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Abstract
Mesenchymal stem cells (MSCs) have attracted considerable attention for their
activity in the treatment of refractory visual disorders. Since MSCs were found to
possess the beneficial effects by secreting paracrine factors rather than direct
differentiation, MSC-derived extracellular vesicles (EVs) were widely studied in
various disease models. MSCs generate abundant EVs, which act as important
mediators by exchanging protein and genetic information between MSCs and
target cells. It has been confirmed that MSC-derived EVs possess unique anti-
inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and
immunomodulatory properties, similar to their parent cells. Upon intravitreal
injection, MSC-derived EVs rapidly diffuse through the retina to alleviate retinal
injury or inflammation. Due to possible risks associated with MSC
transplantation, such as vitreous opacity and pathological proliferation, EVs
appear to be a better choice for intravitreal injection. Small size EVs can pass
through biological barriers easily and their contents can be modified genetically
for optimal therapeutic effect. Hence, currently, they are also explored for the
possibility of serving as drug delivery vehicles. In the current review, we describe
the characteristics of MSC-derived EVs briefly, comprehensively summarize their
biological functions in ocular diseases, and discuss their potential applications in
clinical settings.
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Core tip: The therapeutic potential of Mesenchymal stem cell (MSC)-derived
extracellular vesicles (EVs) has been widely studied in various diseases. In the current
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review, we summarize all the studies about the use of MSC-derived EVs in different
ocular disorders, such as corneal injury, glaucoma, uveitis and retinal diseases. We also
discuss the history and properties of MSC-derived EVs, the advantages of their use in
treating eye diseases and their drug delivery potential. This review also provides future
directions for enhancing the therapeutic effect of MSC-derived EVs in treating ocular
diseases.
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INTRODUCTION
Visual impairment and blindness are global issues, leading to a significant financial
and medical burden. The number of visually impaired people in 2017 was estimated
to be  285  million worldwide[1].  The leading causes  of  moderate  or  severe  vision
impairment among the global population in 2015 were uncorrected refractive error,
cataract,  age-related macular  degeneration,  glaucoma,  and diabetic  retinopathy,
which will not change until 2020. Among them, vision loss caused by refractive error
and  cataract  is  avoidable.  However,  vision  loss  caused  by  age-related  macular
degeneration,  glaucoma, and diabetic  retinopathy is  sometimes preventable,  but
incurable and irreversible[2].  The patient’s  quality of life is  affected considerably,
imposing a serious burden on their families. At present, few effective methods are
available for the treatment of retinal and neural damage caused by various ocular
diseases. Hence, alternative solutions, such as regenerative cell-based therapy, are
being explored[3-5].

MSCs can produce immunosuppressive, anti-inflammatory, and trophic factors,
and are explored widely as therapeutic agents for regenerative cell-based therapy of
ocular  diseases[6].  Although MSC transplantation has shown beneficial  effects  in
treating many refractory  diseases,  ethical  and safety  concerns  after  intravenous
injection on undesired differentiation and their ability to promote tumor growth are
still a matter of debate, while intravitreal injection could lead to severe vision loss due
to proliferative vitreoretinopathy (PVR)[7,8]. Since the therapeutic effects of MSCs can
be mediated primarily by the paracrine signaling of EVs[9], MSC-derived EVs, either as
a  therapeutic  agent  or  as  a  drug  delivery  system,  are  explored  widely  for  the
treatment of ocular disorders[10]. The majority of live cells secrete EVs[11]. However,
MSC is the only human cell type with a scalable ability for mass production of EVs[12].
In this review, we summarize recent studies on the role of MSC-derived sEVs in the
treatment of eye diseases and discuss the possibility of future clinical application.

EVs were used to be referred to as  exosomes or  microvesicles  (MVs)  in many
studies. In 2018, the International Society for Extracellular Vesicles published minimal
information for studies of EVs (MISEV2018), in which the authors were urged to use
operational terms for EV subtypes based on their size (“small EVs” (sEVs) [< 100 nm
or < 200 nm] and “medium/large EVs” (m/lEVs) [> 200 nm]), density (low, middle,
high,  with each range defined)  or  biochemical  composition (CD63+/CD81+-  EVs,
annexin A5-stained EVs, etc.)  in place of terms such as exosomes and MVs[13].  All
studies that described the effect of MSC-EVs on ocular disorders were using the term
of exosomes. Based on the size of the EVs mentioned in these studies, we used sEVs
instead of exosomes is this review.

Characteristics of MSC-derived sEVs
MSCs are a population of non-hematopoietic stem cells with self-renewal ability. In
addition to fetal tissues, MSCs can also be isolated from adipose tissue, umbilical cord
blood, peripheral blood, skeletal muscle, liver, gingival and dental tissue, skin, breast
milk, cartilage, and corneal limbal stroma of the eye[14]. MSCs have the potential to
differentiate into mesenchymal or non-mesenchymal cell lineages, such as osteoblasts,
chondrocytes, and adipocytes[15]. MSCs possess the ability to migrate to the injury sites
to promote wound healing and tissue regeneration and inhibit the immune response
by modulating the proliferation and function of innate and acquired immune cells.
The beneficial effect of MSCs can be attributed to sEVs, soluble factor secretion, and
membrane protein CD73[16-18].
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MSC-derived sEVs have a narrow diameter of < 200 nm and were supposed to be
mostly exosomes in earlier studies with a major peak particle size of 65-75 nm[19]. The
exosomes are composed of lipid bilayer membrane and cargo of proteins, nucleic
acids  (mRNA,  miRNAs,  DNA,  and  long  noncoding  RNAs),  and  raft-associated
lipids[20]. Their biogenesis has two steps; the first step is the inward budding of late
endosomes, and the second step involves the production of multivesicular body and
extracellular release[21]. After being secreted into the extracellular space, the exosomes
enter various biological fluids and can travel to remote organs while protecting the
inside cargo from decomposing.  Due to their  small  size,  they can easily traverse
through  different  biological  barriers,  and  communicate  with  recipient  cells  by
releasing and transporting cargos.

The contents released from sEVs,  mostly being exosomes,  derived from MSCs
originating from different  tissues  are  not  identical  and influence  their  potential
bioactivity. For example, CD9, CD81, CD44, and CD90 are expressed commonly on
the membrane of all MSC-derived sEVs. However, bone marrow MSC-derived sEVs
express CD71 and CD166, human umbilical cord MSC-derived sEVs express CK8 and
HLA-II, while HLA-I and HLA-ABC are present on the membrane of adipose tissue
MSC-derived sEVs[22]. Hence, they exhibit differential effects on the same disease or
cell model. For example, MSC-derived sEVs from the bone marrow and umbilical
cord decreased cell proliferation and suppressed tumor growth, whereas adipose
tissue MSC-derived sEVs enhanced tumor cell proliferation[23]. The sEVs content also
varies based on the microenvironment to which MSCs are exposed to[24]. Over 4000
gene products, miRNAs, and nearly 2000 proteins have been detected and identified
in the MSC-derived sEV cargo[25,26].

The  role  of  MSC-derived  sEVs  was  explored  initially  in  a  mouse  model  of
myocardial ischemia/reperfusion injury[27]. In kidney injury models, MSC-derived
sEVs showed improvement in renal function through the transport of miRNA[28]. In
animal  neurodegeneration  disease  models,  MSC-derived  sEVs  promoted
neurogenesis  and  angiogenesis,  reduced  neuroinflammation,  and  facilitated
functional recovery (increasing memory improvement and spatial learning)[29]. MSC-
derived sEVs were also effective in treating brain injury through suppression of early
inflammatory responses or shift of microglial M1/M2 polarization[30,31]. In liver fibrosis
models,  MSC-derived  sEVs  protected  hepatocytes  by  inhibiting  epithelial-to-
mesenchymal transition[32]. MSC-derived sEVs also showed beneficial effects in the
treatment of many other disease models, such as graft-versus-host disease[33], type 2
diabetes mellitus[34], tumors[35], and cutaneous wounds[36].

APPLICATION OF MSC-DERIVED SEVS IN OCULAR
DISEASES

Corneal diseases
The corneal epithelium covers the outermost part of the cornea, and its integrity forms
the foundation of normal corneal function. Trauma, infection, and physical abrasion
can cause persistent epithelial defects, a leading cause of vision loss in different ocular
surface  diseases.  While  corneal  disease  treatment  and protection have achieved
significant progress, wound healing after severe corneal disease or injury remains
challenging[37]. In recent years, MSCs were shown to aid corneal surface healing[38].
Samaeekia et al[39] evaluated the effect of MSC-derived sEVs on corneal wound healing
and  showed  that  human  corneal  MSC-derived  sEVs  significantly  increased  the
proliferation of human corneal epithelial cells in vitro, and accelerated corneal wound
closure in a murine epithelial mechanical injury model(Table 1).

Corneal stroma accounts for 90% of the corneal thickness and is important for the
maintenance  of  corneal  transparency.  Severe  corneal  diseases  affect  the  corneal
stroma, causing a corneal scar and a significant decline in vision[40]. Currently, the
conventional treatment modality is keratoplasty, and the disadvantages, especially
immunological rejection, are challenging to avoid or overcome. MSC-based therapy is
a promising method in prompting corneal stroma healing, which has been tested in
several studies[41,42]. Recent reports showed that MSCs exert their therapeutic effect by
secreting sEVs[43]. Shen et al[44] reported that the co-culture of corneal stromal cells
(CSCs) with MSCs resulted in enhanced viability and proliferative ability along with
increased plasticity. Treatment of CSCs with MSC-derived sEVs caused changes in the
matrix metalloproteinases and collagen levels of CSCs and promoted extracellular
matrix (ECM) synthesis and CSC proliferation. The protective effect might be exerted
through promoting CSC transformation into fibroblasts or myofibroblasts. The ECM-
promoting activity of MSC-derived sEVs was reported to be similar to that of MSCs,
thus highlighting the potential clinical use of MSC-derived sEVs for the treatment of
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Table 1  Effects of mesenchymal stem cell derived extracellular vesicles in ocular disorders

Ref. Origin Delivery way Biological function

Yu et al[74], 2016 Human umbilical cord derived MSCs Intravitreal injection Ameliorate retinal laser injury

Mead et al[64], 2017 Human bone marrow derived MSCs Intravitreal injection Promote RGC survival in optic nerve
crush model

Kuroda et al[58], 2017 Human bone marrow derived MSCs Intravenous injection Prevent EAU development

Moisseiev et al[77], 2017 Human bone marrow derived MSCs Intravitreal injection Decrease the severity of retinal
ischemia

Bai et al[57], 2017 Human umbilical cord derived MSCs Periocular injection Inhibit inflammatory cell migration
in EAU

Shen et al[44], 2018 Rabbit adipose derived MSCs In vitro Contribute to the growth and
plasticity of corneal stromal cells

Samaeekia et al[39], 2018 Human corneal MSCs Topical application Accelerate corneal epithelial wound
healing

Mead et al[67], 2018 Human bone marrow derived MSCs Intravitreal injection Promote neuroprotection in
glaucoma model

Safwat et al[72], 2018 Rabbit adipose derived MSCs Intravenous, intraocular or
subconjunctival injection

Attenuate retina degeneration in
diabetic retinopathy

Zhang et al[71], 2018 Human umbilical cord derived MSCs Intravitreal injection Ameliorate hyperglycemia-induced
retinal inflammation

Mathew et al[76], 2019 Human bone marrow derived MSCs Intravitreal injection Protect retinal cells from cell death in
retinal ischemia

MSCs: Mesenchymal stem cells; EVs: Extracellular vesicles.

corneal stromal damage[44].
Corneal endothelium, regulating stromal hydration level and maintaining corneal

deturgescence, covers the posterior corneal surface[45]. The loss of endothelial cells will
lead  to  stromal  edema  and  severe  vision  loss[46].  Recently,  MSCs  as  a  potential
therapeutic  cell  source  for  corneal  endothelial  diseases  were  also  reported[47,48].
However,  MSCs exerted the therapeutic effects on endothelial  cell  defect  mainly
through direct  differentiation,  and no application of  MSC-derived EVs has been
reported so far.

Our  previous  study  demonstrated  that  MSC  administration  was  effective  in
prolonging corneal allograft survival and exerted therapeutic effect against corneal
allograft rejection[49,50]. Recently, we found MSC-derived sEVs acted similarly as MSCs
in corneal allograft rejection (unpublished data).

Autoimmune uveitis
Autoimmune uveitis is a type of autoimmune disease involving the uveal tract and
retina. It is one of leading global causes of visual disability due to severe clinical
complications, including cataract, glaucoma, and retinal damage[51]. Systemic or local
administration of corticosteroids combined with immunosuppressive drugs is the
traditional treatment protocol for autoimmune uveitis.  However,  severe adverse
effects limit their long-term use in the clinic[52]. The experimental autoimmune uveitis
(EAU) model is used widely to understand the mechanism and new treatment options
for non-infectious uveitis[53]. Our previous study showed MSCs strikingly ameliorate
EAU both in mice and rats[54-56]. Recently, we proved that periocular injection of sEVs
derived from umbilical  cord MSCs reduced EAU severity by reducing leukocyte
infiltration in the eyes of EAU rats. The in vitro migration of inflammatory cells such
as  neutrophils,  NK cells,  and CD4+  T  cells  was  inhibited by MSC-derived sEVs,
indicating that the sEVs exert their therapeutic effect at least partially by the inhibition
of leukocyte migration. The study showed the possible clinical utility of MSC-derived
sEVs for the treatment of autoimmune uveitis[57]. The other study also demonstrated
that MSC-derived sEVs could prevent EAU development and suppress Th1 and Th17
development in mice[58].

Glaucoma
Glaucoma is  a group of  optic  neuropathies characterized by the degeneration of
retinal ganglion cells (RGCs) and the axons. Degeneration of RGCs results in altered
optic disc appearance and visual field loss[59]. Among vision disorders, glaucoma is
second to cataract and also a leading global cause of irreversible vision loss. It was
estimated that in 2020 the number of people with open-angle glaucoma and angle-
closure glaucoma would be nearly 79.6 million[60].  Currently,  ocular hypotensive

WJSC https://www.wjgnet.com March 26, 2020 Volume 12 Issue 3

Yu B et al. MSC-derived EVs in ocular diseases

181



drops, laser treatment, and surgery are used to lower intraocular pressure; however,
they  are  insufficient  to  rescue  damaged  RGCs [61 ].  Therefore,  utilizing  the
neuroprotective effects of MSCs, they were shown to be effective in promoting RGCs
survival in different animal models[62-64]. The MSC-derived sEVs were also tested in
glaucoma models recently to avoid the potential side-effects of MSC administration.
In the rodent optic-nerve crush model, the thickness of the retinal nerve fiber layer
(RNFL) decreased significantly. Mead et al[65]  showed that intravitreal injection of
MSC-derived sEVs preserved RNFL thickness as measured by OCT and positive
scotopic threshold response (pSTR) measured by ERG. Greater than 50% of RGC
function in MSC-derived sEVs treated retina was preserved, which indicated that
sEVs could protect RGC from death along with retaining their function. The Ago2
knockdown  reduced  microRNA  quantity  within  the  sEVs  and  decreased  sEVs
neuroprotective and neuritogenesis abilities, thus indicating the dependence of the
therapeutic  effect  on microRNA rather  than protein.  DBA/2J  mouse is  a  rodent
genetic  model  of  glaucoma.  In  another  study,  MSC-derived  sEVs  were  injected
intravitreally into DBA/2J mice once a month, from 3 mo to 1 year of age. In the
treated group, the number of RGCs was higher at 12-mo and had reduced axonal
damage. Concerning the RGC function, pSTR amplitudes were measured by ERG,
and the pSTR amplitudes in the treated group were higher at 6-mo, but not at 9- or 12-
mo, which indicated that MSC-derived sEVs might prevent RGC functional decline at
an early stage, but not at late stage[66,67].

Retinal diseases
Idiopathic macular hole: An idiopathic macular hole is a common fundus disease,
which causes severe vision impairment or blindness. The primary treatment is pars
plana vitrectomy, and the visual recovery depends on the closure state of the hole and
the function of residue photoreceptor cells in the macular area. Current treatment to
achieve an ideal prognosis is challenging, especially for large or refractory holes. We
previously  reported  a  pilot  clinical  study,  in  which  seven  patients  underwent
vitrectomy combined with  intravitreal  injection  of  MSCs  or  MSC-derived sEVs.
Among the seven patients, six achieved closure of macular holes, and five patients
achieved a satisfactory improvement of visual acuity. In one patient, an epiretinal
fibrotic membrane formed after MSC injection and a second surgery was performed
to remove the membrane, and sEVs therapy was shown to be safer and easier to
perform than MSC therapy[68].

Diabetic retinopathy:  Diabetic retinopathy (DR) is currently the leading cause of
vision loss and blindness in working-age people. Patients are usually asymptomatic
until severe vision decline occurs in the late disease phase[69]. Blindness due to DR is
preventable but irreversible and poses a substantial economic burden on the family
and society. It is estimated that the blindness caused by DR will reach 3.2 million in
2020[2].  Laser  therapy,  anti-vascular  epithelial  growth factor  (VEGF) agents,  and
vitrectomy were usually used to treat diabetic retinopathy. However, not all patients
respond well to current therapies[70]. A study conducted by Zhang et al[71] showed that
intravitreal injection of MSC-derived sEVs into the vitreous of streptozotocin (STZ)
induced diabetic rats, effectively reduced the expression of inflammatory markers and
adhesion molecules. MSC-derived sEVs reversed the increased expression of HMGB1
and its downstream target proteins in retinas of diabetic rats. Consistent with the in
vivo results, the MSC-derived sEVs suppressed the inflammatory response in high
glucose-stimulated human retinal epithelial cells and highlighted the critical role of
microRNA126 in inflammatory regulation. The sEVs derived from microRNA126-
transfected MSCs inhibited HMGB1 signaling pathway more effectively to reduce
inflammation in diabetic retinopathy[71]. In another study, MSC-derived sEVs were
injected by  different  routes  (intravenous,  subconjunctival,  and intraocular)  into
rabbits with STZ-induced diabetes, and the results showed that both subconjunctival
and intraocular injection of MSC-derived sEVs could protect retinal tissue structure
from damage, while intravenous injection failed to ameliorate DR progression. The
authors also showed an association of decreased microRNA222 expression in retinal
tissues with extensive hemorrhage and severe retinal  injury.  MSC-derived sEVs
mediated transfer of microRNA222 resulted in increased microRNA222 expression
level and enhanced regenerative retinal changes[72].

Retinal injury: Retinal damage caused by ischemia, infection, or physical injury leads
to photoreceptor cell degeneration or death, as well as severe vision loss. No effective
neuroprotective drugs are available in the clinic to restore the damaged cells. Our
research  group  showed  that  intravenous  MSC  transplantation  was  effective  in
alleviating  photoreceptor  damage[73],  and  further  studies  demonstrated  that
intravitreal  injection  of  MSC-derived  sEVs  resulted  in  reduced  photoreceptor
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apoptosis and protection of visual function, a protective effect comparable to that of
MSCs. In vitro experiments showed that MSC-derived sEVs could reduce heat injury-
induced retinal cell loss by downregulating MCP-1[74]. We also demonstrated recently
that  subretinal  injection of  MSC-derived sEVs exhibited therapeutic  effect  in rat
retinal detachment model by inhibiting inflammatory cytokine secretion, reducing
apoptosis,  and activating autophagy[75].  In  a  rodent  ischemia-reperfusion model,
intravitreal injection of MSC-derived sEVs increased retinal functional recovery after
ischemic injury. After intravitreal injection, a large number of sEVs were observed in
ischemic retina and were concentrated in RGCs and microglial cells. The injected sEVs
could be detected in the vitreous humor up to four weeks after administration[76]. In
another study of  a murine oxygen-induced retinopathy model,  Moisseiev et  al[77]

showed that intravitreal injection of MSC-derived sEVs decreased the severity of
retinal ischemia. In vitro experiments showed that pretreatment of R28 cells with sEVs
could protect cells against oxygen and glucose deprivation conditions.

MSC-DERIVED SEVS AS DRUG DELIVERY SYSTEM IN
OPHTHALMOLOGY
With lipid bilayer membrane to protect their cargo from degradation, sEVs can travel
a long distance and even traverse through biological barriers to the target cells to
transfer biological message. Therefore, they are natural carriers for the transport of
proteins,  lipids,  or RNAs to recipient cells with high biocompatibility[20],  and are
utilized in basic research for drug or other bioactive substance delivery[78]. MSCs are a
rich source of sEVs, and MSC-derived sEVs, which have many beneficial effects for
many  diseases,  are  ideal  for  drug  delivery  and  were  used  in  studies  of  many
diseases[12,79-81].

The nanometer size of MSC-derived sEVs facilitates their transport after intravitreal
injection across the retina and choroid. Our data showed that after both periocular
and intravenous  injection,  sEVs  reach  the  retina  rapidly  (unpublished data).  In
contrast  to  the  MSCs,  the  MSC-derived  sEVs,  do  not  cause  vitreous  opacity,
immunologic rejection, or proliferative vitreous retinopathy[68,76]. Therefore, they could
be an alternative drug delivery option for ocular disease treatment. The therapeutic
substances could be loaded into sEVs by two methods: One by loading high doses of
the selective therapeutic drug into MSCs and collecting the secreted sEVs, and the
other is to load sEVs directly through co-culture or electroporation. Owing to the
advantages of EV-based therapy, the use of MSC-derived sEVs as nanocarriers loaded
with proteins, miRNAs, or other drugs hold promise for the treatment of refractory
ocular disorders.

CONCLUSION
Recently, several studies showed the critical role of MSC-derived sEVs in treating
ophthalmic diseases. They are also ideal nanocarriers to deliver drugs because of their
high biocompatibility, bi-lipid membrane structure, and small size. With increasing
evidence of their therapeutic efficacy, it is promising to transform MSC-derived sEV
based therapy into clinic for treating ocular diseases in the future.
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