered our 

analysis around cortical hierarchical organization in the auditory modality, which is a 

convenient choice and a frequent focus of studies of both sleep and general anesthesia (e.g. 

(Liu et al., 2012; Raz et al., 2014; Strauss et al., 2015). Clinical considerations dictated 

dense sampling of the temporal lobe, including auditory and auditory-related cortex, 

providing comprehensive electrode coverage across multiple levels of the auditory cortical 

hierarchy in all subjects.

3.2. Defining arousal states

Polysomnography based on scalp electroencephalography (EEG), electrooculography, 

electromyography, and video was used to assign sleep stages. All five subjects exhibited 

overnight sleep patterns typical of healthy adult subjects (Supplementary Fig. 2a). There was 

a high correspondence between the ratio of delta to beta band power in frontal ECoG 

electrodes and the assigned sleep stage (cf. Kremen et al., 2019). Overnight recordings in all 

subjects featured wake (WS) state as well as N1, N2, and REM sleep stages; N3 was also 

observed in 3 of 5 subjects (Supplementary Table 2). The total duration of scored recordings 

in each subject was between 284 and 584 minutes (median 481 minutes).

During the anesthesia experiment, all subjects transitioned from wake (WA) to sedated (S; 

OAA/S>2) and unresponsive (U; OAA/S ≤2) states as propofol infusion rate was increased 

(Supplementary Fig. 2b). Average estimated plasma propofol concentration at loss of 

responsiveness was 2.31 μg/ml (range 1.71–3.01 μg/ml). OAA/S scores exhibited a good 

correspondence with bispectral index (BIS) values, as expected for sedation and anesthesia 

induced by propofol alone (Glass et al., 1997). WA, S, and U states were characterized by 

average median BIS values of 92 (range of medians across the five subjects 83–98), 77.5 

(range 45–88) and 45 (range 41–68), respectively.

OAA/S assessments depend on subjects responding to a simple command, and thus have the 

potential themselves to alter arousal state. To determine whether this happened in these 

experiments, we compared BIS values recorded before and after the 23 OAA/S assessments 
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that were proximal to the resting state recording blocks whose data are presented here. In 

19/23 assessments, we saw minimal changes in BIS (range [−8 10]; median pre-assessment 

BIS=72; median post-assessment BIS=73); in the other four we saw large changes but in 

either direction (increases of 21, 41 and 39, and a decrease of 46). Thus, in the majority of 

cases, administering the OAA/S did not substantively change arousal state. Overall, 

increases in BIS values immediately following OAA/S assessment failed to reach 

significance (median pre-assessment BIS = 70; median post-assessment BIS = 74; p = 0.18, 

one-tailed Wilcoxon signed rank test).

3.3. Changes in spectral power under sleep and anesthesia

Power spectral density (PSD) measurements made during WS and WA states exhibited 

shapes typical of resting state eyes-closed recordings, with power falling off approximately 

as 1/f2 and broad peaks typically observed in the alpha and beta bands (Fig. 1; 

Supplementary Fig. 3). There were only small differences observed between WS and N1, 

and none between WA and S (Fig. 2). By contrast, transitions into states N2 and U were 

characterized by large band- and region-specific changes in PSDs. As expected, N2 sleep 

was characterized by a widespread increase in delta power (see Fig. 2a). Of note, increases 

in alpha power in N2, as might be expected due to sleep spindles (Andrillon et al., 2011), 

were not consistent across subjects. Loss of responsiveness under anesthesia (U) was 

associated with large increases in delta power within PFC and sensorimotor areas, and a 

selective increase in alpha power in PFC (see Fig. 2b), consistent with previous observations 

(Purdon et al., 2013).

3.4. Changes in functional connectivity under sleep and anesthesia

It is clear from the differences between the sleep and anesthesia data shown in Figures 1 and 

2 that changes in spectral power alone are unlikely to serve as a generalized biomarker for 

LOC in the two sets of arousal states. We sought instead to investigate whether such 

biomarkers could be found in analyses of cortical connectivity. Functional connectivity was 

assayed using the debiased weighted phase lag index (wPLI) (Vinck et al., 2011). As ECoG 

power spectra featured peaks in the alpha band, we focused on alpha-band wPLI, but 

presented analyses of functional connectivity in other canonical frequency bands as well.

Adjacency matrices were computed first for each pair of recording sites (Fig. 3a), then 

transformed into ROI-based adjacency matrices (Fig. 3b), from which chord connectivity 

plots were created (Fig. 3c). Single-subject examples of chord connectivity plots for delta, 

alpha, and gamma bands across arousal states during sleep and anesthesia are shown in 

Supplementary Figures 4 and 5. On average, in the wake states (WA, WS) the strongest 

connections in the alpha-band were within the temporal lobe (Fig. 4). This pattern was 

largely preserved in N1, REM and S states. By contrast, a distinct connectivity profile 

emerged for N2 and U, in which the strongest alpha-band connections were within prefrontal 

cortex and between prefrontal cortex and select ROIs, including insula, gyrus rectus, and 

PMC (see Fig. 4, third column). More modest changes in connectivity were observed in 

other frequency bands (Supplementary Fig. 6). In the three subjects in whom N3 sleep was 

observed, the shift in alpha-band connectivity was even more pronounced in N3 compared to 

N2 (Supplementary Fig. 7).
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The wPLI is in theory insensitive to changes in spectral power in the underlying signals 

(Vinck et al., 2011). However, like other phase-related measures, wPLI can be sensitive to 

uncorrelated noise (Vinck et al., 2011), leading to correlations with spectral power in real-

world recordings. To explore this issue in the data presented here, it was important to control 

for arousal state, as changes in both spectral power and wPLI were associated with changes 

in arousal state, but these changes might be independent of each other. Thus, we investigated 

the relationship between power and wPLI in each data segment and at each recording site 

separately for each arousal state. If changes in spectral power drive changes in wPLI, a 

correlation between these measurements should have been observed. However, in the dataset 

presented here power did not exhibit an appreciable correlation with wPLI residuals (mean 

across patients R2 = 0.02, maximum R2 = 0.04) after accounting for arousal state, indicating 

that spectral power changes did not contribute substantially to our measure of functional 

connectivity.

3.5. Common neural signature of functional connectivity changes in sleep and 
anesthesia

A striking transition boundary in the alpha-band connectivity patterns between two sets of 

arousal states – [WS, N1, REM, WA, S] and [N2, N3, U] – is apparent visually in the chord 

connectivity plots of Figure 4. Differences in the degree of conscious experience in these 

two sets suggest a functional boundary as well: the first set comprises states in which 

subjects were responsive (WS, WA, S), or had high incidence of reportable conscious 

experience within the context of dreaming (N1, REM), while the second set comprises states 

in which subjects were unresponsive and had low incidence of reportable conscious 

experience (Eer et al., 2009; Leslie et al., 2009; Siclari et al., 2013). However, we note that 

Figure 4, while visually striking, is an abstraction from the data both because it is an average 

across subjects and because it displays only the 10% strongest connections.

To confirm the existence of a transition boundary, we applied two different analyses. First, 

changes in connectivity with arousal state were measured using the differences between un-

thresholded ROI × ROI adjacency matrices. Specifically, the magnitude of the difference in 

connectivity between states J and K was computed as dJ,K = ||AJ − AK||, where A is the 

adjacency matrix for that state and ||M|| is the operator norm of the matrix M (see Methods). 

Using this metric, functional connectivity was evaluated within each experiment (sleep, 

anesthesia) to test the hypothesis that differences across the transition boundary (sleep: 

dN1,N2 and dREM,N2; anesthesia: dS,U) were larger in magnitude than differences that do not 

cross that boundary (sleep: dWS,N1, dWS,REM; anesthesia: dWA,S). Mean effect sizes across 

subjects (mean Cliff’s delta, δ, see methods) are reported, and a permutation test was 

performed to estimate how chance arrangements of the data compare to the actual 

differences observed. We found that within the alpha-band, dWS,N1 was significantly smaller 

than dN1,N2 (δ = 0.36, p = 0.0012), as was dWA,S compared to dS,U (δ = 0.70, p = 0.045). 

Additionally, dWS,REM was significantly smaller than dREM,N2 (δ = 0.29, p = 0.0016). 

Comparable results (i.e. both dWS,N1 < dN1,N2 and dWA,S < dS,U significant) were not found 

within delta and gamma bands (Supplementary Fig. 6; Supplementary Table 4).
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Further support for a transition boundary distinguishing alpha-band connectivity profiles 

was provided by classification analysis (Fig. 5a). Rather than starting with the average 

connectivity profiles, as in the difference norms analysis above, the classification analysis 

was based directly on the time series of connectivity matrices measured during the overnight 

sleep experiment. The classifier was trained on data segments from two states appearing to 

fall on either side of the boundary, WS and N2, and then tested on data segments from all 

arousal states. We used a logistic weighting function to assign a value between 0 (‘N2-like’) 

and 1 (‘WS-like’) to each segment. For this analysis, adjacency matrices were calculated 

from shorter (10-second) segments of data to provide a larger dataset on which to train the 

classifier, and the analysis was performed on each subject separately. As expected, median 

prediction scores on N2 and WS were highly skewed toward 0 and 1, respectively (N2: 

0.045; WS: 0.95). Separation in median prediction score for N2 and WS segments was 

greater for alpha (difference of medians = 0.91) compared to other frequency bands (delta, 

difference of medians = 0.54; gamma, difference of medians = 0.49). N3 data were classified 

as ‘N2-like’ (median logistic prediction score = 0.028). Importantly, both N1 and REM 

tended to be classified as ‘WS-like’ (median logistic prediction score = 0.68 and 0.66, 

respectively). Overall, classification results were generally consistent across the five subjects 

(Supplementary Fig. 8). An examination of the time series of prediction scores over the 

duration of the sleep experiment in each subject provided additional evidence for robustness 

of the classifier performance (Supplementary Fig. 9). Specifically, prediction scores were 

generally consistent over time for each arousal state, and exhibited rapid transitions 

associated with changes in arousal state in individual subjects.

The similarities between connectivity profiles measured during sleep and anesthesia (i.e. 

between WS and WA, between N1 and S, and between N2 and U; Fig. 4) suggest a 

commonality in the changes in cortical network organization secondary to transitions 

between arousal states in the two experiments. This observation is consistent with our prior 

expectation that arousal states associated with similar degrees of conscious experience 

during sleep and anesthesia (‘equivalent states’: WS and WA, N1 and S, N2 and U) would 

have more similar network organization than their ‘non-equivalent’ counterparts (i.e., those 

on opposite sides of the transition boundary in Fig. 4). To test this hypothesis, the distances 

between alpha-band connectivity profiles measured in ‘equivalent’ versus ‘non-equivalent’ 

states were compared; that is, dEquiv (i.e. dWS,WA, dN1,S and dN2,U) were compared to 

dNon-equiv [i.e. mean (dWS,U,dWA,N2), mean (dN1,U, dS,N2) and mean (dN1,U, dS,N2), 

respectively]. We found that dWS,WA and dN1,S were significantly smaller than their 

corresponding dNon-equiv (δ = 0.22, p = 0.0037 and δ = 0.22, p = 0.00069, respectively) but 

dN2,U was not (δ = 0.13, p = 0.34). These data indicate similarity in alpha-band connectivity 

profiles observed during N1 sleep and sedation. Comparable results (i.e. both dWS,WA and 

dN1,S significantly smaller than their corresponding dNon-equiv) were not found within delta 

and gamma bands (Supplementary Fig. 6; Supplementary Table 4).

Classification analysis also provided support for the idea that connectivity profiles under 

sleep and anesthesia overlap. Here, classifiers trained on WS and N2 data from the sleep 

experiment (see Fig. 5a) were applied to anesthesia data (Fig. 5b) in order to determine 

whether the transition boundary observed during sleep generalized to changes in arousal 
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state under anesthesia. The classifiers tended to assign WA segments to the WS-like 

category (median logistic prediction score = 0.70), and assigned U segments with high 

probability to the N2-like category (median logistic prediction score = 0.078). By contrast, S 

segments were equally likely to be assigned to WS and N2 (median logistic prediction score 

= 0.50). The former result stands in contrast to the result of the difference norms analysis 

that did not reveal a greater similarity between N2 and U compared to other states. Overall, 

classification results of anesthesia data were generally consistent across subjects and over 

the duration of each experiment in individual subjects (see Supplementary Figures 8, 9). The 

classifier results suggest substantial overlap in connectivity profiles between some 

‘equivalent’ sleep and anesthesia arousal states, while connectivity in S bears similarity to 

both WS and N2 states.

3.6. Regional distribution of functional connectivity strength across arousal states

The changes in regional distribution of connectivity across the transition boundary suggested 

by the results of Figure 4, i.e. the shift from temporo-parietal to prefrontal connectivity, were 

strikingly similar in the sleep and anesthesia experiments (see Fig. 4). Boly and colleagues 

((Boly et al., 2017) presented evidence that the neural correlates of consciousness 

correspond primarily to activity in the ‘back’ of the brain, specifically involving broad 

regions in the temporal, parietal and occipital lobes, and excluding regions in the frontal 

lobe. Motivated by this perspective, we quantified the differences in regional connectivity 

observed across arousal states in the current study. We divided ROIs into two groups: a 

posterior group that included all temporal, parietal and occipital ROIs, and an anterior group 

that included all frontal ROIs. We then compared the mean alpha-band wPLI across all pairs 

of recording sites within each group, and calculated a regional bias in connectivity as the 

difference between within-anterior and within-posterior connectivity. Figure 6a shows the 

bias in connectivity, with biases toward within-posterior connectivity indicated by negative 

values and within-anterior by positive values. There was a shift from posterior and towards 

anterior connectivity with reduced arousal in both sleep [change in regional bias from N2-

N1 δ = 0.71, p < 0.0001; N2-WS δ = 0.73, p < 0.0001] and anesthesia (U-S δ = 1.0, p = 

0.013; U-WA δ = 1.0, p = 0.0003). The shift from WS to N1 or WA to S was not significant 

(N1-WS δ = 0.37, p = 0.070; S-WA δ = 0.98, p = 0.056). REM was different from N2 (N2-

REM δ = 0.83, p < 0.0001) but not significantly different from wake (REM-WS δ = 0.20, p = 

0.39). An examination of the time series of alpha wPLI regional bias over the experiment 

duration in each subject provided additional evidence for association between a shift towards 

anterior connectivity and states of reduced consciousness (Supplementary Fig. 10). 

Specifically, four out of five subjects (L372, R376, L403, L409) exhibited shifts toward 

anterior connectivity that were unique to unresponsive states (N2 and N3), while REM and 

N1 segments remained similar to WS in terms of wPLI regional bias. Notably, in all five 

subjects, U was characterized by shift toward anterior connectivity bias. Thus, the data 

indicate that alpha-band connectivity in WS versus N2 and in WA versus U exhibits a 

similar shift from connectivity within posterior towards connectivity within anterior regions.

Finally, disruption in long-range cortico-cortical connectivity has been noted upon LOC 

during sleep and anesthesia in several studies (Boly et al., 2012a; Lee et al., 2013b; Ranft et 

al., 2016; Spoormaker et al., 2010), though these findings have been challenged by other 
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studies (Boly et al., 2012b; Lee et al., 2017; Monti et al., 2013; Murphy et al., 2011). To 

investigate this issue in the dataset presented here, we assayed the state-dependence of long-

range alpha-band connectivity by measuring wPLI across the most distant pairs of recording 

sites, defined as highest quartile of Euclidean distances in each subject (Fig. 6b). We found 

no evidence for a decrease in long-range functional connectivity, observing rather a modest 

increase in N2 and U relative to wake (N2-WS δ = 0.57, p < 0.0001; U-WA δ = 0.73, p = 

0.0053) and N1/S (N2-N1 δ = 0.64, p < 0.0001; U-S δ = 0.86, p = 0.0050). We did not find 

significant changes in long-range connectivity between WS and N1 (N1-WS δ = − 0.21, p = 

0.15) or WA and S (S-WA δ = − 0.05, p = 0.57), but long-range connectivity was reduced in 

REM (R-WS δ = − 0.79, p = 0.00063).

4. Discussion

The search for reliable biomarkers of LOC/ROC is of great scientific interest and clinical 

relevance for anesthesia (Drummond, 2000) as well as for diagnosis and prognosis of 

disorders of consciousness (Bayne et al., 2017; Bernat, 2017). Here, we leveraged a unique 

opportunity to obtain intracranial electrophysiological recordings from neurosurgery patients 

both during natural sleep and under propofol anesthesia. We found that different arousal 

states were associated with distinct patterns of functional connectivity. Similarities in this 

association for sleep and anesthesia suggest that cortical network configuration could index 

changes in consciousness.

4.1. ROI- and band-specific effects of sleep and anesthesia on power spectral density

A practical biomarker of conscious vs unconscious state must generalize to multiple settings 

where LOC is encountered, including sleep and general anesthesia. Previous attempts to use 

band-specific power to distinguish arousal states under general anesthesia have been largely 

unsuccessful (Otto, 2008; Struys et al., 1998). This difficulty likely stems from agent-

specific changes in power spectra, for example differing between propofol, ketamine and 

dexmedetomidine anesthesia (Mashour, 2020). The changes that we observed during natural 

sleep, specifically widespread increases in spectral power in the delta band (see Fig. 2a), are 

hallmarks of N2 and N3, but not N1, sleep (Prerau et al., 2017; Steriade et al., 1993). In 

contrast to observations during natural sleep, under propofol anesthesia we observed region-

specific (not global) increases in delta power (see Fig. 2b), and increases in frontal alpha 

power (see Fig. 2b). These observations under propofol are consistent with previous reports 

(Chennu et al., 2016; Ni Mhuircheartaigh et al., 2013; Pryor et al., 2004; Purdon et al., 2013; 

Supp et al., 2011; Tinker et al., 1977; Wang et al., 2014), and some have suggested that 

changes in frontal alpha and delta power are reliable indicators of loss of consciousness 

under propofol (Purdon et al., 2013). However, a recent study using the isolated forearm 

technique challenges the reliability of such an approach (Gaskell et al., 2017). Consistent 

with the latter findings, changes in power in the present study did not consistently 

distinguish N1 from N2, and S from U (see Fig. 2). In addition, these changes across arousal 

states were not consistently paralleled by changes in connectivity. For example, alpha power 

did not consistently increase in N2 compared to WS and N1 states, yet this band exhibited 

the most prominent connectivity changes observed during sleep (see Fig. 2, Fig. 4). 

Conversely, although the transition to N2 and N3 sleep was characterized by an increase in 
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delta power in multiple ROIs, connectivity within and across these ROIs did not undergo a 

comparable degree of reorganization (see Fig, 2, Supplementary Fig. 6a). These results 

indicate that the observed changes in connectivity do not merely follow changes in power 

and instead reflect functional reorganization of cortical networks. The absence of 

meaningful correlations between connectivity and power (see Results) further support this 

idea.

4.2. Changes in connectivity during sleep and anesthesia

The sharing of information between cortical regions is a critical element in theories of 

consciousness and brain function (Dehaene and Changeux, 2011; Friston, 2005; Tononi et 

al., 2016). Altered cortical connectivity observed during sleep and anesthesia has been 

interpreted within this theoretical context to explain reduced awareness upon LOC (Alkire et 

al., 2008; Mashour and Hudetz, 2017). Although there have been studies that examined 

functional connectivity during sleep and anesthesia (Boly et al., 2012a; Boly et al., 2012b; 

Lee et al., 2017; Lee et al., 2013b; Murphy et al., 2011; Ranft et al., 2016; Spoormaker et al., 

2010), no previous study has directly compared the two in the same subjects. Of particular 

relevance is the study by Murphy et al. (2011) that examined changes in neural activity 

during sleep and anesthesia. However, that study utilized data from two different sets of 

subjects and did not compare changes in functional connectivity between the two data sets. 

A recent study in human volunteers that did measure changes in functional connectivity 

patterns derived from fMRI during transitions in arousal state found substantial differences 

between sleep and propofol anesthesia (again, imaged in two different groups of subjects) 

(Li et al., 2018). Interestingly, the latter study found that cortical changes during NREM 

sleep were confined to frontal cortex, while changes under propofol anesthesia were 

widespread. Here, measuring ECoG-derived functional connectivity in the same subjects 

during sleep and anesthesia, we found substantial overlap in the regional changes in 

functional connectivity during transitions in arousal state.

We observed consistent and pronounced changes in connectivity upon transitions into N2 

and U as quantified by the difference norms and classifier analyses. What is novel about the 

results presented here is the degree of overlap between changes in connectivity profiles 

across arousal states in sleep and anesthesia. This overlap included a pronounced transition 

boundary between N1 and N2, and between S and U (Fig. 4). On a superficial level, one 

might expect some overlap in arousal states, and thus in the changes upon transitions 

between arousal states, during sleep and anesthesia, yet differences are expected as well. For 

example, WS and WA are both wake states, but disparities in the time of day of the 

recordings (overnight versus morning), the behavioral state of the subject (e.g. WA was just 

prior to major surgery), and environment (monitoring suite versus operating room) could 

result in substantial differences in cortical network organization. Similarly, although both N2 

and U are unresponsive states with low probability of reportable conscious experience, 

differences in brain state due to the presence of endogenous sleep factors versus the 

anesthetic agent might result in distinct brain connectivity patterns. Indeed, the analysis 

using difference norms did not find the N2 and U connectivity profiles to be more similar to 

each other than to other states across the transition boundary. This is likely due to the 

conservative nature of the analysis, in that any differences in the connectivity between 
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specific ROIs will manifest in the element-by-element differences between adjacency 

matrices. By contrast, classification analysis did find N2 and U states to be similar, in that U 

data segments were easily categorized as N2-like. This is likely because the classifier 

analysis utilized overall patterns of connectivity rather than individual connections to 

categorize connectivity profiles.

Previous studies of the incidence of dreaming and conscious experience under anesthesia 

suggest that the observed transition boundary may reflect entry into and out of conscious 

states. Specifically, on one side of the boundary are states in which subjects are likely having 

conscious experiences, i.e. responsive (WS, WA, S) or dreaming frequently and vividly with 

high incidence of reportable conscious experience (REM, N1). On the other side are arousal 

states in which subjects are unlikely to be having conscious experiences, i.e. unresponsive 

(U) and with low incidence of reportable conscious experience (N2, N3) (Leslie et al., 2009; 

Siclari et al., 2013). This boundary was observed both with difference norms and 

classification analyses applied to the ROI-by-ROI adjacency matrices (see Fig. 4, 5) and 

with the analysis of intra-regional and long-range connectivity (see Fig. 6). However, even 

though connectivity patterns during propofol sedation (S) generally aligned with other 

conscious states, both the classification and intra-regional connectivity analyses were 

consistent with fluctuations in arousal level in this state (see Fig. 5b, 6a).

Two features of the changes in connectivity associated with transitions into both N2 and U 

were increased connectivity strength within and between anterior (frontal) brain regions, as 

has been observed using electrophysiological measures previously under propofol anesthesia 

(Purdon et al., 2013; Supp et al., 2011), and reduced connectivity elsewhere. A recent essay 

on the neural correlates of consciousness (NCC) suggests an interesting interpretation of 

these aspects of the changes in connectivity. Boly and colleagues (Boly et al., 2017) 

presented evidence from lesion studies and from experiments utilizing serial awakening 

during sleep to argue that the “full NCC”, that is the collection of all regions underlying 

specific contents of consciousness, comprises large portions of the parietal, occipital, and 

temporal lobes, whereas frontal lobe structures underlie functions associated with, but not 

necessary for, those conscious contents. The regions within the full NCC are most closely 

associated with sensory awareness, and thus would underlie the internal generative models 

central to theories of predictive processing and the mismatch detection and message passing 

functions critical to those schemes (Friston, 2005). Within this context, the focus on alpha-

band connectivity is particularly relevant.

Alpha-band oscillations play a role in regulating attention and access to stored information, 

and intact communication in the alpha band is likely critical for sensory and semantic 

processing (Klimesch, 2012; Mayer et al., 2016). For example, alpha-band power and phase 

synchronization in particular are associated with feedback connectivity in the visual cortical 

hierarchy (Buffalo et al., 2011; van Kerkoerle et al., 2014). Alpha-band feedback signals 

have also been shown to carry predictive information in language processing (Wang et al., 

2018). Changes in connectivity associated with transitions between arousal states observed 

in the present study are consistent with these functional roles of alpha-band oscillations. (van 

Kerkoerle et al., 2014). For example, it is possible that the shift in cortical connectivity from 

temporal to frontal lobes upon LOC may reflect a reduction in predictive processing during 
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states of reduced consciousness. This is consistent with the finding that anterior alpha 

synchronization of EEG in response to propofol correlates with disrupted sensory processing 

in human volunteers (Supp et al., 2011).

Although clinical considerations precluded electrode coverage of the thalamus, previous 

studies suggest that some of the changes in cortico-cortical connectivity observed in this 

study could be driven by altered thalamo-cortical synchronization (Saalmann et al., 2012). 

For example, the increased thalamo-cortical synchronization observed during sleep spindles 

(Andrillon et al., 2011) and during propofol anesthesia (Flores et al., 2017) may have a 

similar effect on functional connectivity within frontal cortex, as suggested by 

computational studies (Vijayan et al., 2013). However, the observations that the frontal shift 

in alpha-band connectivity was even more pronounced in N3 than it is in N2 (Supplementary 

Fig. 7), even though spindles are less common in N3 (Andrillon et al., 2011), and that 

significant changes in alpha power were not observed during sleep (see Fig. 2a), suggest that 

the changes in alpha-band connectivity were unlikely driven solely by sleep spindle activity.

The disintegration of cortical networks observed upon LOC during sleep, anesthesia, and 

coma (Alkire et al., 2008) has been ascribed to disrupted long-range connectivity. For 

example, several reports suggest reduced resting-state cortico-cortical (fronto-parietal) 

feedback connectivity under a variety of anesthetic agents, including propofol (fMRI: (Boly 

et al., 2012a; Ranft et al., 2016); EEG: (Lee et al., 2013b)), consistent with results using 

invasive electrophysiological recordings in rodent models (Imas et al., 2005; Raz et al., 

2014). Disrupted long-range resting-state functional connectivity has also been reported in 

fMRI studies during NREM sleep (Spoormaker et al., 2010) and anesthesia (Ranft et al., 

2016). However, other studies have shown no differences in changes in short- versus long-

range connectivity (fMRI: Monti et al., 2013), or even increases in long-range connectivity 

during anesthesia (fMRI: Murphy et al., 2011; EEG: Lee et al., 2017) and sleep (fMRI: Boly 

et al., 2012b). Similarly, in the present study, we saw little evidence for decreases 

specifically in long-range connections (see Fig. 6b). The reasons for the diverse findings of 

the effects on connectivity are unclear. It is possible that the dynamics and heterogeneity of 

the resting state cortical network contribute to this diversity. For example, network 

configuration prior to LOC has been shown to influence observed changes in connectivity 

during sleep (Wilson et al., 2019). Application of methods to these data that can characterize 

connectivity at finer temporal resolution may address this issue.

4.3. Caveats and limitations

The key limitations of this study are the small number of participants (n = 5), and that the 

subjects had a neurologic disorder, and thus may not be entirely representative of a healthy 

population. These caveats are inherent to all human intracranial electrophysiology studies. 

Our statistical methods focused on within-subject comparisons between states and should be 

generalized with caution. However, results were consistent across subjects who all had 

different clinical histories of their seizure disorder, antiepileptic medication regimens, and 

seizure foci. Recordings from cortical sites confirmed to be seizure foci were excluded from 

analyses. Finally, all subjects participated in multiple additional research protocols over the 

course of their hospitalization, including a range of behavioral tasks. Behavioral and neural 
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data obtained in these other experiments were examined for consistency with a corpus of 

published human intracranial electrophysiology data (reviewed in (Nourski, 2017). None of 

the subjects exhibited aberrant responses that could be interpreted as grounds for caution in 

inclusion in this study.

Caveats that are specific to this study include possible effects of seizures, AED use, and 

hospital environment on sleep and anesthesia. Seizures can have acute disruptive effects on 

sleep architecture (Derry and Duncan, 2013; Jain and Kothare, 2015; Touchon et al., 1991). 

In the present study, subjects were monitored for seizure activity during the overnight sleep 

recording to avoid acute effects of seizures on sleep. In the one subject who had overnight 

seizures (L403), data that were collected after seizures commenced were excluded from 

analysis. Additionally, chronic use of AEDs can affect the quality and structure of sleep 

(Jain and Glauser, 2014). In the present study, overnight sleep data were collected when the 

subjects were weaned off their AEDs as part of their clinical seizure monitoring protocol. 

This reduced any effects of the AED use on the quality of sleep data in our subject cohort. It 

should be noted that sleep stage scoring was independent of these confounding factors, and 

all subjects had sufficient duration of each stage of sleep (REM, N1, N2) for the purposes of 

analysis presented here. The hospital environment may also have had an impact on the 

quality and structure of overnight sleep in the studied subjects. This may have contributed to 

the lack of observed N3 sleep stage in two out of five subjects. Finally, the use of AEDs can 

lead to a reduction of the dose of propofol required to achieve surgical level of general 

anesthesia (Ouchi and Sugiyama, 2015). However, estimated plasma propofol concentrations 

at loss of responsiveness in the present subject cohort (2.31 μg/ml on average) are 

comparable to those reported in literature (Doufas et al., 2001; Iwakiri et al., 2005; Li et al., 

2018). In addition, the present study did not depend on specific dose of propofol but rather 

on behavioral assessment of arousal. Thus, overall the definition of arousal states that was 

central to the analysis was not affected by the confounding factors secondary to the subjects’ 

history of epilepsy, allowing us to measure brain states regardless of them. All of these 

factors may have contributed to variability in connectivity measures, making detection of 

differences across arousal states more difficult. This makes the positive findings of the 

current study all the more striking.

The motivation for exploring changes in connectivity across arousal states is to elucidate the 

neural underpinnings that define these states. We note, however, that the arousal states as 

defined in this study are likely non-uniform regarding consciousness. For example, healthy 

adults are able to report on conscious experience (i.e. dreaming) about 40% and 20% of the 

time in N2 and N3 sleep (Siclari et al., 2013). Dreaming also occurs under propofol 

anesthesia in about 20% of patients (Leslie et al., 2009). This suggests that differences in 

brain connectivity between the conscious and unconscious states may be even greater than 

those reported here, had it been possible to distinguish reliably dreaming vs. non-dreaming 

states in our data set.

We also note the challenges in assessing awareness under anesthesia, and specifically the 

delicate balance between interrogating a subject’s awareness and changing the state of their 

arousal with that interrogation. The approach employed here, the OAA/S, is considered the 

gold standard for assessing awareness in the perioperative setting (Chernik et al., 1990), and 
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it has been cross-validated using EEG-based measures such as BIS (Vanluchene et al., 

2004). The BIS values recorded in the current study corresponded well to those associated 

with wake, sedated, and unconscious states in previous reports (Vanluchene et al., 2004). 

Importantly, we did not observe consistent increases in BIS values post-OAA/S assessments 

compared to pre-OAA/S assessments (see Supplementary Fig. 2), indicating that our 

assessments likely did not alter the arousal state of the subjects.

4.4. Functional significance and future directions

The results presented here have broad implications for understanding the neural mechanisms 

associated with loss of consciousness and for better understanding and differential diagnosis 

of disorders of consciousness. We demonstrate a transition boundary in profiles of functional 

connectivity that separates states of different levels of consciousness. Phase synchronization 

is postulated to mediate rapid communication of conscious content over multiple spatial 

scales in cortex, contributing importantly to the rich repertoire of human behavior that 

characterizes conscious states (Fries, 2015). The finding that changes in functional 

connectivity based on phase synchronization indexes arousal state similarly in both sleep 

and anesthesia motivates further exploration of the changes in brain activity and connectivity 

common to changes in consciousness. These findings have practical clinical ramifications as 

well. Connectivity can be measured non-invasively using EEG or fMRI in patients with 

disorders of consciousness. Algorithms that track region-specific functional connectivity 

may provide a basis for noninvasive monitoring of arousal state in patients otherwise 

inaccessible to standard assessments of arousal based on response to command. Future 

experiments aimed at exploring in more detail the differences between LOC in sleep and 

anesthesia, and generalizing to other anesthetic agents such as dexmedetomidine and volatile 

anesthetics, will elucidate further fundamental questions about the nature of consciousness 

and arousal that remain unresolved.
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Fig. 1: Electrode coverage and electrocorticographic (ECoG) power spectra.
Exemplary data from subject L372. a, Electrode coverage of the lateral surface of the left 

cerebral hemisphere (top) and left superior temporal plane (bottom). Recording sites are 

color-coded according to the region of interest group (see Methods for details and 

Supplementary Table 3 for abbreviation key). b, ECoG power spectra during sleep. Data 

from four representative sites (left-to-right). WS: wake (sleep experiment); PSD: power 

spectral density. c, ECoG power spectra during anesthesia. WA: wake (anesthesia 

experiment); S: sedated; U: unresponsive.
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Fig. 2: Changes in ECoG band power across arousal states.
a, ECoG band power during sleep, plotted as marginal means and 95% confidence intervals. 

b, ECoG band power during anesthesia. Data from 5 subjects. Changes in delta, alpha, and 

gamma power are shown in top, middle and bottom rows, respectively. See Table 1 for 

definition of each region of interest (ROI) group. P-values were adjusted for multiple 

comparisons as described in Methods. WS: wake (sleep experiment), WA: wake (anesthesia 

experiment); S: sedated; U: unresponsive.
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Fig. 3: Analysis of alpha-band functional connectivity in wake state.
Example from subject L372. a, Adjacency matrix for all recording sites. b, Adjacency 

matrix, collapsed for all regions of interest (ROIs). c, Chord connectivity plot. Line 

thickness reflects mean wPLI values that characterize pairs of ROIs. For display purposes, 

the chord plot was thresholded to retain the 10% strongest connections.
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Fig. 4: ROI-based analysis of alpha-band functional connectivity across arousal states.
Data from five subjects. See caption of Fig. 3c for details.

Banks et al. Page 28

Neuroimage. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: Classification of data segments.
Logistic prediction distributions for adjacency matrices from sleep and anesthesia arousal 

states (panels a and b, respectively) analyzed by a linear classifier trained on a subset of WS 

and N2 data. Each violin plot shows the average distribution across five subjects (except for 

N3, which is for 3 subjects). Centered dot and surrounding horizontal lines represent each 

distribution’s median, first and third quartiles, respectively. For distributions from individual 

subjects, see Supplementary Figure 8.
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Fig. 6: Intra-regional and long-range connectivity changes with arousal state.
a: Mean alpha wPLI averaged within anterior quadrants of the adjacency matrices minus the 

average within posterior quadrants. Values greater than zero indicate greater within-anterior 

connectivity compared to within-posterior connectivity. b: Mean alpha wPLI values for 

recording site pairs distanced greater than the 75th percentile. Significance: n.s., p > 0.05; 

**, p < 0.01; ***, p < 0.005; ****, p < 0.001 (permutation test). Although subject L372 

exhibited larger effects than the others in N2 for both analyses, and in U for the long-range 

connectivity analysis, statistical significance and conclusions were robust to omitting that 

subject’s (or any individual subject’s) data from the analyses. Dashed lines in a and b depict 

mean values during the WS and WA states for sleep and anesthesia panels, respectively.
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Table 1.

Regions of interest.

ROI ROI abbrev.

Auditory core:

 Heschl’s gyrus, posterolateral HGPM

Superior temporal plane (STP):

 Heschl’s gyrus, anterolateral HGAL

 Planum temporale PT

 Planum polare PP

Superior temporal gyrus (STG):

 Superior temporal gyrus, posterior STGP

 Superior temporal gyrus, mid STGM

 Superior temporal gyrus, anterior STGA

Auditory-related:

 Insula Ins

 Superior temporal sulcus STS

 Middle temporal gyrus, posterior MTGP

 Middle temporal gyrus, mid MTGM

 Middle temporal gyrus, anterior MTGA

 Supramarginal gyrus SMG

 Angular gyrus AG

Prefrontal:

 Inferior frontal gyrus, pars opercularis IFGop

 Inferior frontal gyrus, pars triangularis IFGtr

 Inferior frontal gyrus, pars orbitalis IFGor

 Middle frontal gyrus MFG

 Superior frontal gyrus* SFG

 Orbital gyrus OG

 Transverse frontopolar gyrus TFG

 Cingulate gyrus, anterior* CGA

Sensorimotor:

 Precentral gyrus PreCG

 Postcentral gyrus PostCG

Other:

 Premotor cortex PMC

 Parahippocampal gyrus PHG

 Fusiform gyrus FG

 Inferior temporal gyrus ITG

 Temporal pole TP
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ROI ROI abbrev.

 Gyrus rectus GR

 Superior parietal lobule* SPL

 Middle occipital gyrus MOG

 Inferior occipital gyrus* IOG

 Lingual gyrus* LG

 Cingulate gyrus, mid* CGM

 Amygdala Amyg

 Hippocampus Hipp

*
Limited coverage (present in 1 or 2 subjects out of 5)
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