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Phasor field diffraction based reconstruction for
fast non-line-of-sight imaging systems
Xiaochun Liu 1, Sebastian Bauer 2 & Andreas Velten1,2✉

Non-line-of-sight (NLOS) imaging recovers objects using diffusely reflected indirect light

using transient illumination devices in combination with a computational inverse method.

While capture systems capable of collecting light from the entire NLOS relay surface can be

much more light efficient than single pixel point scanning detection, current reconstruction

algorithms for such systems have computational and memory requirements that prevent

real-time NLOS imaging. Existing real-time demonstrations also use retroreflective targets

and reconstruct at resolutions far below the hardware limits. Our method presented here

enables the reconstruction of room-sized scenes from non-confocal, parallel multi-pixel

measurements in seconds with less memory usage. We anticipate that our method will

enable real-time NLOS imaging when used with emerging single-photon avalanche diode

array detectors with resolution only limited by the temporal resolution of the sensor.
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T ime of flight Non-line-of-sight (NLOS) imaging uses fast
pulsed light sources and detectors combined with com-
putational methods to image scenes from indirect light

reflections making it possible to reconstruct images or geometry
of the parts of a scene that are occluded from direct view. Due to
this unique capability, NLOS imaging is promising for applica-
tions in diverse fields such as law enforcement, infrastructure
assessment, flood prevention, border control, disaster response,
planetary research, geology, volcanology, manufacturing, indus-
trial monitoring, vehicle navigation, collision avoidance, and
military intelligence. In a time-resolved NLOS imaging mea-
surement, points on a relay wall are illuminated by a picosecond
laser. Light from these points illuminates the hidden scene and a
fast detector captures the optical signal returned from the scene at
points on the relay wall. A suitable computational method is then
used to decode the image around the corner.

Despite recent breakthroughs, obtaining a high resolution real
time or near real time NLOS video remains elusive. An algorithm
suitable for fast NLOS imaging must fulfill three separate
requirements: The ability to use data that can be captured in real
time, a computational complexity allowing for execution in a
fraction of a second on a conventional CPU or GPU, and a
memory complexity suitable for use in the limited memory of
such a system.

After theoretical exploration of the problem1,2, the first
experimental demonstration of NLOS imaging used a filtered
backprojection (FBP) algorithm3,4 similar to inverse methods
used in computed tomography. Modified FBP algorithms such as
error backprojection5 and Laplacian of Gaussian (LOG) FBP6 can
provide high quality reconstructions, but have a high computa-
tional complexity and take minutes to hours to execute on a
desktop computer. Buttafava et al.7 show that it is possible to use
a gated Single-Photon Avalanche Diode (SPAD) for NLOS ima-
ging. SPADs can potentially be manufactured at low cost and in
large arrays enabling fast parallel NLOS capture.

Among the fastest current reconstruction methods, O’Toole
et al.8 propose a Light Cone Transform (LCT) method based on
co-located illumination and detection points and acquire all
measurements through a scanning process of the relay wall (so-
called confocal acquisition setup). Lindell et al.9 demonstrate
another reconstruction method for confocal data transferred from
seismic imaging which is called FK Migration. Both algorithms
rely on 3D convolutions allowing for fast reconstruction and
demonstrate the ability to recover complex scenes from confocal
measurements9. They require interpolation over irregular 3D
grids in order to approximate the data points needed for the
convolutions. This requires oversampling the reconstructions and
computing nearest neighbors which is associated with significant
added memory requirements. The crucial limitation of these
methods that we explore in more detail below is, however, that
they can only utilize the light returning from the confocal location
on the relay wall and thus cannot utilize the vast majority of light
available in an NLOS measurement. This is illustrated in our
Supplementary Note 4. Lindell et al. also demonstrate a way to
approximate non-confocal data as confocal data9 for simple
planar scenes that allows both LCT and FK Migration algorithms
to obtain approximate reconstructions from non-confocal data.
Real time reconstruction of low resolution retro-reflective scenes
has also been demonstrated in a confocal scanning scenario with
both LCT and FK Migration methods. However, the presented
confocal real time captures require retroreflective targets that
return most reflected light to the moving laser/detection point,
while arbitrary diffuse objects require scan times of at least
10 minutes9. In this case, the bottleneck of these methods is not
the computation, but the acquisition. Furthermore, reconstruc-
tion of higher resolution scenes with diffuse surfaces is hindered

by the large memory requirements and the inefficient confocal
capture process requiring sequential point scanning capture with
a single SPAD pixel.

Liu et al.10 and Reza et al.11 introduce a virtual wave phasor
field formalism that is the basis of this work. Using the phasor
field method, the NLOS imaging problem can be stated as a line
of sight optical imaging problem based on diffraction and solved
using existing diffraction theory methods. Recent work also
includes further experimental investigation in the propagation of
phasor field virtual waves12, as well as the extension of the phasor
field model to scenes with occlusions and specular reflectors13

who use the paraxial approximation to obtain an approximate
convolution operator to model wave propagation. More insight
into the theory of phasor field waves is also provided by Teich-
man et al.14.

In this work, we introduce an NLOS reconstruction method
using the phasor field formalism along with a convolutional fast
Fourier transform (FFT) based Rayleigh Sommerfeld Diffraction
(RSD) algorithm to provide fast non-approximative scene
reconstructions for general capture setups, in particular including
non-confocal setups using a single laser and a sensor array. Our
hardware prototype includes a SPAD detector and a picosecond
pulse laser which will be mentioned specifically later. When used
in the confocal scenario, this new method performs at speed
similar to LCT and FK Migration, while requiring significantly
less memory. In addition to applying our new algorithm to open
source data9,10, we also perform several additional experiments.

Results
Phasor field NLOS camera. The concept of phasor field NLOS
imaging is described in Fig. 1. Data from the scene is collected by
illuminating a set of points xp on a relay surface P and collecting
the light returned at points xc on a relay surface C. This data set
represents impulse responses H(xp → xc, t) of the scene. Using
such an impulse response we can compute the scene response at
points xc to an input signal Pðxp; tÞ as

Pðxc; tÞ ¼
Z
P
½Pðxp; tÞ�t Hðxp ! xc; tÞ�dxp ð1Þ

where the �
t
operator indicates a convolution in time. We call the

quantities Pðxp; tÞ and Pðxc; tÞ phasor field wavefronts. Pðxc; tÞ
describes the wavefront that would be returned from the scene if
it were illuminated by a illumination wave Pðxp; tÞ. Recon-
structing an image from the wave front of a reflected wave is the
fundamental problem solved by a line of sight imaging system.
The reconstruction operation

Iðxv; tÞ ¼ ΦðPðxc; tÞÞ ð2Þ
resulting in a 3D image I(xv) of the scene amounts to propagation
of the wavefront at C back into the scene into the points xv where
it has the shape of the scene objects. The Fourier domain version
ΦF ð�Þ of the wave propagation operator Φ(⋅) is known as the
Rayleigh-Sommerfeld Diffraction (RSD) integral:

ΦðPF ðxc;ΩÞÞ ¼ Rxv
ðPF ðxc;ΩÞÞ

��� ���2: ð3Þ

The RSD in the considered context is calculated by

Rxv
ðPF ðxc;ΩÞÞ ¼ αðxvÞ

Z
C
PFðxc;ΩÞ

e�ik xc�xvj j

xc � xvj j|fflfflfflfflffl{zfflfflfflfflffl}
RSDdiffraction kernel

dxc:

ð4Þ
In this equation, k=Ω∕c denotes the wavenumber and c across

our paper refers to the speed of light. The conventional RSD
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propagates the electric field, but in this context propagation of an
intensity modulation is required. The phasor field RSD differs
from the conventional version by the amplitude correc-
tion factor α(xv)10. This factor depends on the location xv of
the reconstruction point and could be precomputed once the
geometry of the relay surface is known. Alternatively, it can be
disregarded, as it only causes a slowly varying error in brightness
of reconstructed points, but not their location. The RSD in Eq. (4)
is a function of each individual monochromatic phasor field
component. For this reason, the wavefront Pðxc; tÞ received at the
aperture has been replaced by its Fourier domain representation
PFðxc;ΩÞ. Throughout this paper, frequency domain quantities
are denoted by the same variable as the respective time domain
quantities, but with the subscript F and the argument angular

frequency Ω instead of t. For instance, F t Pðxp; tÞ
� �

¼
PFðxp;ΩÞ and F t Hðxp ! xc; tÞ

� �
¼ HF ðxp ! xc;ΩÞ, where

F tð�Þ denotes the Fourier transform with respect to time. Note
that in this paper, the RSD propagation direction is from the
camera aperture (i.e., relay surface C) into the reconstruction
volume.

It is important to note that both illumination Pðxp; tÞ and
image formation Φ(⋅) are implemented virtually on a computer.
For this reason, they can be chosen to mimic any LOS imaging
system. For the purpose of NLOS 3D image reconstruction, one
option is to choose a transient camera sending a virtual phasor
field pulse

Pðxp; tÞ ¼ eiΩCtδðxp � xlsÞe�
ðt�t0Þ2
2σ2 ð5Þ

from the virtual light source position xls into the scene. The center
frequency ΩC has to be chosen according to the spatial relay wall
sampling. The smallest achievable wavelength should be larger
than twice the largest distance between neighboring points xp and
xc and larger than the temporal resolution of the imaging
hardware10. For example, given a spatial sampling of 1 cm, the
smallest possible modulation wavelength is larger than 2 cm. For
the following, we set t0 = 0. The illumination pulse as a function
of time needs to be converted into the frequency domain, so that
each corresponding frequency is then propagated separately by

the RSD in Eq. (4). The temporal Fourier transform of the
illumination phasor field yields

PFðxp;ΩÞ ¼F t Pðxp; tÞ
� �

¼ δðxp � xlsÞ 2πδðΩ�ΩCÞ �
f
σ
ffiffiffiffiffi
2π

p
e�

σ2Ω2
2

� �
:

ð6Þ
The result PFðxp;ΩÞ in the frequency domain is a Gaussian

centered around the central frequency ΩC as it is shown in Fig. 1.
Figuratively, the RSD propagates the light wave arriving at the
aperture (i.e., relay surface C) back into the scene, thereby
reconstructing it. Equivalently, one can think of it as a virtual
imaging system that forms the image acquired by a virtual sensor
behind the relay wall.

After processing all frequency components through space with
the RSD, the result at xv needs to be converted to the time domain
again by applying the inverse Fourier transform. The overall
reconstruction is therefore calculated by

Iðxv; tÞ ¼
Z þ1

�1
eiΩtRxv

PFðxp;ΩÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Illumination phasor field

�HF ðxp ! xc;ΩÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Phasor field at the camera aperture ðrelay surfaceCÞ

0
BBBBBB@

1
CCCCCCA

dΩ
2π

�������������

�������������

2

;

ð7Þ
where the integral over P has vanished as there is only one virtual
illumination point xls. Calculating the square is omitted in the
actual reconstruction implementation, as it only affects the scene
contrast.

Fast phasor field diffraction. The main goal of this paper is to
develop a fast 3D NLOS reconstruction method based on the RSD
propagator Rxv

ð�Þ in Eq. (7). Multiple convolutional RSD
methods have been introduced in the literature15–17 and form the
basis of our approach.

The RSD as defined in Eq. (4) can propagate the wave from an
arbitrary surface to any arbitrary point xv. For fast
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Fig. 1 Illustration of the proposed fast phasor field NLOS imaging method. a The NLOS imaging scenarios, including relay wall, occluder, and hidden
object. Measurements are performed on the relay wall, including illumination point xp and camera aperture xc. b The virtual illumination in the
reconstruction in time and frequency domain. d The entire reconstruction pipeline. The wave propagation model is described in the following. Overall, our
proposed method can be thought of as building a virtual lens as shown in c, which creates the corresponding virtual image of hidden objects from the
captured phasor field.
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implementation we constrain the operator to propagate the wave
between two parallel planes. This allows us to work with two
spatial dimensions. We introduce the scalar coordinates xc=
(xc, yc, 0) and xv= (xv, yv, zv) and rewrite the RSD in Eq. (4) as
follows:

PFðxv;ΩÞ ¼Rzv
ðPF ðxp;ΩÞ � HF ðxp ! xc;ΩÞÞ

¼Rzv
ðPF ðxc;ΩÞÞ

PF ðxv; yv; zv;ΩÞ ¼ Rzv
ðPF ðxc; yc; 0;ΩÞÞ

¼
Z Z þ1

�1
PFðxc; yc; 0;ΩÞ αðxv; yv; zvÞe

�iΩc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc�xvÞ2þðyc�yvÞ2þz2v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc � xvÞ2 þ ðyc � yvÞ2 þ z2v

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RSDdiffraction kernel

dxc dyc

¼
Z Z þ1

�1
PFðxc; yc; 0;ΩÞ � Gðxv � xc; yv � yc; zv;ΩÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2D convolution kernel

dxc dyc

¼ PFðxc; yc; 0;ΩÞ � Gðxc; yc; zv;ΩÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Spatial 2D convolution

;

ð8Þ

where the geometrical setup is illustrated in Fig. 2. Equation (8)
considers two parallel planes with spacing zv in a Cartesian
coordinate system. For this reason, the RSD notation changed from
Rxv

ð�Þ for the point xv to Rzv
ð�Þ to indicate that the propagation

holds for all points in the plane at distance zv from the relay wall.
For a single frequency component Ω, the relation between the
wavefront PFðxc; yc; 0;ΩÞ at the camera aperture plane and the
wavefront PFðxv; yv; zv;ΩÞ at the virtual image plane is a two-
dimensional spatial convolution with the 2D convolution kernel

defined by Gðxc; yc; zv;ΩÞ ¼
αðxv ;yv ;zvÞ�expð�iΩc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2cþy2cþz2v

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2cþy2cþz2v
p where the

factor α(xv, yv, zv) will be ignored during reconstruction. Note that
the RSD in Eq. (8) needs to be calculated for each individual
frequency component PFðxc; yc; 0;ΩÞ. Considering the virtual
pulse illumination in Eq. (5), the wavefront PFðxc; yc; 0;ΩÞ is a
broad-band signal; its spectrum is a Gaussian centered around ΩC

as shown in Eq. (6). For this reason, it is sufficient to consider the
frequency range Ω ∈ [ΩC−ΔΩ, ΩC+ΔΩ]. Although the
magnitude is not completely zero outside this interval, it is very
small and can be neglected. The chosen range ΔΩ depends on the
virtual illumination pulse bandwidth and thus on the pulse width
parameter σ. Thus, applying Eq. (8) for the frequencies
Ω ∈ [ΩC − ΔΩ, ΩC + ΔΩ] and subsequent inverse Fourier

transform with respect to time

Pðxv; yv; zv; tÞ ¼
Z ΩCþΔΩ

ΩC�ΔΩ
ejΩt � Rzv

PFðxc; yc; 0;ΩÞ	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Monochromaticwavefront at depth zv

dΩ
2π ð9Þ

is equivalent to sending the designed modulated virtual illumina-

tion pulse wavefront Pðxp; tÞ ¼ eiΩCte�
t2

2σ2 into the hidden scene,
capturing its reflection at the visible relay wall, and propagating it
back into the scene or imaging it onto a virtual imaging sensor
using a virtual lens. The relay wall functions as a virtual aperture.
The output Pðxv; yv; zv; tÞ in Eq. (9) depends on the time t, as each
reconstruction point is illuminated only for a short period of time.
Taking the absolute value of Pðxv; yv; zv; tÞ in Eq. (9) and squaring
it makes us arrive at a 4D reconstruction (cf. Eq. (7)). We can
understand this reconstruction as a movie of a virtual pulse
traveling through the hidden scene, as shown in Fig. 3. In this
figure, a patch shaped as a 4 is being illuminated by a spherical
wavefront coming from the illumination point on the relay surface.

The process of reconstructing a 4D model for achieving a 3D
spatial reconstruction is unnecessarily time-consuming. The 3D
reconstruction of the scene can be obtained from the movie by
freezing the time of arrival corresponding to the peak of the
illumination pulse for each voxel. Thus each voxel contains only
the direct (3rd) bounce signal from the hidden object. This can be
performed by calculating the spherical geometry as a function of
point source illumination position (xls, yls, 0) and replacing t at
each voxel (xv, yv, zv):

t :¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxv � xlsÞ2 þ ðyv � ylsÞ2 þ z2v

q
: ð10Þ

In this equation, we have used the scalar representation xls=
(xls, yls, 0) of the virtual light source position. Replacing t by the
appropriate spatial coordinates as described in this equation leads
to a 3D virtual camera that only sees the direct bounce from the
hidden object and removes the fourth dimension; the respective
voxels are reconstructed at exactly the time when the pulse
arrives. This leads to a more time-efficient reconstruction than
acquiring the full 4D wavefront.

However, there is one problem that needs to be taken care of.
While the RSD in Eq. (8) is calculated at planes parallel to the
aperture, the illumination pulse spreads spherically from the light
source. Theoretically, this means each point on the plane should
be reconstructed with a different time shift as given in Eq. (10)
which leads to an integral expression, i.e., the inverse Fourier

b

Output

Input

a
yv

PF (xV , yV , zV , �)

PF (xV , yV , zV , �)

PF (xC , yC , 0 , �)

PF (xC , yC , 0 , �)

PF (xV , yV , zV , �) = RZV (PF ( xC , yC , 0 , �)) 
PF (xV , yV , zV , �) =

(PF (xC , yC , 0 , �) * G ( xC , yC , zV , �)) 

yC

xC

xv

ZV

ZV

Fig. 2 Rayleigh Sommerfeld Diffraction (RSD) calculation. a Two parallel planes geometrical setup for the reconstruction. The input and output planes are
space with zv. b Side view for a.
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transform at the plane should be calculated with a different time
shift at each voxel. In order to circumvent this tedious process, it
is reasonable to split the plane into sections and within each
section use the same (artificially corrected) travel time. Since the
virtual illumination pulse has a finite temporal width, there can be
significant overlap between a RSD reconstruction plane and the
piece-wise pulse time shift. The spatial sectioning, i.e., the
assignment which spatial region is reconstructed with the same
time shift, is illustrated in Fig. 4.

Our objective thus is to reconstruct each voxel at depth z at a
time t when it is actually illuminated by the virtual pulse. We first
define the spatial pulse width D= c ⋅ σ∕0.15. In the next step, the
radial difference between any voxel on the reconstruction plane
and the maximum of the pulse tangential to the reconstruction is
calculated by

Eðxv; yv; zvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxv � xlsÞ2 þ ðyv � ylsÞ2 þ z2v

q
� zv: ð11Þ

The geometry is shown in Fig. 4, where only the 3D cross-
section at yv = 0 is displayed. The spatial sectioning is defined via
the functions

M1ðxv; yv; zvÞ ¼
1 0≤ Eðxv; yv; zvÞ≤ D

2

0 else

�
; B1 ¼ ~D;

M2ðxv; yv; zvÞ ¼
1 D

2 <Eðxv; yv; zvÞ≤ 3D
2

0 else

�
; B2 ¼ ~Dþ D;

..

.

MLðxv; yv; zvÞ ¼
1 ðL� 3

2ÞD<Eðxv; yv; zvÞ≤ ðL� 1
2ÞD

0 else

�
; BL ¼ ~Dþ ðL� 1ÞD;

ð12Þ
which also tell us which spatial regions have to use which distance
shift B1, …, BL. The virtual illumination pulse illuminates a
spherical shell of thickness D that moves outward with time. The
red and green shells in Fig. 4 illustrate the pulse positions at two
different time instances, spatially separated by D. Depending on
the distance between reconstruction voxel (xv, yv, zv) and the
pulse maxima, this voxel will get assigned the time of the closest
pulse maximum. Note that planes at a larger distance zv will have
larger central regions that are treated with the same time shift.
For example, a reconstruction plane far away from the relay wall
may lie completely inside the shell of a single pulse and is
therefore not split into sections. The described arrival time
correction therefore accounts for the difference between the z-
coordinate of a voxel and its distance to the virtual illumination
source that determines the time t when it is illuminated. Allowing

for a range D around the pulse means that not the maximum of
the Gaussian illumination but a point near the maximum with a
somewhat lower magnitude is used. The mismatch between
reconstruction planes and illumination spheres therefore only
results in differences in reconstruction brightness, but not in
reconstructed scene geometry.

Since D is usually on the order of 20–30 cm, most simple
scenes considered in this paper can be reconstructed using a
single spatial section (L= 1). Larger field of view examples such
as the Office Scene in the result section require two spatial
sections (L= 2). The reconstruction of a larger field of view
scenario using one spatial section will have a vignetting effect as if
this virtual imaging system had a poor imaging quality due to a
oversimplified lens design. This vignetting effect is shown in
Fig. 5: On the left of the figure, one distance shift B1 is used for
reconstructing both spatial regions M1 and M2 which is
equivalent to using one section. On the right, two different

Reconstruction plane

D

D

D

r

(xv, yv, xv)

E (xv, yv, zv)

r =  √(xv – xls)
2 + (yv – yls)

2 + zv

(xls, yls) zv

zv

Pulse center

Fig. 4 Spatial sectioning for determining the piece-wise time offset. As
the yellow section of the reconstruction plane is closer to the maximum of
the green pulse, it will be assigned the travel time of the green pulse. The
light blue parts are closer to the maximum of the red pulse and therefore
get assigned the travel time of the red pulse.
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Single plane 
at depth Z

Hidden volume

xV

zV

t1 t2 t3 t4

yV

xC

yC

Time

The 4th dimension, time: t 

Phasor field at the aperture Phasor field space–time reconstruction

a b

P (xV , yV , zV , t)

PF (xC , yC , 0 , �),

�

Fig. 3 Space-time wave propagation using RSD. a The phasor field collected at the aperture forms a spatial frequency cube. Given the output plane, by
using the RSD propagation model, we can recover the hidden wavefront at any time instance. b This space-time wave propagation method where one can
reveal a spherical wavefront that moves into the hidden scene. Even though (b) only shows reconstruction at a single depth plane, our proposed method
can be generalized into the three-dimensional volume as well, which leads to a four-dimensional reconstruction space-time volume.
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distance shift values B1 and B2 (see Eq. (12)) are used for M1 and
M2.

Equation (12) contains the constant offset parameter ~D. This is
zero for a perfectly calibrated system, such as a simulated scene,
but can be adjusted to a nonzero value to account for hardware
calibration in real-world experiments.

Then, the overall scene reconstruction (see Eqs. (2) and (9))
can be written as

Iðxv; tÞ ¼
Z ΩCþΔΩ

ΩC�ΔΩ

XL
l¼1

Mlðxv; yv; zvÞ � exp
 
i
Ω

c
ðzv þ BlÞ

!�����
�
 
PFðxc; yc; 0;ΩÞ � Gðxc; yc; zv;ΩÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2D convolution; implemented as 2D FFT

!
dΩ
2π

�������
2

:

ð13Þ
The functions Ml(xv, yv, zv) cut out spatial regions and tell us

where to use which distance shift Bl, l = 1, …, L; wherever
Ml(xv, yv, zv) is 1, the corresponding Bl is used.

Performing the NLOS reconstruction with the described RSD
operator has some other advantages apart from low time and
memory requirements, as shown in the results section (Section 3).
The RSD calculation is easily parallelizable, because the
reconstructions at different plane depths zv do not depend on
each other, and Eq. (13) can be applied to each plane separately.
This is in contrast to the LCT and the FK Migration methods,
which perform 3D Fourier transforms of the acquired confocal
data. For the RSD, when performing the reconstructions not in
parallel, but starting at the relay wall and subsequently proceeding
to larger depths, the memory requirement can be drastically
reduced. For deriving 3D images of the reconstructed scene, it is
sufficient to calculate the maximum of all reconstruction voxels
along zv and store its index. This is a sparse representation of the
full 3D data volume. When reconstructing by moving away from
the relay wall, only the current maxima and indices of the
respective zv voxel columns need to be stored, and not the full 3D
reconstruction results which would require gradually increasing
memory.

For all reconstructions, only a certain number of discrete
frequencies Ω in the interval [ΩC − ΔΩ, ΩC+ ΔΩ] is propagated.
It is important to point out how the number of Fourier

components that are used for reconstruction is defined. The
variable β determines the number of wavelengths λ that fit
into one pulse; D= βλ. The larger β, the smaller the width of
the frequency domain Gaussian. γ is the peak ratio, i.e., only the
frequency components with amplitude higher than γ are
propagated. The smaller ones are neglected because they hardly
contribute to the overall signal. Throughout the paper, we set γ to
0.01, meaning that all frequency components with magnitude
smaller than 1% of the maximum magnitude are ignored.

The discrete spacing Ωres of the considered frequency
components is given by the FFT frequency resolution:

Ωres ¼ 2π
f sampling

Nbins
; ð14Þ

where fsampling is the sampling frequency of the histograms (i.e., 1/
bin width) and Nbins the number of time bins.

The number of Fourier components depends on the choice of
the virtual illumination pulse. In large scenes, it would also
increase with scene depth which would increase computational
and memory complexity. To avoid this, large scenes would have
to be reconstructed in multiple depth sections. In this work, we
reconstruct scenes with depth up to 3 m representing the largest
complex scenes for which data exist. For these scenes, a depth
sectioning step is not necessary.

Fourier domain histogram (FDH) single photon capture.
According to Eq. (7), the virtual wave acquired at the virtual aper-
ture is calculated by PFðxc;ΩÞ ¼ PFðxp;ΩÞ � HF ðxp ! xc;ΩÞ.
This requires the Fourier domain representation of the impulse
response HF ðxp ! xc;ΩÞ from xp to xc. A new memory efficient
direct acquisition method for HF ðxp ! xc;ΩÞ is presented in the
following.

The SPAD detector uses time-correlated single photon
counting (TCSPC) to generate the transient responses H
(xp → xc, t). After the emission of a laser pulse, a SPAD pixel
receives one photon and an electronic signal is transmitted to the
TCPSC unit that encodes the time between the emission of the
laser pulse and the detection of an associated returning photon.
The arrival times of all photons during a measurement interval
are transferred to a computer and are arranged in a histogram to
obtain the transient scene response H(xp → xc, t) for a given xp

Scene A

L = 1 L = 2

Scene B

a b

Fig. 5 Larger field of view scenario with two versions of the office scene. Virtual lens vignetting effect without spatial sectioning (column a), with spatial
sectioning (column b). Voxels at a given depth z should be computed for a time t when they are actually illuminated by part of the virtual illumination pulse.
Using only one distance-time shift (L= 1 in Eq. (12) for all voxels results in large errors in voxel brightness that lead to a blurry appearance. Using two
different distance-time shifts (L= 2) in different voxel regions results in crisper images. This motivates the spatial sectioning method to mimic a perfect
virtual imaging system that is not limited to a small field of view.
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and xc. To obtain HF ðxp ! xp;ΩÞ we could collect and store
these TCSPC histograms and perform the Fourier transform on
it. A more memory efficient way is to build the frequency
spectrum directly from the timing data obtained from the
hardware. We call this new capturing method a FDH and its
creation process is shown in Fig. 6. It can be written as

HF ðxp ! xc;ΩÞ ¼
Z þ1

�1
Hðxp ! xc; tÞ � e�iΩt dt

¼
Z þ1

�1

XN
n¼1

δðt � TnÞ
 !

� e�iΩt dt

¼
XN
n¼1

e�iΩTn :

ð15Þ

The travel times Tn are discrete; the time resolution is
determined by the acquisition hardware (in the context of NLOS
imaging typically a few to tens of picoseconds). Equation (15)
means that the FDH HF ðxp ! xc;ΩÞ is acquired by multiplying
each of the N photon travel times Tn, n= 1, …, N, by a phase
term depending on the considered frequency Ω and adding the
result to the previous value for that frequency. As a consequence,
instead of a large number of time bins (on the order of
thousands), only one value for each Ω (typically dozens, as shown
in the results in Section 3) needs to be stored and processed.
Figure 6 illustrates the generation of the FDH. Similar to the time
domain histogram binning, this FDH performs binning for each
captured photon.

We want to remark that the travel times Tn in Eq. (15) are
measured from the respective illumination position on the relay
wall into the scene and back to the relay wall at the detector focus
position. The travel times from the laser setup to the illumination
on the relay wall and from the detector focus point on the relay
wall to the detector setup have been subtracted and are not part of
H. Alternatively, the total travel time from laser to detector can be
incorporated and the travel times from laser to wall and wall to
detector are combined into Δt. The final result from Eq. (15) is
then multiplied by eiΩΔt to correct for this constant time offset.

Phasor field NLOS camera for confocal measurements. The
RSD reconstruction method for NLOS data presented so far only
deals with the non-confocal case, which means that the illumina-
tion point xp and the camera point xc on the relay wall are dif-
ferent. However, a confocal dataset Hc(xp → xc, t) as used in LCT
and FK migration algorithms8,9 only contains data with xp= xc:

Hcðxp ! xc; tÞ ¼ Hðxp ! xc; tÞδðxp � xcÞ: ð16Þ
Such a dataset is not suitable for implementing the virtual

point light source described in Eq. (5). Instead, we can model an
illumination wavefront that is focused on xv:

Pðxp; tÞ ¼ eiΩðt�
1
cjxv�xp jÞe�

ðt�t0�1
cjxv�xp jÞ2

2σ2 : ð17Þ
Setting t0 to 0 and applying the Fourier transform leads to

PFðxp;ΩÞ ¼ 2πδðΩ�ΩCÞ�
f

ffiffiffiffiffi
2π

p
σe�

σ2Ω2
2

� �
e�iΩc jxv�xpj: ð18Þ

Inserting into Eq. (7) yields
Iðxv; tÞ ¼Z þ1

�1
eiΩtRxv

Z
P
ð2πÞ32σe�σ2ðΩ�ΩCÞ2

2 e�iΩc jxv�xpjδðxp � xcÞ �HF ðxp ! xc;ΩÞdxp
� �

dΩ
2π

����
����
2

¼
Z þ1

�1
eiΩtRxv

ð2πÞ32σe�σ2 ðΩ�ΩCÞ2
2 e�iΩc jxv�xc j �HF ðxc ! xc;ΩÞ

� �
dΩ
2π

����
����
2

¼
Z þ1

�1
eiΩt
Z
C
ð2πÞ32σe�σ2ðΩ�ΩCÞ2

2 e�iΩc jxv�xcj � HF ðxc ! xc;ΩÞe�ikjxv�xcjdxc
dΩ
2π

����
����
2

¼
Z þ1

�1
eiΩt
Z
C
ð2πÞ32σe�σ2ðΩ�ΩCÞ2

2 �HF ðxc ! xc;ΩÞe�2ikjxv�xcjdxc
dΩ
2π

����
����
2

:

ð19Þ
The reconstruction thus uses an RSD operator with an

additional factor of two doubling all distances. We use our fast
RSD operator to evaluate this RSD integral.

Both the computational implementation steps and the
pseudocode of the presented RSD NLOS reconstruction algo-
rithm are available in Supplementary Note 3.

Acquisition hardware. Most of our results in Figs. 7 and 8 are
obtained on a publically available dataset10. In addition we pro-
vide three additional datasets (Fig. 8 rows 1, 2, and 4). The
experimental setup used to create all those datasets consists of a
gated single-photon avalanche diode (SPAD) with a Time-

Illumination
point xP 

Photon 
event

TN

+e– i�2T1

+e– i�1T1

+e– i�2T2

+e– i�1T2

HF (xC, �2)

HF (xC, �1)

�

T5

T4

T3

T2

T1 t

Detector
points xC

Fig. 6 Illustration of Fourier Domain Histogram. Instead of binning the photon event in time, we propose doing the binning in the frequency domain. This
allows us directly to sample the phasor field wavefront HF ðxc;ΩÞ used for reconstructions. Ω stands for the frequency range for the phasor field wavefront.
The equation for the Fourier Domain Histogram can be applied during measurements, which is a summation of complex phasors (or a separated real and
imaginary part).
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Correlated Single Photon Counter (TCSPC, PicoQuant Hydra-
Harp) with a time resolution of about 30 ps and a dead time of
100 ns to measure the time response as well as a pico-second laser
(Onefive Katana HP amplified diode laser with 1W at 532 nm,
and a pulse width of about 35 ps used at a repetition rate of 10
MHz) as light source. The entire system’s temporal resolution is
around 70 ps. We perform several new non-confocal experiments
(20 ms exposure time Office Scene in Supplementary Table 1 and
two scenes showing patches 4 and 44i, Supplementary Table 2)
and use existing experimental non-confocal10 and confocal9

datasets to compare our method against the literature. The
experiments are performed using the non-confocal acquisition
scheme. The detection aperture on the relay wall is around 1.8 m
by 1.3 m with 1 cm spacing between each captured time response.
This yields 181 by 131 captured time responses for each scene.
Scene descriptions are provided in Supplementary Table 3
including scene depth complexity and target materials.

Reconstructions. Reconstructions with maximum intensity pro-
jection along the depth direction are shown in Figs. 7 and 8.

Results with three-dimensional volume rendering are shown in
Supplementary Fig. 2. For the non-confocal dataset, we consider
three solvers: our proposed fast RSD based solver, the back-
projection solver presented previously10 (denoted by Direct
Integration) and two approximate fast methods: LCT and FK
Migration, referred to as approx LCT and approx FK. Both of
them cannot operate on the non-confocal data used here, how-
ever, Lindell et al.9 describe a way to turn a non-confocal dataset
into an approximately confocal dataset that allows application of
non-confocal methods. We implemented this approximate
method based on the description and show the approximate
reconstructions in the last two columns of Figs. 7 and 8. We refer
to this approximation as midpoint approximation. The Direct
Integration solver is slow because of the discrete integration step,
but we use it as an accurate theoretical calculation reference for
our method. Both approx LCT and approx FK yield blurry results
compared to both the proposed RSD and Direct Integration when
applied to the single plane targets shown in Fig. 8. Beside the
simple plane scenes, we consider a more complex Office Scene
with multiple targets and targets outside the scanning aperture

Proposed 
1 section

Proposed 
2 sections

Direct integration Approx. LCT Approx. FK
Ground truth

image

Fig. 7 Methods comparison on Office Scene: Exposure time per each pixel measurement from first row to last row is 1 ms, 5 ms, 10 ms, 20 ms,
1000 ms (note that the 1000 ms Office Scene dataset was acquired with slight differences in the object location). The total acquisition time from first
row to last row is 23 s, 117 s, 4 min, 8 min, 390min. The width of the reconstruction cube size in each dimension is 3 m as given along with other
reconstruction parameters in Supplementary Table 4. Each column shows the reconstruction with different methods. The first two columns stand for our
proposed RSD based solver with one or two spatial sections. The circle in the first column is actually the size of the farthest reconstruction plane which is
the one with the largest region that is calculated with the same distance shift B1. All planes in front of this one have a smaller reconstruction area; due to the
maximum operation along the depth dimension, the circle size is defined by the largest one in the back. The third column is the Direct Integration (back-
projection solver) as a comparison for the first two columns. The last two columns refer to the approximation method9 which approximate non-confocal by
confocal data and solve it through the scanning-based solver (LCT: forth column, FK-migration: fifth column). For the last two columns, each small image
shows the results from midpoint approximation9 in order to approximate confocal data from non-confocal measurements. The respective larger image
results from zero-padding applied to the input data to show the same reconstruction volume as the first three columns.
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with a large field of view. The results are shown in Fig. 7. None of
the approximate solutions achieves the imaging quality of the
phasor field solution (first three columns in Fig. 7). There are two
properties of the approximate solutions: The LCT and FK
Migration methods inherently can only recover objects within the
aperture, and, to make things worse, the approximation made by
converting non-confocal into confocal datasets results in an even
smaller aperture. To recover a larger hidden volume with a larger
field-of-view of the virtual image, we perform a zero padding step
at the aperture to make it larger. Even in this case, none of the
approximate solutions provides sharper and well-focused images
than the RSD-based reconstruction algorithms.

One thing we would like to point out about Fig. 7 for our
proposed method is that as the exposure decreases down to 1 ms,
the calculation error is highlighted as a almost constant
background. We can reduce this artifact in the short exposure
scenario by increasing the number of used Fourier components to
mimic a shorter Gaussian envelope for the illumination pulse.
This effect of choosing a different number of Fourier components

for the final results as well as the corresponding execution time is
also shown in Fig. 9 on the 20 ms Office Scene.

For both simple scene and complex Office Scene results, our
proposed methods are much faster with reconstructions in
seconds. The exact run times of the un-optimized solvers
discussed above are given in Supplementary Tables 1 and 2. All
computational parameters (number of Fourier components for
the new RSD method, reconstruction volume size, voxel grid
resolution etc.) used for creating the reconstruction results in
Figs. 7 and 8 are provided in Supplementary Table 4.

Discussion
To the best of our knowledge, our proposed method is the first to
solve the general non-confocal NLOS imaging scenario with a
similar time requirement and computational complexity as the
fastest existing algorithms. In contrast to them, however, our
method has much lower memory requirements. This allows us to
reconstruct larger scenes and will enable implementation on

Direct integration Approx. LCT Approx. FK
Proposed 
1 section

Ground truth
image

Fig. 8 Methods comparison on simple targets: Exposure time for these scenes are all 1000 ms per each pixel measurement. The total acquisition time
for each target is 390min. The width of the reconstruction cube size in each dimension is about 2 m as given along with other reconstruction parameters in
Supplementary Table 4. Each row shows a different simple target, each column the reconstruction from different methods. The first column stands for our
proposed RSD based solver with one spatial section (inside white circle) corresponding to Eq. (13). The second column is from Direct Integration (back-
projection solver) for comparison with the first column. The last two columns show the approximate method9 which approximate non-confocal as a
confocal datasets and reconstruct through confocal solvers (LCT: forth column, FK-migration: fifth column). For the last two columns, each small image
shows the results from midpoint approximation9 in order to approximate confocal data from non-confocal measurements. The respective larger image
results from zero-padding applied to the input data to show the same reconstruction volume as the first three columns.
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embedded systems and GPU units where memory is limited. We
believe our method will enable real time NLOS imaging and
reconstruction of large room scale scenes at full resolution. In this
section, we discuss some related NLOS imaging works which
currently fail to support real time NLOS and the computational
complexity of our proposed method.

We discussed some related works which currently cannot
support real time NLOS imaging scenarios. Such reconstruction
methods include a fast GPU backprojection solver18. This method
solves the back-projection method faster than CPU imple-
mentations, but is still too slow to operate in real time, partially to
high memory bandwidth requirements. The current imple-
mentation also does not support negative numbers and double
precision, both of which are necessary for more advanced phasor
field backprojection applications. First returning photon and
Fermat path theory can recover surface geometry19,20 of simple
scenes with single objects. Improved iterative back-projection
solutions using a new rendering model and frequency
analysis21,22 can create particularly high quality surface recon-
structions. Full color NLOS imaging with single pixel photo-
multiplier tube combined with a mask23,24 has also been
demonstrated. Further work includes real-time transient imaging
for amplitude modulated continuous wave lidar applications25,
analysis of missing features based on time-resolved NLOS mea-
surements26, convolutional approximations to incorporate priors
into FBP27, occlusion-aided NLOS imaging using SPADs28,29,
Bayesian statistics reconstruction to account for random errors30,
temporal focusing for a hidden volume of interest by altering the
time delay profile of the hardware illumination31, and a database
for NLOS imaging problems with different acquisition schemes32.
Reconstruction times for all these methods remain in the minutes
to hours range even for small scenes of less than a meter in
diameter. To the best of our knowledge, none of the works above
have been applied successfully to larger and more complex scenes
with the exception of the back-projection based methods. Ahn
et al.27 can improve the reconstruction quality after the back-
projection via an iterative convolution step. Since the method

involved a back-projection as it’s first step it shares the speed and
complexity disadvantages of the back-projection based methods
mentioned above. In addition, the resolution of an NLOS
reconstruction is limited by the time resolution of the detection
system8. For a SPAD, the time resolution is 30 ps at best leading
to a theoretically achievable grid resolution of 1 cm in the hidden
scene. Methods that can process scenes of moderate and high
volume and complexity include FK Migration, the LCT, and
Phasor-Field virtual waves which are discussed in this paper.

There are also several contributions showing that it is possible
to do NLOS imaging without picosecond scale time resolution or
with non-optical signals: Inexpensive nanosecond time of flight
sensors can be used to recover the hidden scene33, tracking can be
performed using intensity based NLOS imaging 34, occlusions are
harnessed to recover images around a corner using regular
cameras35–37, even describing the occlusion-aided method as a
blind deconvolution problem without knowledge of the occlu-
der38. Other approaches decode the hidden object from regular
camera images by using a deep neural network trained with
simulated data only39, or use acoustic40 or long-wave infrared41

signals to image around the corner. While promising for low cost
applications, none of these methods achieve reconstruction qua-
lities comparable to the picosecond time-resolved NLOS imaging
approaches.

Our proposed method is computationally bounded by the FFT
process. Let N denote the number of pixels along each of the three
spatial dimensions of the reconstruction space. Calculating the
RSD reconstruction requires a 2D FFT at each of the N depth
planes for each Fourier component. The computational com-
plexity of the presented algorithm is then given by

OðN3logNÞ ð20Þ
because the number of Fourier components is just a constant by
performing reconstructions in multiple depth sections which is
shown in Section “Fast Phasor Field Diffraction”. LCT and FK
have the same complexity as described in the respective papers8,9;
all other methods applied to complex scenes published so far have

A:
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B:

2�:Length

� = 5

� = {5, 7, 9,
11, 13, 15, 17}

� = 0.6

∝ 1/�

� = {0.05, 0.1, 0.2,
0.4, 0.6, 0.8, 0.9}

�:Peak ratio
1 – �

�Sampling
rate

Illumination
function

1

a

b

Fig. 9 Virtual illumination function design space and reconstruction speed. a The virtual illumination function design space and b the corresponding
design parameters with reconstructions and their run times. As shown in a, considering the peak ratio γ and the temporal envelope length D= β ⋅ λ
(characterized by how many modulation cycles fit inside the envelope) for the illumination function, we plot each corresponding reconstruction and
processing time for the Office Scene dataset with 20ms exposure in b. The peak ratio γ coefficient is used for thresholding in the Fourier domain. Overall,
the more Fourier components used during the reconstruction, the better the noise reduction and the longer the calculation time.
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higher complexity. The memory complexity of our algorithm is
defined by the need to store the FDH (details provided later in the
Methods section) and the resulting 2D image. For the scenes
described here this is actually O(N2). In larger scenes we would
need to store multiple FDHs for multiple depth sections in order
to maintain low computational complexity. In this case memory
complexity is O(N3).

The computational complexity for our proposed solution, LCT
and FK are the same from the theoretical point of view. In
practice, due to the need for oversampling and interpolation the
actual memory requirement for each method is several hundred
times higher than ours in their current form. Unfortunately there
are many different options with different trade-offs and it is not
completely clear which is used inside the Matlab interpolation
functions used in the current algorithms. Existing papers on FK
Migration typically discuss their particular choices and their
impact on memory complexity and reconstruction quality in
considerable detail42,43. To get a better understanding of the
source of the memory requirements, let us consider the require-
ments for our method and FK Migration as an example.

Consider a scene with the size of the Office Scene from 0 to 2.5
m away from the relay wall that is used in this paper. The tem-
poral measurements are collected from 150 by 150 spatial sam-
pling points. For our proposed method, storing the FDH requires
150*150*139*4 (139 is the number of used frequency compo-
nents for the similarly sized Office Scene as shown in Supple-
mentary Table 4) bytes which is around 12.51 MB (or 25MB to
store both real and imaginary parts). Algorithms exist that can
compute the FFT without requiring extra working memory. Our
reconstructions are computed slice by slice and only the max-
imum is kept. The only additional memory required is to store
the 2D result. If we would like to create a 3D visualization, we
have to store the index of the maximum. This requires
150*150*4*2= 180 kB of additional memory. The total memory
required is thus 50.18MB.

FK Migration needs the histogram in the time domain. Sam-
pling resolution in the histogram and resolution in the Fourier
domain are linked through the FFT and cannot be chosen freely.
To cover this scene setup with 32 ps temporal sampling rate, at
least 512 temporal sampling bins are required for each captured
time response to cover the light path round trip in 5 m. Assume
each temporal bin is in single-precision using 4 bytes. For LCT/
FK, one needs to store 150*150*512*4 bytes which is around 46
MB. This is already significantly more than the memory
requirement of our entire algorithm. We assume the 3D FFT can
be performed without additional working memory. For FK and
LCT, two extra steps are required apart from the 3D FFT. The
first extra step is to oversample the DFT by zero padding the data
before the Fourier transform. This provides higher resolution in
the Fourier domain and makes the following interpolation step
easier. The current implementation increases the size of the data
by 2 in each dimension by zero padding resulting in a memory
need of 0.368 GB (23*46MB). This 3D dataset structure is
complex-valued and needs an additional second channel to store
real and imaginary part. The second extra step is to perform the
interpolation to compute the points in Fourier space that are
needed as input for the inverse 3D FFT. As is stated directly in the
literature, this interpolation step is the complexity bottleneck for
FK Migration42. The current FK Migration code uses the Matlab
function interp9. That uses two neighbor points along each
dimension to perform a linear 3D interpolation. Without prior
assumptions about the structure of the grids, search in nearest
neighbors would have a computational complexity for O(N6)
which is impractical. This can be improved by pre-computing a
map of nearest neighbors using a faster algorithm like a k-d tree.

To store the six nearest neighbors of each data point requires
2.21 GB (6*23*46MB). Then the linear interpolation if imple-
mented in this way would require 2.21 GB of working memory in
addition to the size of the data itself. While we can’t be sure that
this is what Matlab is doing, the memory load is consistent with
our measurements. The memory profile while running both
methods on our captured dataset is shown in Supplementary
Fig. 5 and its order of magnitude coincides with the estimate.
After inverse 3D Fourier transform the final result is a sparse
three-dimensional complex matrix of size 150*150*300 or larger.
The current method reconstructs a higher resolution matrix as a
side effect of the oversampling. This is not actually needed and
doesn’t significantly affect the result. We thus have an additional
memory need of 150*150*300*2*4= 54MB. Note again that just
the result takes up more memory than our entire computation.
This results in a total peak memory use of 2.21 GB+ 2*0.368
GB= 2.946 GB. There are several ways that can likely reduce this
memory load.

Knowledge of the relative layouts of the two grids may reduce
or eliminate the requirement for working memory in the
interpolation. One can also fine tune the trade-off between
Fourier domain oversampling, more sophisticated interpolation
methods, and reconstruction quality. It might also be possible
to perform further down-sampling along the temporal dimen-
sion and use single instead of double precision variables to
require less memory. These approaches are interesting topics
for future research and can draw from considerable prior work
on this problem in related FK Migration application areas. At
present, however, the method takes several hundred times more
memory than our proposed method. The LCT includes a
similar re-sampling step that creates large memory require-
ments. Re-sampling and interpolation problems in this domain
are studied in the literature covering planar and spherical
inverse radon transforms.

Methods
Discrete phasor field diffraction model and implementation. In this section, the
computational implementation for the model derived in the main paper is
described. We will explain the discrete RSD model and implementation here; the
respective pseudocode is provided in Supplementary Note 3. We introduce the
RSD discrete model and link it to physical measurement parameters (scanning
aperture size, sensor grid spacing) and then provide the corresponding algorithmic
implementation procedure as a guideline.

We provide a description for the FFT based RSD solver implementation for
Rzv

ð�Þ in Eq. (8). For an actual algorithm implementation, it is necessary to
discretize the continuous model. Considering discrete parameters such as a finite
size square aperture sampling both the camera aperture and reconstruction planes
C and V at uniform distances δin and δout, the wavefront is a matrix of size N ×N.
We use the symbols [nxv, nyv] and [nxc, nyc] to represent the discrete indices. We
consider δin= δout= δ spatial sampling in both input and output domains where
δ ¼ λ

2 is the maximum sampling distance44. The variable Z denotes the maximum
value of zv. For brevity, all following equations ignore the frequency variable Ω of
the input PF ½nxc; nyc� and output PF ½nxv ; nyv � wavefronts. Overall, with these
discrete parameters, the RSD operator in Eq. (8) can be written as a standard
discrete convolution as follows:

PF ½nxv ; nyv � ¼
XXN=2�1 N=2�1

nxc ;nyc¼�N=2

PF ½nxc; nyc� � G½nxv � nxc; nyv � nyc; zv �

G½nxc; nyc� ¼ α � δ2 �
exp½�i Ωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx2cδ

2 þ ny2cδ
2 þ z2v

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nx2cδ
2 þ ny2cδ

2 þ z2v

q :

ð21Þ

Thus, the discrete model in Eq. (21) can be implemented as two-dimensional
Fast Fourier Transform (2D FFT) algorithm. Notice that the parameter α(xv, yv, zv)
is ignored for the reconstruction in Eq. (21). Then the algorithmic procedure is:

Goal: Given input wavefront PF ½nxc; nyc�, spacing between the input and
output parallel plane zv (depth), angular frequency Ω and associated wavelength λ,
calculate the output wavefront PF ½nxv ; nyv � by

PF ½nxv ; nyv ; ẑ� ¼ Rzv
PF ½nxc; nyc; 0�
� 


: ð22Þ
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Step 1: Discretize depth

ẑ ¼ Z
δ

Step 2: Zero padding according to the desired reconstruction volume size

N 0 ¼ Hidden volume side length

pad ¼ N 0�N
2

PF ½nxc; nyc� ¼ padarray PF ½nxc; nyc�; ½pad; pad�; 0
	 


Update discrete size : N ¼ N 0

Step 3: Variable substitution

η2 ¼ λZ

Nδ2
¼ λẑ

Nδ
Step 4: Compute convolution kernel

G½nxc; nyc; ẑ� ¼
exp �i2π � ẑ2=ðη2NÞ � r� 


r

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx2c=ẑ

2 þ ny2c=ẑ
2 þ 1

q
Step 5: Perform the inverse diffraction

PF ½nxv ; nyv; ẑ� ¼ IFFT FFT PF ½nxc; nyc; 0�
� � � FFT G½nxc; nyc; ẑ�

� �� �

Here are some short explanations for the computational algorithm above:

1. In Step 2, to reconstruct a volume with maximum dimensions xv and yv
larger than the maximum aperture dimensions xc and yc (or xp and yp), one
needs to increase the spatial dimension (parameter N 0) by zero padding the
input wavefront.

2. Step 5 is based on the standard FFT and IFFT algorithm. The symbol •
stands for the point-wise multiplication operation. Step 5 can be done in
space as well. However, for two matrices of comparable size, Fourier domain
multiplication usually runs faster than spatial convolution.

3. The inverse focusing step realized by the RSD creates a virtual image on the
other side of the relay wall, so the sign of the depth parameter zv should be
chosen negative for the considered reconstruction volume.

Memory usage. We are also interested in the memory usage of the fast algo-
rithms (proposed, approx LCT, approx FK). We acquire the memory usage
during reconstructions for the Office Scene in Fig. 7. The memory profile during
execution is shown in Supplementary Fig. 5. Our memory testing as well as all
our code are running on an Intel Core i7-7700 CPU, 3.6 GHz x 8 with 32 GB
memory using Matlab. During testing, the base memory usage for non-GUI
Matlab is around 750 MB. Independent of the reconstruction quality, approx
LCT and approx FK need much more memory than our proposed method.
Neglecting the memory of the operating system etc., our method would require
about 5 MB of memory when implemented most efficiently. A more detailed
discussion regarding to the memory usage can be found later in the Discussion
section.

Confocal and rendered data. As a confocal scanning scenario, we use the open
source experimental dataset9. Our proposed reconstruction method requires
similar time and lower memory usage compared to the LCT8 and FK9 methods.
The reconstruction results of confocal datasets are shown in Supplementary Figs. 3
and 4. In terms of the difference between non-confocal (SPAD array) and confocal
(Single SPAD with scanning) capture, we provide a short discussion in Supple-
mentary Note 4.

Reconstructions using a rendered dataset with known ground truth are shown
in Supplementary Fig. 1. Our proposed method reconstructs an image of the
hidden scene that resembles the image that would be captured with a camera
located at the relay wall. In our reconstructions, we recover phasor field irradiance
for the hidden object. It is expected that the reconstruction shows spatial
distortions similar to the ones seen by a real camera, as it is shown in
Supplementary Fig. 1. If an exact depth measurement is desired, these biases would
have to be calibrated. This is an interesting subject for future work.

Data availability
The data supporting the findings of this study are available (downloaded) at: figshare
repository https://doi.org/10.6084/m9.figshare.8084987, Computational Optics Group
https://biostat.wisc.edu/~compoptics/phasornlos20/fastnlos.html and Standard
Computational Imaging Lab http://www.computationalimaging.org/publications/nlos-fk/.
The source data underlying Supplementary Fig. 5 are provided as a Source Data file.

Code availability
The code used in this work is included in this published article and its supplementary
information files.
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