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The coronavirus disease 2019 (COVID-19) pan-epidemic, result-
ing from infection with the 2019 novel coronavirus (2019-nCoV),
also known as severe acute respiratory syndrome-coronavirus-2
(SARS-CoV-2), is currently the source of public health concern
worldwide; however, treatment of this infection has been clinically
challenging in many patients [1]. Importantly, 2019-nCoV is the
third fatal coronavirus that has emerged in the past two decades,
following SARS-CoV and the Middle East respiratory syndrome
(MERS)-CoV [2]. The numbers of confirmed cases of COVID-19
infection and related deaths are still rising. As of 9 March 2020,
there have been 80 754 confirmed cases and 3136 deaths in the
mainland of China [3], corresponding to a total crude mortality
of 3.88%. Because the mortality is higher (14.4%) in severely ill
patients (the estimated percentage of severe patients is 27.1%;
4794 of 17 721) [3], treatment strategies are urgently needed [4].

Hypercytokinemia, also known as ‘‘cytokine storm,” is a fre-
quently occurring feature of severe infections with SARS, MERS,
H5N1 influenza, and H7N9 influenza; it is associated with disease
severity and is a predictor of mortality [5,6]. Studies of SARS have
shown that elevated levels of the cytokines/chemokines inter-
leukin (IL)-1, IL-6, IL-8, IL-12, interferon (IFN)-c, IFN-c-induced
protein 10 (IP-10), and monocyte chemoattractant protein-1
(MCP-1) are associated with inflammation and extensive damage
in the lung [7]. Elevated levels of IFN-c, IL-15, IL-17, and tumor
necrosis factor-a (TNF-a) are also features of MERS-CoV infection
[8]. Similarly, serum levels of IFN-c, IL-6, IL-8, IL-10, IP-10, MCP-
1, and monokine induced by IFN-c (MIG) were higher in H5N1
influenza-infected patients than in healthy individuals [5]. More-
over, patients with H7N9 influenza infection had higher levels of
34 cytokines and chemokines, such as hepatocyte growth factor,
IL-6, IL-18, IP-10, MCP-1, macrophage migration inhibitory factor,
MIG, stem cell factor, and stem cell growth factor-b [6]; notably,
most of these cytokines/chemokines are pro-inflammatory.

A previous study revealed high levels of pro-inflammatory
cytokines/chemokines (e.g., IL-2, IL-7, IL-10, granulocyte-colony-
stimulating factor (G-CSF), IP-10, MCP-1, macrophage inflamma-
tory protein 1a (MIP1A), and TNF-a) in severely and critically ill
patients with COVID-19 infection; furthermore, the presence of
cytokine storm was correlated with disease severity [2]. Studies
revealed that the lethality of coronavirus or influenza virus is
related to the induction of an excessive and aberrant immune
response associated with severe lung pathology, with frequently
fatal consequences [2,6,9–11]. Therefore, curbing the overt inflam-
matory response induced by COVID-19 may be essential for reduc-
ing mortality among severely and critically ill patients with COVID-
19 infection [2,12,13]. However, clinical management of severe
patients infected with SARS or MERS has revealed that corticos-
teroid therapy did not reduce mortality; in contrast, it led to
delayed viral clearance [14,15]. In tertiary hospitals in Hubei Pro-
vince, China, systemic corticosteroids were used to treat severely
ill patients with COVID-19 infection who exhibited significant
acute pulmonary progression in imaging examinations; however,
limited experience has shown that this strategy does not result
in significant improvement [13].

In patients with SARS-CoV-related acute respiratory distress
syndrome, cytokine-storm-targeted therapy was recommended
to treat severe pulmonary failure secondary to an excessive inflam-
matory response [16]. Some studies showed that cytokine/chemo-
kine clearance was achieved using artificial-liver blood-
purification systems consisting of blood-purification modules, such
as plasma exchange, plasma absorption, and/or hemo/plasma fil-
tration [17,18]. An artificial-liver blood-purification system was
used to treat patients with severe H7N9 influenza infection who
had confirmed cytokine storm and rapidly deteriorating condition
[18,19]. Positive results were demonstrated in terms of remarkably
reducing the levels of 17 cytokines/chemokines: basic fibroblast
growth factor (FGF), G-CSF, macrophage-colony-stimulating factor,
IFN-c, IL-1 receptor antagonist, IL-12p70, IL-17A, IL-1b, IL-2, IL-4,
IL-5, IL-8, IL-9, platelet-derived growth factor-BB, regulated upon
activation normal T cell expressed and secreted (RANTES), TNF-a,
and vascular endothelial growth factor. These encouraging results
were achieved after the first session of artificial-liver blood-purifi-
cation therapy and were maintained thereafter [18].

The experience gained in the treatment of critically ill patients
with H7N9 influenza infection and cytokine storm revealed the
high efficacy of plasma-exchange modules in artificial-liver
blood-purification systems, based on the extent of cytokine clear-
ance [18]. This result is consistent with the ability of plasma
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exchange to clear large molecules from the blood [17,20]. How-
ever, when the treatment of critically ill patients with H7N9 influ-
enza infection was limited in cytokine clearance to the use of a
continuous veno-venous hemofiltration (CVVH) module, there
was a slight increase in cytokine/chemokine levels [18]. This may
have reflected the ability of the CVVH module to eliminate inflam-
matory cytokines at a clearance rate slower than that of cytokine
release, as well as ineffective clearance of protein-bound cytokines
by hemofiltration [17]. In addition to scavenging inflammatory
mediators, the combination of plasma exchange and a CVVH mod-
ule in an artificial-liver blood-purification system can improve the
management of metabolic disorder, fluid overload, and cardiovas-
cular dysfunction [18].

Given the demonstrated efficacy of cytokine-storm-targeted
rescue therapy in severely and critically ill patients with influenza
virus infections, artificial-liver blood purification may be effective
for treating severely and critically ill patients with COVID-19 infec-
tion, by similarly targeting the cytokine storm (Fig. 1). The artifi-
cial-liver blood-purification system was applied in Zhejiang
Province, China, and showed good prognosis in the treatment of
severely or critically ill COVID-19 patients with cytokine storm
[21].

Based on the above-described evidence, the Expert Consensus
on the Application of Artificial-Liver Blood-Purification System in
the treatment of severe COVID-19 was recently released [22]. This
work recommends artificial-liver blood purification for the treat-
ment of patients with COVID-19 infection who exhibit cytokine
storm and rapid disease progression, as confirmed by lung
imaging. The similar recommendation was made in the Guide-
Fig. 1. The artificial-liver blood-purification system eliminates inflammatory cytokines/c

12
line for the Diagnosis and Treatment of COVID-19 (7th version)
[23].

The Expert Consensus report [22] cites the following indications
for artificial-liver blood-purification therapy in severely and criti-
cally ill patients with COVID-19 infection: ① a plasma concentra-
tion of blood inflammatory factors (such as IL-6) � five-fold
above the upper limit of normal, or a daily increase of > one-fold;
② rapid daily progression of lung involvement � 10%, based on
lung imaging, computed tomography, or X-ray; ③ comorbidities
requiring artificial-liver blood-purification therapy.

It should be noted that conditions ① and②must be met simul-
taneously, whereas condition ③ alone is sufficient for treatment
implementation.

Further investigations may be conducted in the near future and
should consider the following aspects: First, there is a need for
multicenter clinical studies of anti-cytokine-storm targeted thera-
py for COVID-19 by novel artificial-liver blood-purification sys-
tems (i.e., Li’s artificial liver system (Li-ALS) [24]) with
demonstrated abilities to clear pro-inflammatory cytokines (e.g.,
TNF-a, IL-1b, IL-2, IL-6, and IL-18). Second, investigations are
needed regarding the key pathways and immune cell types
involved in cytokine storm onset in COVID-19; these will benefit
the understanding of artificial-liver support system treatment for
alleviating cytokine storm to reverse the disease process in
patients with severe COVID-19 infection by rebalancing the
immune system. By acting as an anti-cytokine-storm targeted
therapy, artificial-liver blood-purification systems hold excellent
potential for reducing mortality in severely and critically ill
patients with COVID-19 infection.
hemokines and alleviates cytokine-storm-induced damage in 2019-nCOV infection.
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