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Co-localization between Sequence Constraint
and Epigenomic Information Improves Interpretation
of Whole-Genome Sequencing Data

Danqing Xu,1 Chen Wang,1,2 Krzysztof Kiryluk,2 Joseph D. Buxbaum,3,4 and Iuliana Ionita-Laza1,*

The identification of functional regions in the noncoding human genome is difficult but critical in order to gain understanding of the

role noncoding variation plays in gene regulation in human health and disease.We describe here a co-localization approach that aims to

identify constrained sequences that co-localize with tissue- or cell-type-specific regulatory regions, and we show that the resulting score

is particularly well suited for the identification of rare regulatory variants. For 127 tissues and cell types in the ENCODE/Roadmap Epi-

genomics Project, we provide catalogs of putative tissue- or cell-type-specific regulatory regions under sequence constraint. We use the

newly developed co-localization score for brain tissues to score de novomutations in whole genomes from 1,902 individuals affected with

autism spectrum disorder (ASD) and their unaffected siblings in the Simons Simplex Collection. We show that noncoding de novo mu-

tations near genes co-expressed in midfetal brain with high confidence ASD risk genes, and near FMRP gene targets are more likely to be

in co-localized regions if they occur in ASD probands versus in their unaffected siblings. We also observed a similar enrichment for mu-

tations near lincRNAs, previously shown to co-express with ASD risk genes. Additionally, we provide strong evidence that prioritized

de novo mutations in autism probands point to a small set of well-known ASD genes, the disruption of which produces relevant mouse

phenotypes such as abnormal social investigation and abnormal discrimination/associative learning, unlike the de novo mutations in

unaffected siblings. The genome-wide co-localization results are available online.
Introduction

Predicting the functional effects of variants in noncoding

regions of the human genome is very challenging but of

great interest due to the important role that variants in

noncoding regions are likely to play in gene regulation.

In particular, most of the variants identified in genome-

wide association studies reside in noncoding regions, and

comparative genomic studies also suggest that most of

the mammalian conserved and recently adapted regions

consist of noncoding elements.

Several computational methods have already been pro-

posed to predict functional effects of genetic variants in

noncoding regions. One of the traditional approaches is

based on assessing the extent of interspecies evolutionary

conservation in a region of interest.1,2 This approach has

difficulty in identifying a large number of functional ele-

ments in noncoding regions of the human genome with

rapid (functional and sequence) turnover. With the

increasing availability of large numbers of whole-genome

sequences from projects such as TOPMed3 and gnomAD,4

it becomes possible to identify regions that show

sequence constraint within the human lineage, and

several approaches have been proposed to identify such

human-specific constraint regions.4–6 An alternative

approach is based on epigenomic annotations from

biochemical assays in the ENCODE and Roadmap Epige-

nomics projects.7,8 The advantage of the epigenomic

functional annotations is that they can assess function
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at the level of tissue or cell type, which is not possible

with an approach based solely on sequence constraint

metrics. However, measurements from biochemical assays

are affected by stochastic fluctuations of biochemical reac-

tions, and hence these epigenomic annotations are not

proof of function. Integrative methods to combine

various interspecies conservation measures and epige-

nomic annotations have also been proposed, but the ac-

curacies of the resulting prediction methods tend to be

largely driven by one type of annotations (e.g., conserva-

tion or epigenomic), depending on how the training was

done.9–12 In the case of common genetic variants, genetic

variation and gene expression studies such as GTEx13 can

also help identify expression quantitative trait loci

(eQTLs).

In this paper, we describe a new tissue-specific functional

score that is particularly useful in finding rare regulatory

variants that may be difficult to identify using existing ap-

proaches. We make use of a newly developed sequence

constraint score based on a large number of whole-genome

sequences (context-dependent tolerance score or CDTS6)

in combination with an integrative epigenomic functional

score, GenoNet,12,14 in order to identify regions in the

noncoding genomewhere sequence constraint co-localizes

with tissue- or cell-type-specific regulatory regions. The co-

localization approach essentially identifies a subset of pu-

tative regulatory regions in the noncoding genome that

are under sequence constraint, and therefore the regions

that are identified have both evidence of sequence
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constraint and regulatory function based on epigenomic

annotations.

Our proposed method is based on co-localization statis-

tics, commonly used in imaging data to quantify co-local-

ization of biomolecules via optical imaging techniques.15

The proposed approach is different from co-localization

approaches commonly used in genetics that aim to

pinpoint potential causal variants at a locus of interest by

co-localizing GWAS results with molecular QTL data.16 It

is also different from global co-localization analyses aiming

to understand associations between different types of func-

tional annotations.17 Rather, the approach we use here

aims to identify individual (tissue- or cell-type-specific) reg-

ulatory regions that are under sequence constraint. It also

allows us to answer several important questions. For

example, for a given region under sequence constraint

(within the human lineage), what are the relevant tissues

and cell types that are responsible for the observed

constraint? Are regulatory regions in specific tissues and

cell types more likely to co-localize with sequence

constraint regions? Among a set of noncoding variants,

can we prioritize a subset of putative functional variants?

Our proposed co-localization approach can provide an-

swers to these questions and shows encouraging results

in the prioritization of de novo mutations from whole-

genome sequencing studies of autism spectrum disorders

(ASD [MIM: 209850]).
Material and Methods

Overview of the Co-localization Method
We are interested in detecting co-localization between two sets of

signals, i.e., sequence constraint and tissue- or cell-type-specific

functional scores in a given region. One natural approach to mea-

sure co-localization at the region level is to compute a correlation

coefficient. We focus here on Kendall’s t rank coefficient because it

is a non-parametric robust statistic with direct interpretation and

fast computation. For a given region of interest R and two sets of

signals X and Y, we can define the Kendall’s t coefficient as

tðtX; tYÞ¼ 2

ntX ;tYðntX ;tY � 1Þ
X

i;j˛KðtX ;tY Þ:i< j

sign
�
Xi �Xj

�
sign

�
Yi �Yj

�
;

where KðtX; tY Þ ¼ fi˛R : Xi > tX;Yi > tYg and ntX ;tY ¼ jKðtX; tYÞj.
The thresholds tX and tY are pre-specified signal strength thresh-

olds that we discuss in the next section.

Under the null hypothesis that X is independent of Y,

and assuming that the observations within X and Y are

independent, respectively, the variance of tðtX; tY Þ is 2ð2ntX ;tY þ
5Þ=9ntX ;tYðntX ;tY � 1Þ. Then the test statistic is

z¼ tðtX; tYÞ$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ntX ;tYðntX ;tY � 1Þ
2ð2ntX ;tY þ 5Þ

s
� Nð0;1Þ:

The sign of z reflects co-localization or anti-colocalization; in our

particular context, the meaningful event is co-localization. The

assumption of independence of the observations within X or Y

is likely to be violated in our context because observations tend

to be positively autocorrelated over small distances, which leads
514 The American Journal of Human Genetics 106, 513–524, April 2,
to inflated variance and heavier tails of the distribution compared

to N(0,1). When each of X and Y is autocorrelated with a multivar-

iate Gaussian dependence model, the variance of tðtX; tY Þ under

null hypothesis has been derived by Hamed.18 In classic situations

involving a single hypothesis test, one can use the exact variance

to compute adjusted z values.

For autocorrelated data, the null distribution of z is still approx-

imately normal, though with a possibly different mean and vari-

ance: z � Nðm0;s
2
0Þ. We are interested in simultaneously studying

co-localization for large numbers of regions genome-wide, and

such large-scale hypothesis testing opens up the possibility of

empirically estimating the null distribution. The local false discov-

ery rate (local fdr), an empirical Bayes approach that focuses on

densities in large-scale simultaneous testing problems,19 assumes

a simple Bayes model for a large collection of fzigNi¼1 from N re-

gions, and independence of zi’s is not required. Each zi falls into

the null or non-null class, occurring with prior probabilities p0
and p1 ¼ 1� p0, and with the density of z depending on its class,

either f0ðzÞ (null) or f1ðzÞ (non-null). The mixture density is

f ðzÞ ¼ p0f0ðzÞ þ p1f1ðzÞ (see Efron19 for details on estimating the

involved densities). Then the posterior probability of being in

the null class given z is p0f0ðzÞ=f ðzÞ, and the local fdr is defined as

local fdrðzÞbf0ðzÞ
�
f ðzÞ:

The local fdr provides a good measure of co-localization since we

are primarily interested in identifying the small fraction of regions

with small local fdr values, corresponding to interesting regions

that are worth further investigation.

Practical Implementation of the Co-localization

Approach
For the sequence constraint within the human lineage, we use the

recently developed context-dependent tolerance score (CDTS6).

For the tissue- and cell-type-specific regulatory score we use

GenoNet.14 The co-localization statistic t depends on several pa-

rameters, specifically the thresholds for the signals (tX and tY)

and the size of the region. For the analyses described here, we

choose for the GenoNet score tX ¼ 90th percentile for each tissue

(positions with GenoNet score above tX), and for the CDTS score

we choose tY ¼ 0 (in practice we work with �CDTS, so we select

positions with CDTS score below tY). The local fdr for each 1 Kb

window are calculated using the R package locfdr. After estimating

genome-wide local fdr values, we only consider windows with a

minimum number of 10 positions with GenoNet and �CDTS

scores above the pre-selected thresholds for further analyses, since

we have higher confidence in the co-localization results from such

windows.

CDTS Imputation by Cubic Smoothing Splines
The GenoNet score is computed every 25 bp, so for CDTS we

compute average values for each 25-bp bin. The resulting 25 bp

CDTS scores have 13.46% missing rate. In our analyses, we apply

a Sequential Divide and Recombine approach20 and impute the

missing data by cubic smoothing spline estimates whenever

possible, as follows. (1) Divide the range of positions into disjoint

intervals so that the CDTS values are either available or missing in

each interval. (2) No imputation will be performed for intervals

with missing CDTS scores that are longer than 1 kb. (3) For inter-

vals with missing CDTS values and that are shorter than 1 kb, we

stretch the interval from center to total length 10 times its length.

(4) If the missing rate of stretched interval is less than 40%, which
2020
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Figure 1. Histograms of z Values for Several Roadmap Tissues and Cell Types
Histograms of zi’s and fitted mixture density f (green solid curve) and null subdensity p0f0 (blue dashed cuve) for Roadmap tissues/cell
types E002, E030, E082, and E083. Violet colored histogram bars indicate estimated non-null counts. Yellow triangles on the positive
horizontal axis mark the threshold values for local fdr(z)%0:3. Maximum likelihood estimates of mean and standard deviation of the
empirical null distribution, and proportion p0 of null cases are listed below each histogram.
is based on sample size calculation theory of smoothing spline

with some assumptions,21 we impute the original interval using

cubic smoothing splines fit from the stretched interval. The spline

estimates are calculated by the R function ssr in the assist package

(see Web Resources).
Results

Genome-wide Scores

Using the above co-localization local fdr, we compute

scores genome-wide. Specifically, we employ a sliding-win-

dow type approach with window size 1 Kb, and 500 bps

overlap, where for each window a z statistic is computed

as described. The collection of z statistics from all windows

are used in estimating the empirical null distribution

Nðm0; s
2
0Þ and p0. An estimated local fdr is computed for

each window. See Figure 1 for the fitted mixture densities

for selected tissues. Note that the overwhelming majority

of windows with local fdr % 0.3 show co-localization

(i.e., positive z values) rather than anti-colocalization, evi-

dence that we are discovering biologically meaningful re-

gions. Specifically, on average 98.63% (range 88.93%–

100%) of windows with local fdr% 0.3 across the different
The Ame
tissues show co-localization, with only 1.37% (range 0%–

11.07%) showing anti-colocalization.

In the rest of the paper, we only focus on co-localization

statistics for regions with sufficient number of positions

with both signals above pre-specified signal thresholds as

described in the Material and Methods section.
Genome-wide Co-localization between Tissue- and Cell-

Type-Specific Functional Score and Sequence Constraint

We perform co-localization analyses between regulatory

scores (GenoNet scores12,14) for 127 Roadmap tissues and

cell types, and sequence constraint scores as defined by

CDTS. For each tissue or cell type, we compute co-localiza-

tion statistics genome-wide. We focus on results from 1 Kb

regions that have at least ten positions with CDTS and

GenoNet scores above pre-specified thresholds as described

in the Material and Methods section. The resulting per-

centage of the genome with co-localization statistics has

a mean of 9% across tissues (range 7.4%–9.6%). A typical

result from the co-localization analysis is shown in

Figure 2A for a 100 Kb region containing a small window

with strong co-localization signal across tissues (see also

Figure S1 for several examples of co-localized regions).
rican Journal of Human Genetics 106, 513–524, April 2, 2020 515



A

B C

Figure 2. Co-localized Regions across Tissues and Cell Types
(A) A typical result from a region with co-localization. Shown is a 100 Kb region, along with the CDTS score (negative values are indic-
ative of constraint) and tissue-specific functional scores (GenoNet). A heatmap of co-localization local fdr shows the co-localization re-
sults in this region.
(B) Number of 1 Kb regions with co-localization local fdr %0:3, for each tissue/cell type in Roadmap.
(C) Jaccard index of overlap between different tissues using regions with co-localization local fdr less than 0.3 in each of 127 tissues/cell
types in Roadmap.
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Figure 3. Genomic Distribution of Co-
localized Regions
The barplots show the fraction occupied by
different types of genomic regions in the
different percentile group, where the per-
centiles are based on the local fdr values for
co-localization in E001 (ES-I3 cells). The
NA group corresponds to the approximately
91%of thegenomeforwhichwearenot able
to compute co-localization statistics.
A summary of the number of 1 Kb regions that have co-

localization with local fdr %0:3 is given in Figure 2B for all

127 tissues and cell types in Roadmap (see Figure S2 for

similar results using regions with local fdr %0:2). As

shown, human embryonic and induced stem cells have

the largest number of co-localized functional regions.

This is consistent with our expectation, since stem cells

and embryonic tissues have a highly conserved landscape

of transcriptional regulation (for reference, in Figure S3

we show the mean GenoNet score per tissue; as shown,

stem cells tend to have lower average GenoNet scores rela-

tive to other tissues).

We also assess the global sharing of co-localized regions at

local fdr%0:3 across tissues and cell types using the Jaccard

index of overlap (more details are in Appendix A), and the

results are shown in Figure 2C. Overall, there is substantial

overlap among similar tissues and cell types (e.g.,within the

blood cell types group, or within the stem cell group), with

low overlap across different types of tissues. This low over-

lap likely reflects both tissue and cell type specificity of reg-

ulatory regions, but also false negative results.

In terms of genomic regions (more details on the

genomic annotation are in Appendix A), most positions

with low local fdr values fall in intronic and intergenic re-

gions simply due to the large territory occupied by these re-

gions in the genome overall. Note that unlike supervised

methods that are limited in their ability to annotate distal

cis- or trans-regulatory regions due to a paucity of validated

functional noncoding variants outside proximal cis-regula-

tory regions,11 our co-localization approach does not have

this limitation. Results for Roadmap tissue E001 (ES-I3

Cells) are shown in Figure 3, but the rest of the Roadmap

tissues show the same patterns. The strongest enrichments

are in regions 1 Kb upstream of the transcription start sites

(54.863), 50 UTR (363), and exons (7.323). Additionally,

most of the variants in co-localized regions are rare

(95.6% of variants with local fdr less than 0.3 have global

allele frequency less than 0.001 in gnomAD), with an

observed depletion for common variants (Figure S4).
The American Journal of Human
Correlation of Co-localization Scores

for Regions Proximal to

Transcription Start Sites and the

Probability forGenes toBe Intolerant

to Loss-of-Function Variation

It is interesting to investigate whether

genes that are intolerant to loss-of-
function variation also have proximal regulatory regions

that show co-localization with sequence constraint. We

have looked at the correlation between the probability of

loss-of-function intolerance (pLI) score for a gene4 and

the local fdr values for regions that were less than 3 kb

upstream of the annotated transcription start site, for

each tissue separately (more details are in Appendix A).

As expected, we observed a strong positive correlation,

with proximal regulatory regions for genes with high pLI

scores showing lower local fdr values compared with prox-

imal regions for genes with low pLI score (Figure 4A). This

pattern was consistent across all tissues, and as before we

observed higher levels of co-localization for embryonic

stem cells.

We have also looked at the co-localization scores for 3 kb

regions upstream of 2,472 human orthologs of mouse

essential genes22 and compared to the scores for the re-

maining genes. We observed significantly lower co-locali-

zation local fdr values for the essential genes across all

127 tissues and cell types (with a median p value of

10�20, Figure S5), as expected.

ClinVar Variants

We selected a set of high-confidence noncoding patho-

genic variants (n ¼ 446) and benign variants (n ¼ 3,638)

in the ClinVar database (more details are in Appendix A),

and estimated the relative risk for a pathogenic variant

versus a benign variant to fall in co-localized regions (in

any tissue) at different thresholds for co-localization local

fdr (Figure 4B). We observed that noncoding pathogenic

variants are muchmore likely to fall in co-localized regions

than noncoding benign variants (e.g., at co-localization

local fdr less than 0.05 the pathogenic variants are 15.9-

fold more enriched than benign variants).

Analyses of De Novo Mutations in Autism Spectrum

Disorder

The analysis of whole-genome sequencing data has been

difficult in part due to the large amount of variation
Genetics 106, 513–524, April 2, 2020 517
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Roadmap.
(B) Relative risk of ClinVar pathogenic
versus benign variants being in co-localized
regions, at different co-localization local fdr
thresholds.
residing in the noncoding part of the genome, and current

limitations in interpreting their functional effects. We

focus here on the Simons Simplex Collection (SSC)

whole-genome sequencing study consisting of 1,902 quar-

tet families including a child affected with ASD, one unaf-

fected sibling control subject, and their parents.23 In total

254,744 de novo mutations were identified, �67 de novo

mutations per genome. The prioritization of de novo muta-

tions based on the co-localization local fdr can help iden-

tify among the large set of observed de novo mutations in

ASD probands those more likely to be functional and

related to autism. We compute a score for each mutation

as the average of the local fdr for the two 1 Kb windows

containing the mutation, and focus on ten brain Roadmap

tissues and cell types.

Using experimental data from a dual-luciferase assay on

allelic-specific expression in human neuroblastoma cells

for proband and sibling allele,24 we show that, among mu-

tations with evidence of allele-specific transcriptional ac-

tivity, mutations with small co-localization local fdr values

in brain tissues (Figures S6 and S7) exhibit the highest level

of significance in the differential allelic expression tests

(Figures 5 and S8). Therefore, prioritizing mutations with
518 The American Journal of Human Genetics 106, 513–524, April 2, 2020
small local fdr values in appropriate

tissues can help identify those more

likely to validate in experimental

studies. In contrast, this is not true if

other functional scores are used to pri-

oritize mutations. For example, select-

ing mutations based on the pLI of

nearest gene or CDTS scores or DNA

Disease Impact Score24 does not neces-

sarily prioritize the mutations with the

highest significance level in differen-

tial allelic expression tests (Figure S9).

Gene Set Analyses

We focus here on 13 gene sets,

including ASD risk genes (FDR <

0.3);25 genes coexpressed in midfetal

brain with ASD risk genes;26 genes

associated with developmental delay

from the Development Disorder Geno-

type-Phenotype Database; CHD8

target genes defined as the union of
lists from two ChIP-seq studies;27,28 FMRP target genes;29

human postsynaptic density (PSD) proteins from the

Genes2Cognition database; brain expressed genes;30

constrained genes defined as having a probability of loss-

of-function intolerance (pLI) score R0:9 in the ExAC

database; and five categories defined by GENCODE

(wgEncodeGencodeCompV19): protein coding genes,

pseudogenes, lincRNA, antisense genes, and processed

transcripts. For each gene set, we assign de novo mutations

to genes in the set if they are within 51/52 Mb of the

transcription start sites of the genes in the set. For each

such mutation we compute the sum of locfdr values in

ten brain tissues in Roadmap. There are slightly more mu-

tations in ASD probands compared to the unaffected sib-

lings, so we randomly sample a subset of mutations

in ASD probands to match the number of mutations in

control subjects. We then compare for significant

differences in the lower tail distribution of brain locfdr

scores for de novo mutations in ASD versus controls (more

details are given in Appendix A). Note that we focus on dif-

ferences in the lower tail of the co-localization score distri-

bution rather than the mean because most de novo variants

do not reside in co-localized regions. We find that



Figure 5. Co-localization and Dual-Luciferase Assay Results
Significance level for testing differential expression for proband
and sibling allele in a dual-luciferase assay, versus sum of co-local-
ization local fdr of 10 brain tissues for 51 de novomutations in ASD
probands; mutations with sum of co-localization local fdr below 7
are represented as squares, and labeled with their nearest gene; all
other mutations are shown as circles. Significance levels for testing
differential expression were computed on the basis of a t test and
Fisher’s combined probability test (two sided; gray for p < 0.05,
orange for p < 0.01, blue for p < 0.001, red for p < 0.0001).
noncoding de novo mutations near genes co-expressed in

midfetal brain with high confidence ASD risk genes are

more likely to be in co-localized regions if they occur in

ASD probands versus in their unaffected siblings (Figures

6, S10, and S12; p value31 ¼ 0.031). Similarly, we find

that de novo mutations near lincRNAs are more likely to

reside in co-localized regions if they are in ASD probands

versus in their unaffected siblings (p value ¼ 0.030). This

is concordant with recent studies showing co-expression

of lncRNAs with genes harboring ASD protein coding mu-

tations, suggesting that these lncRNAs are potential ASD

risk loci.32 For FMRP target genes, the p value is 0.027.

The set of developmental delay genes also shows sugges-

tive enrichment for co-localized de novo mutations in

ASD versus unaffected siblings (p value ¼ 0.076). Results

for all genesets are reported in Table S1. Note that the

gene sets with significant results have been related to

ASD risk before, while gene sets defined using GENCODE,

with the exception on lincRNA, do not show any signifi-

cant results in our analyses. Overall, using a conservative

choice for the proportion of null p values, we find that

the associations with lincRNAs, genes co-expressed inmid-

fetal brain with high confidence ASD risk genes, and FMRP

target genes have q-values <0.135 (Table S1).

Mouse Phenotype Enrichment Analyses

We have additionally performed mouse phenotype enrich-

ment analyses as follows. For the ten brain Roadmap tis-

sues and cell types, we identify those de novo mutations

with minimum co-localization local fdr less than 0.4 or

0.5 (we have considered more stringent thresholds

including 0.3, but the functional enrichment analyses we

report below were underpowered at those thresholds).

We focus here on describing the details of the analysis us-

ing 0.5 as a threshold, but results are also reported at the

0.4 threshold and they are similar. Using local fdr less

than 0.5 in at least one brain tissue results in 1,098

de novo mutations in ASD probands and 1,102 in unaf-

fected siblings (Table S2). We then map these to nearby
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genes using a ‘‘nearest gene’’ approach. We use these

selected genes as seed genes in a PPI network analysis in

the ToppFun tool33 (all the interactions in the underlying

PPI network are derived from large-scale experiments and

curated manually) and identify two sets of genes that

significantly interact with the set of seed genes, one origi-

nating from ASD probands (11 genes) and one from unaf-

fected siblings (8 genes) (Table S2). Note that the set of

significantly interacting genes does not contain all the

direct neighbors of the seed genes, but only a small num-

ber of genes, namely those genes showing significantly

more interactions with the set of seed genes than expected

by chance, given the interactions in the PPI network (ac-

cording to a hypergeometric test); in contrast, selecting

at random gene sets of same size as the seed gene set leads

to empty sets of significantly interacting genes in the vast

majority of cases (99%), supporting the idea that the prior-

itization based on the co-localization local fdr leads to a set

of functionally related genes. We focus on the small set of

interacting genes and make use of mouse orthologs of hu-

man genes in order to interrogate mouse phenotype

data, consisting of Mouse Phenotype ontology annota-

tions and gene variants causing these phenotypes in genet-

ically engineered or mutagenesis experiments.

Based on these analyses, we detect clear functional dif-

ferences between interacting genes in the PPI network for

ASD probands versus control subjects (Table 1). In partic-

ular, the mouse orthologs of human genes originating

from ASD probands point to mouse phenotypes highly

relevant to ASD, such as abnormal social investigation, so-

cial withdrawal, and abnormal discrimination/associative

learning unlike the mouse orthologs of human genes orig-

inating from unaffected siblings which point to seemingly

unrelated phenotypes, such as delayed hepatic develop-

ment, abnormal hepatoblast migration, etc. (Table 1).

The interacting genes in ASD probands pointing to these

mouse phenotypes (Table S2) include some well-known

risk genes for ASD (including GRIN1 [MIM: 138249],

SHANK3 [MIM: 606230], SYNGAP1 [MIM: 603384],

DLGAP1 [MIM: 605445], DLG4 [MIM: 602887], etc.).

Four of these proteins (SHANK3, DLGAP1, SYNGAP1,

and DLG4) form the core of the postsynaptic density struc-

ture, interact with hundreds of other proteins to influence

synaptic plasticity, and affect learning and memory.34

Similar results were obtained when using local FDR < 0.4

to prioritize de novo mutations (Table S3). All the signifi-

cant enrichments (FDR < 5%) are reported in detail in

Tables S6, S7, S8, and S9. We note that performing similar

analyses but prioritizing de novo mutations based on the

DeepSEA disease impact score does not result in a mean-

ingful set of interacting genes and mouse phenotypes

(Tables S4 and S5).

In summary, our findings suggest that regulatory de novo

mutations in noncoding regions can affect interactions

with a small set of highly relevant ASD genes, that can in

turn alter the risk to ASD. This is concordant with the om-

nigenic model, which proposed that a large number of
rican Journal of Human Genetics 106, 513–524, April 2, 2020 519
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Figure 6. Gene Set Analyses
For each gene set, the �log10(p values) from a Wilcoxon rank sum test of difference between brain local fdr for the mutations residing
within 2 Mb of TSS of genes in the set, in ASD probands versus unaffected siblings are shown. The test is performed on the 100–10,000
mutations with the lowest brain local fdr in ASD probands and unaffected siblings, respectively, as described in Appendix A.
peripheral genes can affect risk to complex diseases

through regulatory effects on a much smaller number of

core genes with biological relevance to the trait.35
Discussion

We have proposed here a co-localization statistic to detect

regions in the noncoding parts of the human genome

where tissue- or cell-type-specific regulatory variants co-

localize with sequence constraint. Although conceptually

simple, the co-localization statistic is a powerful tool in

the identification of highly functional regulatory variants

and can help prioritize rare regulatory variants implicated

in disease, a class of variation that is difficult to identify.

Using existing experimental data on allele-specific tran-

scriptional activity of selected ASD mutations, we show
520 The American Journal of Human Genetics 106, 513–524, April 2,
that prioritizing mutations based on co-localization score

in brain tissues is likely to select those mutations with

highest effects on expression.

We demonstrate the usefulness of the co-localization

score in identifying regulatory mutations using several

applications. Specifically, we have shown that (1) regulatory

regions in embryonic and induced stem cells tend to co-

localize more often with regions under sequence constraint

relative to regulatory regions in other tissues, as expected;

(2) the co-localization between potentially regulatory re-

gions and regions under sequence constraint is overwhelm-

ingly in the positive direction, supporting the biological sig-

nificance of the co-localized regions; (3) we have shown that

genes that are intolerant to loss-of-function mutations tend

to have proximal regulatory regions that co-localize with

constraint; (4) noncoding pathogenic variants in ClinVar

are highly enriched in co-localized regions relative to
2020



Table 1. Mouse Phenotypes Affected by Genes Orthologous to the Interacting Genes Derived fromDe NovoMutations in ASD Probands and
Unaffected Siblings

Mouse Phenotype p Value p Value Bonferroni Interacting Genes

ASD Proband

Abnormal social investigation 9.202e�10 7.095e�07 GRIN1, MAPK1, DLGAP1, DLG4, SHANK3, SYNGAP1

Abnormal glutamate-mediated receptor currents 2.982e�09 2.299e�06 KALRN, GRIN1, DLG4, SHANK3, SYNGAP1

Social withdrawal 3.617e�09 2.789e�06 GRIN1, MAPK1, SHANK3, SYNGAP1

Abnormal social/conspecific interaction 8.313e�09 6.410e�06 KALRN, GRIN1, MAPK1, DLGAP1, DLG4, SHANK3,
SYNGAP1

Abnormal discrimination learning 1.463e�08 1.128e�05 GRIN1, DLG4, SHANK3, SYNGAP1

Abnormal AMPA-mediated synaptic currents 2.995e�08 2.309e�05 KALRN, GRIN1, DLG4, SYNGAP1

Abnormal associative learning 1.691e�07 1.304e�04 KALRN, GRIN1, MAPK1, DLG4, SHANK3, SYNGAP1

Increased grooming behavior 1.706e�07 1.315e�04 GRIN1, DLGAP1, DLG4, SHANK3

Decreased anxiety-related response 2.603e�07 2.007e�04 KALRN, MAPK1, DLG4, SHANK3, SYNGAP1

Abnormal contextual conditioning behavior 2.919e�07 2.250e�04 KALRN, GRIN1, MAPK1, DLG4, SHANK3

Control Sibling

Delayed hepatic development 1.047e�07 1.155e�04 SMAD2, SMAD3, NF1

Abnormal hepatoblast migration 1.518e�06 1.675e�03 SMAD2, SMAD3

Abnormal hepatoblast physiology 3.035e�06 3.348e�03 SMAD2, SMAD3

Abnormal secondary ovarian follicle morphology 3.038e�06 3.350e�03 SMAD2, SMAD3, FMR1

De novomutations are prioritized based on having co-localization local fdr< 0.5 in at least one brain tissue. Top ten phenotypes with Bonferroni adjusted p value<
0.01 as reported by ToppFun analysis are reported.
benign variants; (5) noncoding de novo mutations near

genes co-expressed in midfetal brain with high confidence

ASD risk genes, near FMRP targets, and also near lincRNAs

are more likely to be in co-localized regions if they occur

in ASD probands versus their unaffected siblings; (6) our

ASD findings suggest that regulatory de novo mutations in

noncoding regions can affect interactions with a small set

of well-known ASD genes, that can in turn alter the risk to

ASD. Functional enrichment analyses on the small set of in-

teracting genes points to highly relevant phenotypes in

mouse for genes derived from de novo mutations in ASD

but not for genes derived from mutations in unaffected sib-

lings. We note that selecting all de novo variants with

maximum epigenomic score in brain tissues (i.e., with

GenoNet value 1) does not help in prioritizing the relevant

mutations and genes due to the large observed number of

such mutations. Similarly, prioritizing mutations with

high pLI scores (>0.99) for nearest genes does not help

(e.g., it uncovers general biological processes, not specific

to ASD), due to the large number of genes with high scores

and the even larger number of significantly interacting

genes. Therefore, the prioritization of mutations based on

co-localization scores provides amore effective way to prior-

itize likely functional mutations with specific relevance to

ASD compared with existing methods.

The proposed co-localization score can be useful in prior-

itizing pathogenic variants in genomes from individuals

affected with rare, Mendelian disorders. However, caution

is needed because the large number of rare variants per
The Ame
genome makes the confident identification of truly patho-

genic variants very challenging. While we can prioritize

‘‘outlier’’ variants in these individuals, other types of

data, including transcriptome data in the appropriate tis-

sues, when available, can further help with the prioritiza-

tion.36 We also note that our method does not provide a

means to link putative functional variants to the genes

they might regulate.

The co-localization analyses reported here can be

improved in several ways. We have shown using allele-spe-

cific expression data that the proposed score performs well

in prioritizing true regulatory variants, and therefore may

perform well in terms of positive predictive value and

specificity, but it will naturally miss many true regulatory

variants because either they do not reside in co-localized

regions or because our co-localization statistic cannot iden-

tify them. In particular, common regulatory variants are

depleted in these co-localized regions, and hence the pro-

posed score is particularly appropriate for the prioritization

of rare regulatory variants. Furthermore, the sequence

constraint scores for noncoding regions are still under

development but with the rapid increase in whole-genome

sequencing datasets and more powerful methods, we

should expect substantial improvements. Similarly, tissue-

and cell-type-specific regulatory scores can be improved

upon by incorporation of additional features and develop-

ment in experimental functional assays (such as

massively parallel reporter assays) that would ultimately

lead to improved computational predictions.14 We have
rican Journal of Human Genetics 106, 513–524, April 2, 2020 521



computed co-localization statistics for 1 Kb regions

genome-wide for 127 tissue and cell types available in

ENCODE/Roadmap, and the scores are available online.
Appendix A

Jaccard Index of Overlap

Given a threshold a (e.g., 0.2 or 0.3), the window is co-

localized for a tissue if the tissue-specific co-localization

local fdr is not greater than a and has minimum 10 posi-

tions with GenoNet and �CDTS scores above the pre-

selected thresholds. The Jaccard index of overlap for a

pair of tissues (i,j) is the ratio of the number of windows

that are co-localized for both tissues and the number of

windows that are co-localized for at least one tissue.

Regions Proximal to Genes

For each region proximal to a transcription start site,

defined as less than 3 kb upstream of the annotated tran-

scription start site, we computed the z statistic described

in the main text and estimated local fdr values based on

z statistics from genome-wide 3 Kb sliding windows.

Annovar Annotation

We selected one million random positions and then used

Annovar for their genomic annotation. The genomic an-

notations include 11 categories: ‘‘exonic,’’ ‘‘exonic,

ncRNA,’’ ‘‘splicing,’’ ‘‘splicing, ncRNA,’’ ‘‘UTR3,’’ ‘‘UTR5,’’

‘‘intronic,’’ ‘‘intronic, ncRNA,’’ ‘‘upstream,’’ ‘‘downstream,’’

and ‘‘intergenic.’’ Definitions of these annotations can be

found on the Annovar website.

ClinVar

We selected high-confidence autosomal variants from the

ClinVar database for which the review status are ‘‘practice

guideline’’ (four gold stars), ‘‘reviewed by expert panel’’

(three gold stars), or ‘‘criteria provided, multiple submit-

ters, no conflicts’’ (two gold stars). The variants were anno-

tated as noncoding variants if the molecular consequences

include any term among ‘‘3 prime UTR variant,’’ ‘‘5 prime

UTR variant,’’ ‘‘500B downstream variant,’’ ‘‘2Kb upstream

variant,’’ and ‘‘intron variant.’’ The resulting set consists of

2,395 pathogenic variants and 3,853 benign variants. We

further process this list so that a pathogenic variant will

be removed if there is any benign variant located within

its neighborhood of radius 500 bps, and the benign vari-

ants in the neighborhood will be removed as well. The

final dataset consists of 446 pathogenic variants and

3,638 benign variants.

Gene Sets

For a given gene set, we assign de novomutations to it if the

mutations fall within51/52 Mb of the transcription start

sites of genes in the set. For each gene set, there are slightly

more mutations in ASD probands than in the unaffected

siblings, so we randomly sample a subset of mutations in
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ASD probands to match the number of mutations in con-

trol subjects. We focus on ten brain tissues in Roadmap

(E067, E068, E069, E070, E071, E072, E073, E074, E081,

E082) and compute for each mutation a score as the sum

of locfdr values in these brain tissues. For a given gene

set, let M be the number of de novo mutations assigned to

the gene set in ASD probands and the same number for

unaffected siblings. Let L
p
ð1Þ;.;L

p
ðMÞ be the scores in

increasing order for the M mutations in ASD probands

and Ls
ð1Þ;.;Ls

ðMÞ for the unaffected siblings. We compare

the two sets of scores, for the lowest scoring mutations,

starting with 100 and until 10,000 with a step of 100, using

a Wilcoxon rank-sum test. The corresponding p values are

denoted as p1;.;p100. These are the p values shown in Fig-

ures 6 and S10. To evaluate the statistical significance of

these observed p values, we compute the following statistic

Smax ¼ max �log10ðp1Þ;.;�log10
�
p100

�� �
:

We evaluate the significance by permutation. Specifically,

we permute the ASD proband-unaffected sibling status of

the 2$M mutations, and recompute the Smax statistic for

each permuted dataset. The distributions of the Smax statis-

tic for 1,000 permutations is shown in Figures S11 and S12.

The p value is evaluated empirically based on 1,000 permu-

tations. The two p values (using 1 Mb or 2 Mb distance to

TSS to assign mutations to gene sets) are combined using

the Cauchy combination method.31
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.03.003.
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