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The Million Veteran Program (MVP), initiated by the Department of Veterans Affairs (VA), aims to collect biosamples with consent from

at least one million veterans. Presently, blood samples have been collected from over 800,000 enrolled participants. The size and diver-

sity of the MVP cohort, as well as the availability of extensive VA electronic health records, make it a promising resource for precision

medicine. MVP is conducting array-based genotyping to provide a genome-wide scan of the entire cohort, in parallel with whole-

genome sequencing, methylation, and other ‘omics assays. Here, we present the design and performance of the MVP 1.0 custom Axiom

array, which was designed and developed as a single assay to be used across the multi-ethnic MVP cohort. A unified genetic quality-con-

trol analysis was developed and conducted on an initial tranche of 485,856 individuals, leading to a high-quality dataset of 459,777

unique individuals. 668,418 genetic markers passed quality control and showed high-quality genotypes not only on common variants

but also on rare variants. We confirmed that, with non-European individuals making up nearly 30%, MVP’s substantial ancestral diver-

sity surpasses that of other large biobanks. We also demonstrated the quality of the MVP dataset by replicating established genetic as-

sociations with height in European Americans and African Americans ancestries. This current dataset has been made available to

approved MVP researchers for genome-wide association studies and other downstream analyses. Further data releases will be available

for analysis as recruitment at the VA continues and the cohort expands both in size and diversity.
Introduction

The United States Department of Veterans Affairs (VA)

initiated the Million Veteran Program (MVP) in 2011 to

create a mega-biobank of at least one million samples

with genetic data linked to nationally consolidated longi-

tudinal clinical records.1 The initial and continuing goal

of MVP is to create a national resource for research to

improve the health of United States veterans and, more

generally, to contribute to our understanding of human

health. MVP has currently collected samples from over

800,000 Veteran participants and expects to exceed a total

of 1 million participants in the next 2 to 3 years.

Although MVP is similar in some respects to other large

biobank projects, such as the UK Biobank; the Kaiser Per-

manente Research Program on Genes, Environment, and

Health (RPGEH); the China Kadoorie Biobank (CKB);
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The Ame
and the DiscovEHR initiative,2–4 it is unique in several

ways. As one of the largest single biobanking efforts to

date, MVP satisfies the need for larger genetic datasets

while also benefiting from a very rich, nationally inte-

grated longitudinal clinical database housed in the largest

consolidated healthcare network in the United States.

This feature allows for enhanced clinical phenotyping ca-

pabilities. The availability of additional self-reported

health and lifestyle survey information augments clinical

data from the Veterans Information Systems and Technol-

ogy Architecture (VistA)—the VA’s electronic health re-

cord (EHR).

Furthermore, with over 29% of participants self-report-

ing non-white ethnicity, MVP has substantial diversity in

genetic ancestry and thus meets a pressing need for

greater diversity in genome-wide association analyses

so that researchers can discover novel associations,
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reduce false positives, and increase research equity.5–8 As

such, the MVP cohort provides an unprecedented

opportunity for increasing the power of genome-wide as-

sociation studies (GWASs) and will enable association

discoveries regarding clinically important low-frequency

and rare variants; such discoveries would only be

possible in larger sample sizes. Reliable typing of these

variants could provide explanations of missing heritabil-

ity in complex or non-Mendelian diseases. However, the

genetic diversity of MVP also poses challenges in geno-

type quality control.

In this report, we introduce the first installment of MVP

genotype data consisting of 459,777 samples surveyed at

668,418 markers. In brief, we (1) describe the design of a

research genotyping array with emphasis on clinically use-

ful and/or rare variants applicable to multi-ethnic back-

grounds; (2) describe the generation and quality control

of genotyping data; (3) highlight some of the current

MVP dataset’s unique features, including exploratory ana-

lyses of genetic ancestry; and (4) replicate effect sizes of

previously reported variants associated with height in Eu-

ropean Americans and African Americans. Overall, we

find that the MVP genetic dataset, linked to deep pheno-

typic data, is a high-quality and diverse resource for per-

forming genetic analyses.
Material and Methods

Human Subjects and Data and Sample Collection
The VA Central IRB, as well as the local IRBs at the VA Boston

Healthcare System and the VA Connecticut Healthcare System,

approved this project. An overview of the recruitment strategies

and protocols is given in a previous publication.1 In brief, partici-

pants were recruited from approximately 60 VA healthcare facil-

ities across the United States on a rolling basis. Informed consent

was obtained from all participants. Participants consented to a

blood draw and to have their DNA analyzed, as well as to linking

their genetic information with their full clinical, survey, and other

health data. Participants were also invited to answer two separate

surveys about basic demographic information and lifestyle

characteristics.

Blood drawn from consenting participants was shipped to the

central biorepository in Boston, Massachusetts, where DNA was

extracted and later shipped to two external vendors for genotyp-

ing on a custom Axiom array designed specifically for MVP

(MVP 1.0). A description of the MVP 1.0 array design features is

detailed in the Supplemental Information.
Thermo Fisher Scientific (formally Affymetrix) Axiom

Genotyping Platform
TheMVP 1.0 custom Axiom array is based on the AxiomGenotyp-

ing Platform. The Axiom genotyping platform utilizes a two-color,

ligation-based assay using 30-mer oligonucleotide probes synthe-

sized in situ onto a microarray substrate. Each single-nucleotide

polymorphism (SNP) feature contains a unique oligomeric

sequence complementary to the genomic sequence flanking the

polymorphic site on either the forward or the reverse strand. Solu-

tion probes bearing attachment sites for one of two dyes, depend-
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ing on the 30 (SNP-site) base (A or T, versus C or G), are hybridized

to the target complex, followed by ligation for specificity. Oligonu-

cleotide sequences complementary to the forward or reverse

strands are referred to as probesets. A marker (SNP or indel) can

be interrogated by the probeset for the forward and/or reverse

strand.

For additional details of the Axiom Genotyping Platform, see

the Supplemental Materials and Methods.
Genotype Calling
We received unprocessed Axiom genotype data for 485,856

unique samples assayed by two vendors, referred to as vendor 1

and vendor 2, and performed genotype calling in batches grouped

by vendor and sample processing date. By using data provided by

the vendors and generated from our internal genotype calling pro-

cess (see Supplemental Materials and Methods for details), we first

analyzed the standard Axiom genotype quality metrics and

compared these metrics between the two vendors.

After calling genotypes, we applied an advanced normalization

procedure for mitigating plate-to-plate variation developed in

collaboration with Thermo Fisher Scientific. The procedure was

applied selectively on a per-batch basis to probesets exhibiting

high plate-to-plate variance. After plate normalization, we

applied standard marker quality-control procedures to clean

and harmonize genotype calls across all the batches (Supple-

mental Materials and Methods), followed by advanced sample

quality control (QC).
Advanced Sample QC
Sample Contamination

To detect and mitigate sample contamination, we assessed het-

erozygosity with PLINK, version 1.9, by calculating the F coeffi-

cient and quarantining samples with an F coefficient of less

than �0.1. We assessed excess relatedness by using the related-

ness inference software KING, version 2.0, and quarantined

samples having a kinship coefficient of at least 0.1 with seven

or more other samples within MVP. These samples had high

dish QC (DQC) and low call rates and were outliers in compar-

ison to the majority of samples in the MVP dataset (Figure S5D).

Because a call rate below 98.5% correlated with excess sample

heterozygosity or relatedness, we removed samples (15,436, or

3.00%) with call rates below this threshold.9 All samples that

were removed or quarantined from the current release of MVP

data will be re-genotyped and included in the future data

releases.

Sample Mislabeling

We identified samples and plates demonstrating potential mislab-

eling issues by analyzing genotype concordance between inten-

tional duplicate samples that were sent blinded to the vendors

as new samples for genotyping. Of the 25,867 intentional dupli-

cate pairs, only 211 (0.82%) pairs were highly discordant (greater

than 1% discordance). Samples on plates with discordant inten-

tional duplicate pairs were quarantined for further analysis and

re-genotyping. We also removed both samples and plates if the

duplicate pair had a relatedness coefficient of less than 0.45. These

precautions were taken out of concern about potential plate swaps

and led to 9,975 samples’ being quarantined.

Sample Misidentification

To discriminate between misidentified intentional dupli-

cates (same samples intentionally genotyped twice), technical

duplicates (controls repeatedly genotyped by vendors), and
2020



monozygotic twins, we calculated sample relatedness with the

KING software, version 2.1.10 Monozygotic twins were confirmed

by cross-referencing EHR data. Pairs with birth dates differing by

no more than one day and having unique participant identifiers

and first names were considered verified monozygotic twin pairs.

Unverified samples were quarantined as potentially mislabeled

and will be re-genotyped.

Sex Check

To confirm sample gender, we extractedmarkers genotyped on the

X chromosome while excluding the pseudoautosomal region,

used the sex-check command from PLINK, and compared the ex-

pected F coefficient on the X chromosome to the gender recorded

in the sample’s EHR for all samples.11 Participants whose reported

gender differed from that inferred by PLINK were quarantined

from subsequent analysis. We also removed remaining samples

on plates with four or more gender mismatches to account for po-

tential plate swaps. The threshold is relatively low because of the

low percentage of females in our dataset.
Advanced Marker QC
Advanced Marker QC Pipeline

We implemented three main approaches to create the advanced

marker QC pipeline: (1) exclude probeset calls from all batches

for probesets that failed advanced QC tests; (2) exclude probeset

calls in a given batch for which the probeset is not recommended;

and (3) choose the best probeset per marker for markers interro-

gated by multiple probesets and exclude probeset calls from all

batches for the ‘‘not-best’’ probesets. Details of each steps of the

advanced marker QC are available in Supplemental Materials

and Methods and in Figures S4, S6A, and S7A.

The advanced marker QC pipeline produced an inclusion list of

probesets that met quality standards across the entire MVP data-

set. For each batch, we included a probeset in the dataset if it

met all three of the following criteria: (1) it was included in the in-

clusion list; (2) it was recommended in that batch; and (3) it was

the best probeset for a marker interrogated by multiple probesets.

We then generated a list of probesets per batch, created PLINK

marker list binary files for each batch, and merged all batches

together by using the PLINK merge command.

Reproducibility of Genotype Calling

To assess the consistency of genotype calls across time and ven-

dors, we analyzed the discordance between 25,867 intentional

duplicate samples that were sent blinded to the vendors. After con-

firming that these sample pairs were genetically identical through

KING relatedness inference, we determined the number of minor-

allele pairs (MAPs) for eachmarker. AMAP is any pair of genotypes

for a marker where both genotypes are called in the sample pair

and where the pair contains at least one minor allele. We then

calculated the number of discordant genotyping pairs per MAP

for each marker. Normalizing by the number of MAPs renders

different minor-allele frequency (MAF) bins comparable in the

discordance calculation. Otherwise, rare markers will always

have extremely low discordance rates because most samples carry

the homozygous major genotype.

Additionally, within the 485,856 samples genotyped in the

MVP cohort, we included 2,064 positive control samples. We

called the genotypes of the positive controls along with other

MVP samples across 112 batches organized by genotyping scan

date for 668,418 markers passing advanced marker quality con-

trol. These genotypes were compared to the consensus positive-

control genotype.
The Ame
To construct the consensus genotype sequence, we calculated

the frequency of each marker across the panel of 2,064 positive-

control samples. Markers with MAF of less than 1%were set to ho-

mozygous in the consensus sequence, and markers with a MAF of

greater than 49% were set to heterozygous in the consensus

sequence. For markers with a MAF greater than or equal to 1%

and less than or equal to 49% (536, or 0.082% of markers) or

that had no observed calls (18,158, or 2.76%), we set the

consensus genotype to missing.

We calculated concordance across all common (MAF R 5%)

and low-frequency (MAF < 5%) markers by assessing MAFs

over the entire MVP sample. We then calculated concordance

between the consensus sequence and each positive control.

Concordance was defined as the number of matching called ge-

notypes over the total number of called genotypes. Uncalled

markers in either the positive control or the consensus

sequence were not included in either the numerator or the de-

nominator of the concordance calculation. We then plotted

the concordance distribution for each batch’s positive controls

across time.
Comparing MVP Allele Frequencies to Those from

gnomAD and the UK Biobank
Genome Aggregation Database (gnomAD) version 2.1 data were

downloaded online (see Web Resources). Markers in both

gnomAD and MVP were matched on chromosome, start position,

end position, reference allele, and alternative allele. For any

mismatch, we checked strands and indel notations. Reference

and alternative alleles were corrected, and their frequencies were

recomputed when strands were flipped. Indels had their genomic

coordinates and alleles recoded and harmonized.

UK Biobank summary data were downloaded online (see Web

Resources). Markers shared between the UK Biobank and MVP

were matched through the use of SNP rsIDs. Because information

on marker chromosome, genomic positions, reference alleles, and

alternate alleles were not provided in the summary statistics, we

were unable to explicitly check for strand flips. However, as we ex-

pected, variant annotation in MVP and the UK Biobank tended to

be well harmonized because both were genotyped on Axiom ar-

rays and followed the same standard Axiommarker QC workflow;

thus, we compared allele frequencies as is without excluding any

variants.

For this analysis, European Americans (EAs) were defined as

samples with a GBR (British in England and Scotland) proportion

greater than 0.9 on the basis of ADMIXTURE results (described

below), resulting in a sample size of 311,365. We used PLINK to

compute allele frequencies by genetic ancestry subgroup via

the ‘‘–freq’’ command with default filters and quality control

parameters.
Genetic Relatedness
We performed additional preprocessing of the MVP dataset before

analyzing genetic relatedness. We applied standard PLINK 1.9 fil-

ters for genotype missingness (> 5% removed), MAF (< 1%

removed), and sample missingness (> 5% removed).11 We then

conducted pairwise relatedness inference by using KING 2.1 to

identify related pairs.10 KING explicitly accounts for population

structure and is therefore an appropriate algorithm for our sample,

which contains diverse genetic ancestry. However, KING is also

known to overestimate relatedness in the presence of recent

admixture. Therefore, we selected SNPs with a low load in
rican Journal of Human Genetics 106, 535–548, April 2, 2020 537



principal components (PCs) 1–3 for a second round of KING, as

was done in the UK Biobank.12

We ran the first round of KINGwith the command ‘‘–related–de-

gree 3’’ to identify all potential pairs of individuals with closer

than third-degree relatedness. From this result, we excluded all in-

dividuals with more than 200 third-degree relatives and also fam-

ilies withmore than 100members because we suspected they were

artifacts of sample-processing errors such as low-level sample

contamination. Then, a set of unrelated individuals was defined

via the largest_independent_vertext_sets() function in the Python

version of the igraph tool. Principal-component analysis (PCA)

was then conducted with the unrelated samples. Only SNPs with

a MAF greater than 0.01 and missingness less than 0.015 were

considered for this PCA. 23 regions defined as having high linkage

disequilibrium (LD) in the UK Biobank13 were also excluded, and

then SNPs were pruned according to an r2 threshold of 0.1, a win-

dow of 1000markers, and a step size of 80. In the end, 90,288 SNPs

were selected for PCA, which was conducted with PLINK

v2.00a2LM and the command ‘‘–pca var-wts approx’’ so that

variant weights and fast PCA approximation could be obtained.

We selected low-weight SNPs in PC1, PC2, and PC3 by adjusting

the absolute weight threshold to keep at least two-thirds of the

input SNPs, which led to 60,118 SNPs’ being put forward for the

next round of KING.

The second round of KING was again conducted with the com-

mand ‘‘–related–degree 3.’’ The effect of using SNPs with low

weights in PCs 1–3 on the distribution of the number of relatives

per individual is shown in Figures S10A and S10B. We flagged 35

individuals withmore than 200 third-degree relatives (UK Biobank

reported nine individuals with more than 200 third-degree rela-

tives), as well as all members of two clusters that were tightly inter-

connected with each other (Supplemental Materials and Methods

and Figures S10C, S10D, and S11).

We defined genetically identical pairs as those having a kinship

coefficient of 0.45 or greater (the maximum kinship coefficient

output by KING is 0.5). However, given the large number of

intentional duplicates samples in our dataset, we only considered

genetically identical pairs as monozygotic twin pairs after cross-

referencing EHR data as above. Parent-child pairs were defined as

those having a kinship coefficient of greater than or equal to

0.19 and less than 0.45 and having less than 0.0025 percent of

the genome held with zero alleles identical-by-state (IBS0). Sample

pairs with a kinship coefficient greater than or equal to 0.19 and

less than 0.45 and IBS0 greater than or equal to 0.0025 were desig-

nated as full siblings. Any pairs of participants with a kinship

coefficient between 0.0884 and 0.19 were inferred to be second-

degree or third-degree relatives. To identify potential trios in our

sample, we extracted parent-child pairs in which a sample ap-

peared twice. We then assessed the kinship coefficient between

the other two participants. If the other two participants were not

a related pair and consisted of one male and one female, we iden-

tified these three samples as a trio.
Genetic Ancestry
For genetic-ancestry analysis, we used the same set of markers used

for relatedness analysis and applied LD pruning with PLINK (–in-

dep-pairwise 1000 50 0.05), which left us with 50,000 markers.

Principal-Component Analysis

For the 1000 Genomes Project projection PCA, we merged the

MVP dataset with the 1000 Genomes Project Phase 3 reference

panel.14 We first filtered the 1000 Genomes Project dataset to
538 The American Journal of Human Genetics 106, 535–548, April 2,
ensure scalable merging with the MVP dataset. Markers with

MAF less than 1% and any samples constituting related pairs

were removed prior to LD pruning via PLINK according to the

same parameters as above. We then calculated PCs by using the

1000 Genomes Project dataset and projected the MVP samples

onto them with EIGENSOFT, version 6.0.1.15

We also calculated the PCs on the filtered MVP dataset alone by

using the FastPCA method from the EIGENSOFT package for

within-cohort PCA. For this PCA, we excluded all related individ-

uals, whereas we kept all related individuals in the 1000 Genomes

project PCA.
ADMIXTURE Analysis
In order to quantify ancestry proportions in MVP, we ran the pro-

gramADMIXTURE, version 1.3, on theMVP samples in supervised

mode with five reference populations from the 1000 Genomes

Project dataset as training data.16 We chose the five reference pop-

ulations on the basis of their global geographic location to ensure

global representativeness. The Yoruba in Ibadan, Nigeria (YRI)

samples serve as a proxy for West African ancestry, the Luhya in

Webuye, Kenya (LWK) for East African ancestry, the British in En-

gland and Scotland (GBR) for European ancestry, the Han Chinese

in Beijing, China (CHB) for East Asian ancestry, and the Peruvians

from Lima, Peru (PEL) for Native American ancestry (Figure S8C).

Participants with more than 80% of their genetic ancestry attrib-

uted to one reference population were assigned to that reference.

Remaining participants who had greater than 90% of their genetic

ancestry derived from two reference populations were assigned to

that pair of populations. Any participants not meeting the above

two criteria were assigned to a separate subgroup (MVP_OTHER)

and were assumed to contain admixture from three or more refer-

ence populations.
UMAP Analysis
We used Uniform Manifold Approximation Projection (UMAP), a

dimensionality-reduction method that is useful for visualizing

both global and local structure in data, to further visualize the ge-

netic ancestry of the MVP cohort. A UMAP embedding was calcu-

lated on the basis of the first 10 principal components of unrelated

samples with hyperparameters n_neighbors of 15 and min_di-

stance of 0.1, whichwere suggested by a previous study onUK Bio-

bank data.17 We then visualized the population structure by pro-

jecting subpopulations identified by our ADMIXTURE analysis

onto the UMAP embedding.
GWAS of Height
Height measurements, dates of measurement, and dates of birth

for each participant were extracted from the VA healthcare sys-

tem’s EHR. Any height measurement outside the range of 48 to

84 inches was excluded,18 and inches were converted to meters.

Age at measurement was calculated by subtracting the date of

birth from the date of height measurement. Individuals younger

than 18 or older than 120 years old were excluded. Sex was genet-

ically determined by PLINK.

Markers whose genotype missingness was greater than 1%, as

well as non-autosomal markers, were removed. Samples whose

missingness was over 5% were also excluded. By using the results

of the relatedness analysis described below, we also removed all

closely related pairs.

After marker and sample filtering, we ran association tests by us-

ing BOLT-LMM13 with sex, age, age-squared, and the first 10 PCs as
2020



Figure 1. Key MVP 1.0 Genotyping Array
Modules
The modules are divided into those shared
with the Axiom BiobankGenotyping Array
and those unique to the MVP 1.0 array,
along with descriptions and counts of
unique markers in each module. Counts
represent the number of markers in the
module, and markers can be in more than
one module.
covariates. LD scores were calculated from the 1000Genomes Proj-

ect population subsets with ldsc 1.0.19 We generated model SNPs

with PLINK 2.0 by pruning unrelated samples with an R-squared

threshold of 0.2 (–pairwise-indep 1000 50 0.2). We also generated

PCs by using PLINK 2.0 (–pca approx) on the cohorts that had

model SNPs extracted.

We extracted the effect size, direction of effect, and allele for

each previously associated marker from the GWAS catalog on

March 21, 2019 and then extracted the effects for the markers pre-

sent in the MVP association analysis. We then scaled the effect

values within each study to between 0 and 1 to account for

different height units and plotted the previously derived effects

against those inferred in MVP.
Results

The MVP 1.0 Array

Array Design and Content

The MVP 1.0 array was based on the Applied Biosystems

Axiom Biobank Genotyping Array with additional custom

content developed for MVP (Figure 1). The Axiom Bio-

bank Genotyping Array incorporates multiple content

categories that are important for translational medicine

research and discovery; such categories include modules

for genome-wide coverage of common European variants,

rare coding SNPs and indels, pharmacogenomics markers,

expression quantitative trait loci (eQTLs), and loss-of-

function markers (further described in Supplemental Ma-

terials and Methods). The MVP-1.0-specific modules were

mainly SNPs and indels known to be associated with dis-

eases and traits of interest to MVP (especially psychiatric

disorders and rheumatoid arthritis), as well as a set of

SNPs selected to improve African American imputation

performance (Supplemental Materials). In total, 723,305
The American Journal of Human
probesets interrogating 686,682

unique bi-allelic markers (SNPs and

indels) based on the GRCh37

genome build were tiled onto the

MVP 1.0 array. Among these, 270

are mitochondrial markers, 142 are

in the non-pseudoautosomal regions

of the Y chromosome, 1,139 are in

the pseudoautosomal regions (PAR1

and PAR2) of the X and Y

chromosomes, 18,026 are in the

non-pseudoautosomal regions of the
X chromosome, and the remaining 667,105 markers are

autosomal markers (Table S1).

MVP 1.0 Genotyping Quality Control and Assessment

Assessment of Overall Genotyping Performance

Figure S3 is an overview of the steps taken to ensure high-

quality genotype data for theMVP cohort. Advanced geno-

type and sample QC were conducted in addition to the

standard Affymetrix good-practice guidelines and are

described in the Materials and Methods and Supplemental

Materials and Methods. In addition, we further devised a

batch variation correction step to apply to markers that

showed significant allele frequency differences between re-

leases (Supplemental Methods and Figures S4 and S6A).

We investigated multiple quality-control metrics for

across and within the two assay vendors. Median Axiom

DQC values for all genotyping batches were greater than

95 for both vendors (Figure S5A). Median QC call rate

was also high, exceeding 99% for each genotyping batch

(Figures S5B and S5C). Overall, sample call rates and other

genotype quality-control metrics demonstrated high-qual-

ity genotype calls for MVP regardless of genotyping vendor

(more detail is available in the Supplemental Materials and

Methods).

Marker and Sample QC and Selection

The MVP 1.0 array contains a large amount of novel,

custom marker content that has not been validated on

other arrays. These markers were assayed with more than

one probeset, so determining which probesets for a given

marker performed best across all genotyped batches and

removing systematically poor-quality probesets required

advanced marker QC. Ultimately, we retained 668,418

markers representing 97.34% of the original markers and

included 459,777 samples from a total of 485,856 unique
Genetics 106, 535–548, April 2, 2020 539



Table 1. Quarantine and Exclusion Criteria for MVP Samples and Sample Count per Category

Category Number of Samples Percentage of Samples

Starting MVP sample set for analysis 514,383 �

Intentionally duplicated samples 25,291 �

Uniquely genotyped individuals 485,856 100.00%

Samples with call rates below 98.5% 15,436 3.18%

Positive-control samples 3,236 0.66%

Samples with sex misclassification 1,450 0.29%

Samples on plates containing 4 or more sex
misclassifications

2,619 0.53%

Unintentionally duplicated samples 1,149 0.23%

Samples on plates containing an intentional
duplicate with high discordance

9,975 2.05%

Samples with high heterozygosity 248 0.05%

Samples with no or multiple unique
participant identifiers

71 0.01%

Intentionally duplicated samples with high
discordance

413 0.08%

Samples with 7 or more ‘‘relatives’’ 466 0.09%

Samples excluded from the dataset 28,527 5.87%

Samples quarantined from the dataset 31,836 6.55%

Sample set in current data release 459,777 �

Percentages are calculated from the total number of uniquely genotyped individuals (485,856). Categories are not mutually exclusive (i.e., a sample can be
removed as a result of more than one category and is counted in each applicable category in the table).
genotyped samples in this data release. As expected, almost

98% of the markers that were previously tested on the

Axiom biobank array were associated with a probeset

that passed quality control, whereas 77% of the markers

in the MVP 1.0 custom modules were associated with a

probeset that remained after quality control. Additionally,

although sample missingness (the fraction of missing ge-

notype calls per individual; see Supplemental Materials

and Methods) was slightly higher for vendor 1 than for

vendor 2, almost all genotyped samples from both vendors

exhibit missingness of less than 5% (Figure S6A).

We also either excluded or quarantined samples that did

not meet sample QC criteria. Excluded samples include

those expected to be removed by design or for known

logistical or data errors. These samples include positive

controls, samples with no or multiple unique participant

identifiers, and samples in intentional duplicate pairs

with the lower call rate. Quarantined samples are those

that are temporarily removed from the dataset as a result

of quality concerns. For instance, we investigated 1,149

pairs of samples with high relatedness to discriminate be-

tween misidentified intentional duplicates, technical du-

plicates (controls repeatedly genotyped by vendors), and

monozygotic twins. Although we confirmed 49 monozy-

gotic twins by cross-referencing with EHR data, the re-

maining 1,100 unintentional duplicate pairs could not be

verified through independent means and were quaran-

tined from data release as potentially mislabeled and will
540 The American Journal of Human Genetics 106, 535–548, April 2,
be re-genotyped. We also cross-checked genetically deter-

mined sample sex with EHR-reported gender information.

Among the 485,856 unique genotyped samples, 2,000

(0.41%) did not have any reported gender information

from either the EHR or self-reporting, and 2,073 (0.43%)

of the remaining samples had a genetic sex that was oppo-

site of the reported gender. We quarantined these samples

for further analysis and potential re-genotyping (Table S2).

The total number of samples that were excluded or quaran-

tined from the current release of MVP genotype data and

the reasons for exclusion are summarized in Table 1. All

quarantined samples removed from the current data

release will undergo further quality-control validation, be

sent back to the vendors for re-genotyping, or will be

otherwise verified before being included in subsequent

data releases.

Marker Missingness and Discordance by MAF

We assessed marker missingness in correlation with MAF.

Overall, the MAF distribution of MVP 1.0 is highly skewed

toward rare variants; 42.89% of markers have a MAF below

1%, and 33.89% have a MAF below 0.1% (Figure 2A). This

result is by design: the content of theMVP array focuses on

markers associated with potential disease phenotypes. We

find that MAF is correlated with marker missingness, as

shown in Figures 2C and S6B, and lower frequency variants

are missing in a larger fraction of samples. Despite this

trend, genotyping call rate among low-frequency markers

is still relatively high. For example, 87.29% of rare markers
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Figure 2. Quality-Control Assessments on the MVP Dataset after Performance of the Advanced Marker Quality Control Procedures
(A) MAF distribution after sample QC filtering. The inset diagram shows the distribution for markers with a MAF below 1%.
(B) Minor-allele discordance rates per MAF bin, based on intentionally duplicated samples.
(C) Marker missingness rates per MAF bin, after sample QC filtering.
(D) Comparison of MAFs between the EA subset of MVP (MVP-EUR) and the UK Biobank European subset (UKB-EUR).
(E) Comparison of MAFs between MVP-EUR and the non-Finnish European subset of gnomAD (gnomAD-NFE).
(MAF < 0.1%) have a genotyping call rate of greater

than 95%.

Additionally, we examined marker genotype discor-

dance rates across intentional duplicate sample pairs with

respect to MAF. Discordance is calculated per MAP for

each marker, and markers are binned by MAF. We found

a correlation between MAF and discordance rate, such

that lower-frequency variants had a higher rate of minor-

allele discordance (Figures 2B and S6C).

Duplicate and Positive Control Samples for Continuous Qual-

ity Assessment

Importantly, becauseweemployed two separate vendors for

genotyping, we intentionally included 25,291 duplicate

samples that were blinded to the vendors for independent

assessment of genotype quality. This amounts to a target

of 5%of all genotyped samples and is an effort to accurately

assess genotyping quality on a continuous basis. Sample

concordance among intentional duplicates or positive con-

trols was very high; the median concordance rate was

greater than 99.8% across all comparisons (Figure S7A).

Assessing concordance in positive-control samples also

provides valuable information about the consistency and

reproducibility of the MVP 1.0 array’s genotypes over
The Ame
time. Along with the MVP samples, 2,064 positive-control

samples were genotyped on the MVP 1.0 array. As dis-

cussed in the Materials and Methods section, we con-

structed a consensus genotype sequence across 657,459

markers by using this panel of positive controls. For

markers in the consensus sequence, 543,691 (82.70%)

were homozygous, 95,079 (14.46%) were heterozygous,

and 18,689 (2.84%) were uncalled. Concordance for each

of the 2,064 positive-control samples is defined as the

number of markers that agree with the consensus sequence

divided by the number of called markers in the consensus

sequence.

Overall positive-control concordance is shown in

Figure S7A, and the distributions by batch of concordance

values across all positive controls are shown in Figures

S7B–S7D. The median concordance rate between each pos-

itive-control sample and the consensus sequence was

99.93% for all markers, 99.89% for common (MAF R

5%) markers, and 100.00% for low-frequency (MAF <

5%)markers. Theminimumobserved concordance rate be-

tween a positive control and the consensus occurs during

analysis of common markers, but this concordance rate is

still high at 99.05%.
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Table 2. Concordance Rates across 96 HapMap Samples Genotyped on the MVP 1.0 Array

� � Metrics over Recommendeda Markers Metrics over All Markers

Population Number of
Samples

Average Sample
Concordance (%)

Average Sample
Call Rate (%)

Average Sample
Concordance (%)

Average Sample
Call Rate (%)

ALL 96 99.70 99.85 99.35 99.49

CEU 28 99.70 99.85 99.34 99.47

CHB 20 99.70 99.86 99.37 99.51

JPT 20 99.68 99.84 99.35 99.51

YRI 28 99.71 99.86 99.34 99.49

aRecommendedmarkers are those that were classified into one of the recommended SNP classes after execution of the Axiom Best Practices Genotyping workflow
for the 96 co-clustered samples.
Concordance with HapMap Samples

To further test concordance and genotyping quality, we

genotyped 96 HapMap samples (from Coriell cell lines)

on the MVP 1.0 array. 210,630 markers are present in

both the MVP 1.0 array and HapMap release 27, and

among these markers, 205,647 (97.20%) are classified as

recommended (see Supplemental Materials and Methods,

Standard Marker Quality Control). When these 205,647

markers were analyzed over the 96 HapMap samples, and

when HapMap and Axiom uncalled genotypes were

removed from the numerator and denominator, the sam-

ple concordance across all population groups is 99.70%

(Table 2). The Axiom sample call rate for recommended

markers is 99.85%.

Assessing Rare-Allele Genotyping Quality

Given the importance of rare markers in clinically related

studies, we evaluated the analytical validity of MVP 1.0

rare markers by observing the concordance of MAFs for

rare markers with overlap between MVP 1.0 and either

the gnomAD or the UK Biobank (Figures 2D and 2E). These

databases are large enough for detection of very low MAFs,

and agreement of MVP 1.0 marker MAFs with MAFs from

these databases provides evidence for the accuracy of

MVP 1.0 calls. MAFs were considered to agree when the

lower bound of the regression slope’s 95% confidence in-

terval was R0.9. This value leaves some margin of error

for expected differences between the databases in popula-

tion structure (non-Finnish Europeans versus European

Americans [EA]), technology (genotype arrays versus

exome sequencing), technical processes (batch, user,

etc.), and sample size. We used the MVP EA subgroup to

benchmark performance because it has a larger sample

size, which provides better confidence in assessing fre-

quency of rare markers, and it has large complementary

subgroups in gnomAD and the UK Biobank. We classified

markers into three subgroups by MAF: rare variants

(< 1%), low-frequency variants (1%–5%), and common

variants (> 5%). The EA subgroup yielded 321,290

(48.1%) rare markers, 46,626 (6.97%) low-frequency

markers, and 300,375 (44.9%) common markers.

From the gnomAD, we compared the allele fre-

quencies derived from the non-Finnish European sub-

group (n ¼ 55,860) of the exome call set. This subgroup
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provided the largest cohort that was comparable in popu-

lation structure. 69% (221,374 of 321,290 markers) of the

rare variants in MVP were also found in gnomAD. Addi-

tionally, both MVP and gnomAD showed similar MAFs

for these concordant rare variants (slope 0.9290, 95% CI:

0.9002, 0.9578).

From the UK Biobank, we compared allele frequencies

derived from the self-reported white British ancestry group

(N > 330,000). We found MAF agreement, as supported by

the strong coefficient of determination (R2) of 0.9864 and a

slope of 0.9536 (95% CI: 0.9841, 0.9887) between 46,872

overlapping markers.

Although comparison against both sources met

the R0.9 agreement threshold, we observed a small set

of about 6,000 extremely discrepant markers (defined as

having MAF > 0.001 in one database but MAF < 0.001 in

the other) betweenMVP and gnomAD. About 53% of these

markers were also present in the UK Biobank. For these

discrepant markers, MAFs in the UK Biobank were much

closer to MVP MAFs than those in gnomAD, and only

one-quarter of the overlapping UK Biobank markers re-

tained the ‘‘extremely discrepant’’ label. This is expected

and consistent with previous observations that MAFs of

MVP and the UK Biobank are in close agreement. The

extremely discrepant markers between MVP and gnomAD

might be attributed to smaller sample size of the gnomAD-

exome database in comparison to the UK Biobank. The

lowest MAF limit for MVP’s EA subgroup is 1.6 3 10�6

(1 of 622,730 total alleles), 8.9 3 10�6 (1 of 111,720) for

gnomAD’s non-Finnish subgroup, and 1.4 3 10�6 (1 of

674,398) for UK Biobank. At very low frequencies, the ab-

solute difference between rare variants, but not necessarily

the relative difference, will be small. A given marker with a

MAF of 0.001 inMVP and 0.01 in gnomADwill have an ab-

solute difference of 0.009, but a relative difference of 10-

fold. This is a common situation in our pairwise marker

comparisons because overlappingmarker MAFs are heavily

clustered near zero (Figures 2D and 2E). This could also

explain the relatively higher variance observed in the

lower extremes when MVP is compared to gnomAD versus

the UK Biobank. Overall, our results nonetheless show that

our rare variant calls are highly consistent and within a

reasonable range of agreement with overlapping markers
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Figure 3. Analysis of Genetic Ancestry in
the MVP Dataset
(A) Density plots of the total length of runs
of homozygosity (ROH) per individual in
each genetic-ancestry subgroup. Only the
top five most common subgroups are
shown.
(B) Principal-component analysis of the
1000 Genomes Project phase 3 dataset
with MVP samples projected onto prin-
cipal components 1 and 2.
(C) The number of MVP samples in each
genetic-ancestry subgroup as inferred by
ADMIXTURE percentages and our thresh-
olds. For a single ancestry subgroup, such
as MVP_GBR, the threshold is at least
80% inferred for that ancestry (e.g.,
MVP_GBR is GBR > 80%). For a pair of
identified subgroups, the two ancestries
must be at least 90% combined (e.g.,
MBP_GBR_YRI is GBR þ YRI > 90%).
MVP_OTHER includes all samples that
had less than 80% ancestry aligned to
any reference population and less than
90% combining any two populations.
(D) Visualization of ancestry subgroups
via Uniform Manifold Approximation Pro-
jection (UMAP).
in gnomAD and the UK Biobank. However, it is important

to note that the precision of calling very rare variants as-

sayed with SNP chips has been reported to show variable

quality.20 Thus, visual inspection of calls underlying initial

association results are always required.

Population Analysis of MVP Samples and a Test GWAS

on Height

The MVP Cohort

In addition to quality assessment of MVP 1.0 genotyping

results, we also performed exploratory analysis of the cur-

rent population represented in the MVP samples. On the

basis of data from the VistA EHR, the genotyped partici-

pants in the MVP cohort had a median age of 65 years at

time of enrollment, and 8.33% are female. Although the

percentage of female participants is low, reflecting the de-

mographics of the Veteran population, this percentage cor-

responds to 46,924 female participants in the current

release.

In light of the samples that have already been geno-

typed, theMVP cohort is relativelymore diverse than other

large biobanks on which data are available. For example,

more than 94% of UK Biobank participants self-report as

British, Irish, or ‘‘any other white background’’4,12, and

81% of individuals whose data are included in the Kaiser

RPGEH biobank report as ‘‘white, non-Hispanic.’’ On the

other hand, 70.9% of MVP participants self-report as

‘‘white’’ and ‘‘non-Hispanic or Latino,’’ in agreement

with United States 2010 census information indicating
The Ame
that 63.7% of respondents self-report as ‘‘white alone’’

and ‘‘not Hispanic or Latino’’21.

Analysis of Relatedness

We examined the degree to which samples in the MVP

population are related. Of the approximately 105.70

billion possible MVP sample pairings, 15,384 pairs ap-

peared to be third-degree relatives or closer. The number

of pairs for each type of relative pair, including trios, is

shown in Table S8. Compared with the UK Biobank, this

installment of MVP samples has a reduced fraction of

related pairs.

Analysis of Genetic Ancestry

Assessing genetic ancestry for genotyped samples is an

important tool for many applications, such as correcting

for biases caused by population structure, constructing

tests for natural selection, and determining disease risk

by genetic ancestry, among other tasks.22 To assess genetic

ancestry in our sample, we visualized and then quantita-

tively assessed the genetic ancestry of MVP samples rela-

tive to external reference populations.

Runs of homozygosity (ROH) were measured via PLINK

with a minimum ROH length of 1,000 Kb. The median to-

tal length of ROH is approximately 15.65 Mb, and the me-

dian number of blocks per sample is 10. In Figure 3A, we

plotted the total length of ROH per individual by genetic

ancestry subgroup for the five most common subgroups

as defined in the Materials and Methods. MVP_GBR_PEL

samples have a wide distribution of total ROH length but

also some of the longest total lengths of all samples.
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Samples that had African ancestry or that were ad-

mixed between three or more reference populations

(MVP_OTHER) have the shortest total length of ROH per

sample. Samples of mainly European ancestry have inter-

mediate total ROH length. The total length of ROH per

sample varies depending on the genetic-ancestry

subgroup.

We also compared MVP samples to those in the 1000 Ge-

nomesProject.Wefirst ranaPCAonthe1000GenomesProj-

ect phase 3 samples and then projected the MVP samples

onto these PCs. We found that most MVP samples lie close

to reference populations of European origin. In addition,

when we performed PCA on MVP samples alone, we found

thatgeneticancestrysubgroupscontainmorecomplex inter-

continental population structure, and a sizeable fraction of

MVP samples exhibit admixture with respect to African

and Asian references samples (Figures 3B and S9).

To assess ancestry proportion for each sample in MVP,

we ran the program ADMIXTURE in supervised mode by

using five 1000 Genomes Project phase 3 reference popula-

tions: Han Chinese in Beijing, China (CHB); British in En-

gland and Scotland (GBR); Luhya in Webuye, Kenya

(LWK); Peruvians from Lima, Peru (PEL); and Yoruba in

Ibadan, Nigeria (YRI).16 For most participants, the largest

percentage of their genome aligns with the GBR popula-

tion (Figure S8C). However, a substantial fraction of sam-

ples contains a moderate amount of genetic ancestry

similar to the YRI reference population. Examples were

also found of participants who have almost 100% of their

genetic ancestry aligning to each of the five reference pop-

ulations except for LWK. By using ADMIXTURE analysis

results, we grouped the MVP samples into 16 subgroups

and determined the proportion of MVP samples belonging

to each (Figure 3C). For example, 326,777 samples have

over 80% of their genome aligning with the GBR reference

population (MVP_GBR), whereas 58,267 samples have

80% or more of their genome aligning with YRI

(MVP_YRI). Excluding samples with more than 80% of

their genome aligning to one reference population,

25,295 of the samples have 90% or more of their genome

aligning with a combination of GBR and YRI reference

populations (MVP_GBR_YRI). Approximately 16,351 sam-

ples (MVP_OTHER) have neither 80% of their genome

aligning with one reference population nor 90% aligning

with a combined pair, indicating substantial admixture be-

tween three or more reference populations.

Finally, we visualized the diverse ancestry composition

of MVP by using a non-parametric dimensionality reduc-

tion method called uniform manifold approximation pro-

jection (UMAP) (Figure 3D). As shown through PCA and

ADMIXTURE, the largest cluster corresponds to samples

with largely European ancestry. In this visualization, the

distance between samples and clusters is not to be directly

interpreted as genetic distance. Although there are distinct

clusters (such as the tight cluster of individuals with Asian

ancestry on the top left corner, and another small cluster of

probable Polynesians in the middle of the plot), most MVP
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samples of different ancestries form a large single cluster

rather than individual ancestry clusters with distinct

breaks. This large cluster shows a continuum of ancestry

proportion that transitions from GBR on the top right to

different levels of admixture with YRI and PEL propor-

tions. This is in line with a previous report based on

32,000 US individuals in the National Geographic Geno-

graphic Project cohort.23

GWAS of Height

To further validate the quality of our genotype data and the

utility of MVP 1.0 array, we conducted a GWAS of height in

both the EA and African American (AA) MVP subpopula-

tions. EAs were defined as individuals with a GBR propor-

tion greater than 90%, and AAs were defined as individuals

with a YRI proportion greater than 60% and less than 40%

GBR on the basis of ADMIXTURE results (Figures S8A and

S8B). Our GWAS of height within EA and AA cohorts

showed moderate inflation of lGC ¼ 1.12 and lGC ¼ 1.13

and pseudo-heritability of 0.396 and 0.378, respec-

tively,19,24,25 levels comparable to those found in previous

height association studies without genotype imputation.26

Of the 822 reported height associations listed in the

GWAS catalog,27 230 were present in the MVP EA GWAS,

and 209 were present in the MVP AA GWAS. We assessed

whether we could replicate effect sizes and direction of ef-

fects for markers present in MVP EA and AA GWASs by

plotting these against the GWAS-catalog effect sizes and di-

rection of effects (Figure 4). For the two subpopulations,

the MVP associations perfectly replicated the directions

of effect in most markers (two SNPs had an effect size

near zero in EA). However, because most associations in

the GWAS catalog are derived from Europeans, the overall

correlation across all markers was lower for the AA cohort

(r ¼ 0.69) than for the EA cohort (r ¼ 0.85).

Overall, we show that the performance of MVP 1.0 and

the quality of its genotyping across 459,777 individuals

of diverse ethnic backgrounds is very consistent and accu-

rate by a variety of metrics.
Discussion

In this report, we provide an overview of the design of the

MVP 1.0 genotyping array, the development of accompa-

nying quality-control analyses, and our initial data explo-

ration of an interim MVP genotyping dataset that consists

of nearly 460,000 veterans. Our results demonstrate that

the MVP 1.0 chip and the subsequent QC procedures

have addressed notable challenges characteristic of large

projects with individuals of diverse genetic backgrounds

and that the resulting genotype calls are of high quality

akin to that of other projects similar in scope. By using a

single chip and unified quality control across the diverse

cohort, we aimed to minimize batch effects between

different ancestries and provide an initial genome-wide

scan before whole-genome-sequenced samples become

available.
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Figure 4. GWAS of Height with MVP Cohort
(A) Replication of the direction of effect for markers previously associated with height as annotated in the NHGRI-EBI GWAS Catalog in
the MVP cohort of non-related European Americans (n ¼ 291,609). Color coding denotes the genetic ancestry of the original cohort in
which the markers were associated with height.
(B) Same as (A) except with the MVP cohort of non-related African Americans (N ¼ 73,190).
Addressing the Challenges of MVP

MVP’s large, diverse, and still-growing cohort poses

numerous challenges for designing genotyping procedures

and their subsequent quality-assessment and quality-con-

trol protocols. Genotyping large and ethnically diverse co-

horts along with clinically relevant markers is even more

challenging because of the finite number of probesets

that can fit on a single array. However, using different ar-

rays for different ethnic groups can also exacerbate the dif-

ferences between these groups and lead to batch effects.

To address the limitations of array-based genotyping in

diverse cohorts, we carefully selected array content to

maximize clinical utility while at the same time ensuring

both broad coverage of variants and robust imputation ca-

pabilities across different ethnic groups. We also developed

comprehensive quality controls for markers and samples

both before and after genotyping. These controls included

intentional duplication of ~5% randomly selected samples

over time, blinded-to-assay technicians so that batch vari-

ation could be detected and mitigated; assessment of gen-

otyping concordance with positive control samples and

HapMap samples (Figure S7A, Table 2); comparison of

MVP 1.0 MAFs to those in gnomAD and the UK Biobank

(Figure 2); and a height GWAS intended to replicate previ-

ously reported results (Figure 4). Overall, we retained and

released 459,777 samples and 668,418 markers after QC

for the initial release of data. Although QC metrics vary

slightly over time and genotyping vendors, the final geno-

typed sample set shows consistently high call rates (98.5%)

and genotype concordance over intentional duplicates

(99.8%) both within and between vendors and over time.

Furthermore, marker concordance is also high even for

rare markers. Additionally, genotype concordance, MAF,

and GWAS association results are generally in strong agree-
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ment with external or previously reported results. These

results indicate that the design of the MVP 1.0 array and

the associated quality-control and assessment procedures

provide a robust, reliable method for genotyping common,

low-frequency, and rare variants in a large, ethnically

diverse cohorts.

Challenges remain however, and the MVP 1.0 array has

several limitations. Notably, although concordance rates

were high, our results demonstrate that low-frequency

and rare variants are still more difficult to genotype accu-

rately with the MVP 1.0 array than are common variants.

Additionally, while although added markers to MVP 1.0

to increase coverage for AAs, we lack boosters for other

ethnic groups, such as Asian and Native American popula-

tions, which currently comprise smaller but growing pro-

portions of the MVP population. In addition, although a

standard imputation to the 1000 Genomes reference has

been completed, we have yet to quantify the effect of

imputation across different ancestries within MVP to

devise an optimized imputation strategy. The strategy im-

plemented by the UK Biobank was to use the Haplotype

Reference Consortium (HRC) as themain imputation refer-

ence panel and to supplement with variants from 1000 Ge-

nomes if those variants were missing in HRC. However,

this is not viable for MVP, which has a large proportion

of non-European individuals. Further understanding and

analyses of imputation strategies in a multi-ethnic and ad-

mixed cohort will be required if we are to obtain an opti-

mized strategy for MVP.

The MVP Dataset Is Ethnically and Genetically Diverse

Our exploratory analysis indicates that the MVP dataset

and samples offer unique value for disease research. One

particularly valuable aspect of the MVP dataset is the
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ethnic diversity it encompasses. Genetic ancestry analysis

suggests that the MVP dataset contains sub-populations

with both homogeneous and admixed genetic ancestry

from multiple global populations. The largest sub-popula-

tion corresponds to 71% of samples of mostly European

descent, and the remaining samples show substantial Afri-

can, East Asian, and Native American ancestry.

Because MVP recruits participants from United States

veterans who receive care at VA hospitals, the demo-

graphics of the MVP dataset diverge from those of the

United States population. Approximately 8.5% of MVP

samples are female, which is similar to the fraction of

women in the Veteran population.28 With a median age

of 68 years as opposed to 37.9 years, MVP participants

are also substantially older than the United States popula-

tion.29 However, the demographics of MVP might change

with increasing use of the VA by more recent veterans. The

proportion of female veterans is projected to continuously

grow and nearly double, to 16.5%, by 2043.28 Meanwhile,

the proportion of veterans from minority populations is

expected to increase by approximately 50% over the

same time period.28 Thus, the VA and MVP is in a unique

position for further inclusion of participants from diverse

backgrounds.

The MVP Dataset Is an Invaluable Disease Research

Resource

MVP has several unique features that make it an invalu-

able resource for researching human disease. As evidence

of the general utility of this resource, initial reports using

an earlier tranche of ~300,000 genotyped participants

have reported substantial new findings regarding the ge-

netics of blood lipids, a major cardiovascular risk fac-

tor.30 Not only is MVP ideal for studying the burden of

chronic disease, which increases with age, many of the

clinical records in its EHR span several decades, allowing

for robust longitudinal analysis. This is possible because

patients using the VA health services do not lose

coverage even after changing employers or residence.

Additionally, MVP provides an opportunity to study dis-

eases, such as PTSD and31 alcohol- and substance-abuse

disorders,32 that disproportionately affect US veterans,

as well as to study other deployment-related conditions

and their impact on human health. The MVP pheno-

types are collected in the VA EHR as part of the routine

clinical care at VA national hospitals and clinics across

the country, and clinical data spanning the past three de-

cades are available to be integrated with genomic data on

demand. A list of prevalent disease phenotypes surveyed

from raw International Classification of Diseases (ICD)

diagnostic codes in the VA EHR are provided in Table

S9. Although ethnically diverse, the MVP cohort is not

a true representation of the US general population, given

the underrepresentation of women and requirements for

military service. For instance, early-onset disease pheno-

types (e.g., Mendelian diseases with large effect sizes)

that might limit military service are underrepresented.
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In conclusion, the high-quality genotype data generated

with the MVP 1.0 array provides a valuable resource for re-

searchers investigating the effect of both rare and common

genetic variants within MVP. These quality-controlled ge-

notype data as well as the results from genetic ancestry

and relatedness analyses are made available to all approved

researchers. MVP intends to make coded data available in a

secure data and computing environment after periodic

requests for proposals, where the data use intent and prov-

enance will be clearly verified in accordance with the

participant consent and MVP policies. The genotype data

can be linked to participants’ full EHR, often covering de-

cades of care provided by the VA. MVP is a continuously

expanding research cohort made available by participants

with diverse backgrounds and altruistic intentions to sup-

port research that will benefit their fellow veterans and

others.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.03.004.
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