Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 28;84(6):823–833. doi: 10.1016/0002-8703(72)90077-4

Intrauterine virus infections and congenital heart disease

James C Overall Jr a,b,
PMCID: PMC7119417  PMID: 4361535

Abstract

The etiologic basis for the vast majority of cases of congenital heart disease remains largely undefined. Viruses have been considered to be likely candidates since the recognition of the association between intrauterine rubella and congenital heart disease. Although the pathogenesis of cardiovascular defects is poorly understood, information gained from the study of congenital rubella syndrome suggests that mechanisms such as focal endothelial cell damage, resulting in obliteration of vascular supply, decreased growth rate, and shortened survival time of certain cells, and disturbed DNA replication in cells whose chromosomes were damaged secondary to the effects of virus replication may be operative in the production of defects in the developing fetus. In addition to rubella there is suggestive, but not conclusive, evidence that Coxsackie B3 and B4 virus infections during pregnancy can result in the birth of infants with a variety of types of congenital heart lesions and that intrauterine mumps virus infection may be etiologically related to the postnatal development of endocardial fibroelastosis (EFE). Although there are a number of other viruses that are potential etiologic agents of congenital heart disease, the current status of information is inadequate to allow even suggestive associations to be made. The most profitable areas for future investigation appear to be: (1) the epidemiology of congenital heart disease, (2) prospective studies of the association of maternal viral infection with abnormal offspring, (3) the in-depth virologic investigation of the infant with a cardiac defect, and (4) the development of experimental animal models of congenital heart disease. Successful control of virus-induced congenital heart disease will depend on the results of these investigations and the development of vaccines against the identified causative viruses and/or safe and effective antiviral chemotherapy for the woman in early gestation who is infected with a known teratogenic agent.

References

  • 1.Higgins I.T.T. The epidemiology of congenital heart disease. J. Chronic Dis. 1965;18:699. doi: 10.1016/0021-9681(65)90015-9. [DOI] [PubMed] [Google Scholar]
  • 2.Dudgeon J.A. Vol. 61. 1968. Congenital defects: Virus infections; p. 995. (Proc. R. Soc. Med.). [Google Scholar]
  • 3.Jackson B.T. The pathogenesis of congenital cardiovascular anomalies. New Engl. J. Med. 1968;279:25. doi: 10.1056/NEJM196807042790106. [DOI] [PubMed] [Google Scholar]; Jackson B.T. The pathogenesis of congenital cardiovascular anomalies. New Engl. J. Med. 1968;279:80. doi: 10.1056/NEJM196807112790206. [DOI] [PubMed] [Google Scholar]
  • 4.Campbell M. Causes of malformations of the heart. Br. Med. J. 1965;2:895. doi: 10.1136/bmj.2.5467.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Overall J.C., Jr., Glasgow L.A. Virus infections of the fetus and newborn infant. J. Pediatr. 1970;77:315. doi: 10.1016/s0022-3476(70)80346-8. [DOI] [PubMed] [Google Scholar]
  • 6.Mims C.A. Pathogenesis of viral infections of the fetus. Progr. Med. Virol. 1968;10:194. [PubMed] [Google Scholar]
  • 7.Elizan T.S., Fabiyi A. Congenital and neonatal anomalies linked with viral infections in experimental animals. Am. J. Obstet. Gynecol. 1970;106:147. doi: 10.1016/0002-9378(70)90141-9. [DOI] [PubMed] [Google Scholar]
  • 8.Tondury G., Smith D.W. Fetal rubella pathology. J. Pediatr. 1966;68:867. doi: 10.1016/s0022-3476(66)80204-4. [DOI] [PubMed] [Google Scholar]
  • 9.Desai R.G., Creger W.P. Maternofetal passage of leukocytes and platelets in man. Blood. 1963;21:665. [PubMed] [Google Scholar]
  • 10.Gresser I., Lang D.J. Relationships between viruses and leukocytes. Progr. Med. Virol. 1966;8:62. [PubMed] [Google Scholar]
  • 11.Jack I. Leukocyte viremia and intrauterine infection. Am. Heart J. 1970;80:291. doi: 10.1016/0002-8703(70)90181-x. [DOI] [PubMed] [Google Scholar]
  • 12.Brown G.C. Recent advances in the viral aetiology of congenital anomalies. Adv. Teratol. 1966;1:55. [Google Scholar]
  • 13.Gregg N.M. Congenital cataract following German measles in the mother. Trans. Ophthalmol. Soc. Aust. 1941;3:35. [PubMed] [Google Scholar]
  • 14.Rowe W.P., Hartley J.W., Waterman S., Turner H.C., Huebner R.J. Vol. 92. 1956. Cytopathogenic agent resembling human salivary gland virus recovered from tissue cultures of human adenoids; p. 418. (Proc. Soc. Exp. Biol. Med.). [PubMed] [Google Scholar]
  • 15.Smith M.G. Vol. 92. 1956. Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus disease; p. 424. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  • 16.Weller T.H., Neva F.A. Vol. 111. 1962. Propagation in tissue culture of cytopathic agents from patients with rubella-like illness; p. 215. (Proc. Soc. Exp. Biol. Med.). [Google Scholar]
  • 17.Parkman P.D., Buescher E.L., Artenstein M.S. Vol. 111. 1962. Recovery of rubella virus from army recruits; p. 225. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  • 18.Krugman S. International conference on rubella immunization. I. Rubella as a disease. II. Virology and epidemiology of rubella. Am. J. Dis. Child. 1969;118:1. [Google Scholar]
  • 19.Cooper L.Z., Ziring P.R., Ockerse A.B., Fedun B.A., Kiely B., Krugman S. Rubella: Clinical manifestations and management. Am. J. Dis. Child. 1969;118:18. [PubMed] [Google Scholar]
  • 20.Hardy J.B., McCracken G.H., Gilkeson M.R., Sever J.L. Adverse fetal outcome following maternal rubella after the first trimester of pregnancy. J.A.M.A. 1969;207:2414. [PubMed] [Google Scholar]
  • 21.Rawls W.E., Melnick J.L. Rubella virus carrier cultures derived from congenitally infected infants. J. Exp. Med. 1966;123:795. doi: 10.1084/jem.123.5.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Naeye R.L., Blanc W. Pathogenesis of congenital rubella. J.A.M.A. 1965;194:1277. [PubMed] [Google Scholar]
  • 23.Nusbacher J., Hirschhorn K., Cooper L.Z. Chromosomal abnormalities in congenital rubella. New Engl. J. Med. 1967;276:1409. doi: 10.1056/NEJM196706222762505. [DOI] [PubMed] [Google Scholar]
  • 24.Kono R., Hayakawa Y., Hibi M., Ishii K. Experimental vertical transmission of rubella virus in rabbits. Lancet. 1969;1:343. doi: 10.1016/s0140-6736(69)91301-4. [DOI] [PubMed] [Google Scholar]
  • 25.Bohigian G.M., Fox J., Cotlier E. Immunofluorescent localization of rubella virus in the lens, retina and heart of congenital rubella-infected rats. Am. J. Ophthalmol. 1968;65:196. doi: 10.1016/0002-9394(68)93587-3. [DOI] [PubMed] [Google Scholar]
  • 26.Lerner A.M. Coxsackievirus myocardiopathy. J. Infect. Dis. 1969;120:496. doi: 10.1093/infdis/120.4.496. [DOI] [PubMed] [Google Scholar]
  • 27.Brown G.C., Evans T.N. Serologic evidence of coxsackievirus etiology of congenital heart disease. J.A.M.A. 1967;199:183. [PubMed] [Google Scholar]
  • 28.Burch G.E., Sun S.C., Chu K.C., Sohal R.S., Colcolough H.L. Interstitial and Coxsackievirus B myocarditis in infants and children. J.A.M.A. 1968;203:1. [PubMed] [Google Scholar]
  • 29.Burch G.E., Sun S.C., Colcolough H.L., Sohal R.S., DePasquale N.P. Coxsackie B viral myocarditis and valvulitis identified in routine autopsy specimens by immunofluorescent techniques. Am. Heart J. 1967;74:13. doi: 10.1016/0002-8703(67)90035-x. [DOI] [PubMed] [Google Scholar]
  • 30.Bates H.R. Coxsackie virus B3 calcific pancarditis and hydrops fetalis. Am. J. Obstet. Gynecol. 1970;106:629. doi: 10.1016/0002-9378(70)90058-x. [DOI] [PubMed] [Google Scholar]
  • 31.Surjus A. Effects of Coxsackie B3 virus on pregnant mice and its transplacental transmission. Ann. Inst. Pasteur. 1961;100:825. [Google Scholar]
  • 32.Noren G.R., Adams P., Anderson R.C. Postive skin reactivity to mumps virus antigen in endocardial fibroelastosis. J. Pediatr. 1963;62:604. doi: 10.1016/s0022-3476(63)80021-9. [DOI] [PubMed] [Google Scholar]
  • 33.St. Geme J.W., Jr., Noren G.R., Adams P., Jr. Proposed embryopathic relation between mumps virus and primary endocardial fibroelastosis. New Engl. J. Med. 1966;275:339. doi: 10.1056/NEJM196608182750701. [DOI] [PubMed] [Google Scholar]
  • 34.Gersony W.M., Katz S.L., Nadas A.S. Endocardial fibroelastosis and the mumps virus. Pediatrics. 1966;37:430. [PubMed] [Google Scholar]
  • 35.Katz S.L. The possible relationship of viruses, other than rubella and cytomegalovirus, to the etiology of birth defects. In: Bergsma D., editor. Intrauterine infections. National Foundation; New York: 1968. (Birth Defects Original Article Series). [Google Scholar]
  • 36.Sterzl J., Silverstein A.M. Developmental aspects of immunity. Adv. Immunol. 1967;6:337. doi: 10.1016/s0065-2776(08)60525-8. [DOI] [PubMed] [Google Scholar]
  • 37.Brunell P.A., Brickman A., O'Hare D., Steinberg S. Ineffectiveness of isolation of patients as a method of preventing the spread of mumps. New Engl. J. Med. 1968;279:1357. doi: 10.1056/NEJM196812192792502. [DOI] [PubMed] [Google Scholar]
  • 38.Siegel M., Fuerst H.T. Low birth weight and maternal virus diseases. J.A.M.A. 1966;197:680. [PubMed] [Google Scholar]
  • 39.Hyatt H.W. Relationship of maternal mumps to congenital defects and fetal deaths, and to maternal morbidity and mortality. Am. Practit. 1961;12:359. [PubMed] [Google Scholar]
  • 40.Carstens P.H.B. Postnatal mumps virus infection associated with endocardial fibroelastosis. Arch. Pathol. 1969;88:399. [PubMed] [Google Scholar]
  • 41.St. Geme J.W., Jr., Peralta H., Farias E., Davis C.W.C., Noren G.R. Experimental gestational mumps virus infection and endocardial fibroelastosis. Pediatrics. 1971;48:821. [PubMed] [Google Scholar]
  • 42.St. Geme J.W., Jr., Davis C.W.C., Van Pelt L.F. Presented to The Society for Pediatric Research, Atlantic City. 1971. A primitive immunologic marker of intrauterine virus infection. [Google Scholar]
  • 43.McCracken G.H., Shinefield H.R., Cobb K., Rausen A.R., Dische R., Eichewald H.F. Congenital cytomegalic inclusion disease. Am. J. Dis. Child. 1969;117:521. doi: 10.1001/archpedi.1969.02100030524005. [DOI] [PubMed] [Google Scholar]
  • 44.McIntosh K., Kapikian A.Z., Turner H.C., Hartley J.W., Parrott R.H., Chanock R.M. Seroepidemiologic studies of coronavirus infection in adults and children. Am. J. Epidemiol. 1970;91:585. doi: 10.1093/oxfordjournals.aje.a121171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Dolin R., Blacklow N.R., Malmgren R.A., Chanock R.M. Establishment of human fetal intestinal organ cultures for growth of viruses. J. Infect. Dis. 1970;122:227. doi: 10.1093/infdis/122.3.227. [DOI] [PubMed] [Google Scholar]
  • 46.Tillotson J.R., Lerner A.M. Reovirus type 3 associated with fatal pneumonia. New Engl. J. Med. 1967;276:1060. doi: 10.1056/NEJM196705112761903. [DOI] [PubMed] [Google Scholar]
  • 47.Hassan S.A., Cochran K.W. Effects of reovirus type 1 on the developing mouse. Am. J. Pathol. 1969;55:147. [PMC free article] [PubMed] [Google Scholar]
  • 48.Woodside G.L., Mitchell S.C. U. S. Dept. of Health, Education, and Welfare; 1968. Viral etiology of congenital malformations. [Google Scholar]
  • 49.Baron S. Mechanism of recovery from viral infection. Adv. Virus Res. 1963;10:39. doi: 10.1016/s0065-3527(08)60696-x. [DOI] [PubMed] [Google Scholar]
  • 50.St. Geme, J. W., Jr.: Personal communication.
  • 51.Ferm V.H., Kilham L. Congenital anomalies induced in hamster embryos with H-1 virus. Science. 1964;145:510. doi: 10.1126/science.145.3631.510. [DOI] [PubMed] [Google Scholar]
  • 52.Finter N.B. Exogenous interferon in animals and its clinical implications. Arch. Intern. Med. 1970;126:147. [PubMed] [Google Scholar]
  • 53.Hilleman M.R. Double-stranded RNAs (Poly I:C:) in the prevention of viral infections. Arch. Intern. Med. 1970;126:109. [PubMed] [Google Scholar]

Articles from American Heart Journal are provided here courtesy of Elsevier

RESOURCES