Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;32(3):243–259. doi: 10.1016/0165-2427(92)90049-V

Swine leukocyte antigen and macrophage marker expression on both African swine fever virus-infected and non-infected primary porcine macrophage cultures

Mercedes Gonzalez Juarrero a, Charles A Mebus b, Reyes Pan c, Yolanda Revilla c, Jose M Alonso c, Joan K Lunney d,+
PMCID: PMC7119579  PMID: 1632065

Abstract

Swine leukocyte antigens (SLA) and a macrophage specific marker were monitored on porcine macrophages cultured with or without macrophage colony stimulatory factor (M-CSF) and on cells infected with African swine fever virus (ASFV). SLA expression was maximal either in the total cell extract or on the cell surface at 3–4 days of culture; after 4 days these values began to decrease. Fluorescence analyses of immunostained macrophages cultured with or without M-CSF indicated a major upward shift in the number of SLA Class I molecules on individual macrophages whereas for SLA Class II both a novel expression of Class II and an upward shift in the number of molecules per cell were evident.

Infection of 3-day-old macrophage cultures with three different isolates of ASFV resulted in minor changes in surface expression of SLA Class I, SLA Class II, and macrophage markers. No differences in infection with ASFV was observed whether macrophages were SLA Class II positive or negative, nor was there blocking by anti-SLA Class I or Class II monoclonal antibodies of ASFV infection of cultured macrophages.

Abbreviations: APC, antigen presenting cell; ASF, African swine fever; ASFV, African swine fever virus; c.p.e., 50% cytopathic effect; DR-II, Dominican Republic II ASFV isolate; HAD50, 50% hemadsorption units; LPS, lipopolysaccharide; L60, Lisbon 60 ASFV isolate; mAb, monoclonal antibody; M-CSF, macrophage colony stimulatory factor; MHC, major histocompatibility complex; NHV, non-hemadsorbing ASFV isolate; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; SLA, swine leukocyte antigen

Footnotes

This work was supported by the US-Spain Joint Committee for Scientific and Technological Cooperation, program No. G11.

References

  1. Bernards R., Schrier P.I., Houweling A., Bos J.L., van der Eb A.J., Zijlstra M., Melief C.J.M. Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T cell immunity. Nature. 1983;305:116–119. doi: 10.1038/305776a0. [DOI] [PubMed] [Google Scholar]
  2. Bjorkman P.J., Saper M.A., Samraoui B., Bennett W.S., Strominger J.L., Wiley D.C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1988;329:506–512. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  3. Breese S.S., DeBoer C.J. Chemical structure of ASFV investigated by electron microscope. J. Gen. Virol. 1966;1:251–252. doi: 10.1099/0022-1317-1-2-251. [DOI] [PubMed] [Google Scholar]
  4. Brown G.D., Choi Y., Pampeno C., Meruelo D. Regulation of H-2 class I gene expression in virally transformed and infected cells. CRC Crit. Rev. Immunol. 1988;8:175–214. [PubMed] [Google Scholar]
  5. Carrascosa A.L., Del Val M., Santaren J.L., Viñuela E. Purification and properties of African swine fever virus. J. Virol. 1985;54:337–344. doi: 10.1128/jvi.54.2.337-344.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis W.C., Marusic S., Lewin H.A., Splitter G.A., Perryman L.E., McGuire T.C., Gorham J.R. The development and analysis of species specific and cross reactive monoclonal antibodies to leukocyte differentiation antigens and antigens of the major histocompatibility complex for use in the study of the immune system in cattle and other species. Vet. Immunol. Immunopathol. 1987;15:337–376. doi: 10.1016/0165-2427(87)90005-5. [DOI] [PubMed] [Google Scholar]
  7. Genovesi E.V., Knudsen R.C., Gerstner D.J., Card D.M., Martins C.L.V., Quintero J.C., Whyard T.C. In vitro induction of swine peripheral blood monocyte proliferation by the fibroblast-derived murine hematopoietic growth-factor CSF-1. Vet. Immunol. Immunopathol. 1989;23:223–245. doi: 10.1016/0165-2427(89)90137-2. [DOI] [PubMed] [Google Scholar]
  8. Geppert T.D., Lispky P.E. Antigen presentation at the inflammatory site. CRC Crit. Rev. Immunol. 1989;9:313–362. [PubMed] [Google Scholar]
  9. Gonwa T.A., Stobo J.D. Differential expression of Ia molecules by human monocytes. J. Clin. Invest. 1984;14:489–492. doi: 10.1172/JCI111503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonzalez Juarrero M., Lunney J.K., Sanchez-Vizcaino J.M., Mebus C. Modulation of splenic macrophages, and swine leukocyte antigen (SLA) and viral antigen expression following African swine fever virus (ASFV) inoculation. Arch. Virol. 1992 doi: 10.1007/BF01317145. in press. [DOI] [PubMed] [Google Scholar]
  11. Grundy J.E., McKeating J.A., Ward P.J., Sanderson A.R., Griffiths P.D. Beta2-microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables Class I HLA molecules to be used as a virus receptor. J. Gen. Virol. 1987;68:793–798. doi: 10.1099/0022-1317-68-3-793. [DOI] [PubMed] [Google Scholar]
  12. Hammerberg C., Schurig G.G. Characterization of monoclonal antibodies against swine leukocytes. Vet. Immunol. Immunopathol. 1986;11:107–121. doi: 10.1016/0165-2427(86)90092-9. [DOI] [PubMed] [Google Scholar]
  13. Helenius A., Morein B., Fries E., Robinson P., Schirrmacher V., Terhorst C., Strominger J.L. Vol. 75. 1978. Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus; pp. 3846–3850. (Proc. Natl. Acad. Sci.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hess W.R. African swine fever: a reassessment. Adv. Vet. Sci. Comp. Med. 1981;5:39–69. [PubMed] [Google Scholar]
  15. Inada T., Mims C.A. Ia antigens and Fc receptors of mouse peritoneal macrophages as determinants of susceptibility to lactic dehydrogenase virus. J. Gen. Virol. 1985;66:1469–1474. doi: 10.1099/0022-1317-66-7-1469. [DOI] [PubMed] [Google Scholar]
  16. Jennings S.R., Kloszewski E.D., Anderson R.W., Thompson D.L., Tevathia S.S. Effect of herpes simplex virus types 1 and 2 on surface expression of class I major histocompatibility complex antigens on infected cells. J. Virol. 1985;66:757–766. doi: 10.1128/jvi.56.3.757-766.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kane P.K., Vitiello A., Sherman L.A., Mescher F. Cytolytic T-lymphocyte response to isolated class I H-2 proteins and influenza peptides. Nature. 1989;340:157–159. doi: 10.1038/340157a0. [DOI] [PubMed] [Google Scholar]
  18. Lowry O.H., Roseborough N.J., Farr A.L., Renhall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  19. Lunney J.K., Osborne B.A., Sharrow S.O., Devaux C., Pierres M., Sachs D.H. Sharing of Ia antigens between species. IV. Interspecies cross-reactivity of monoclonal antibodies against polymorphic mouse Ia determinants. J. Immunol. 1983;130:2786–2793. [PubMed] [Google Scholar]
  20. Manso Ribiero J., Rosa Azevedo J.A. Reapparition de la peste porcine Africaine an Portugal. Bull. Off. Int. Epiz. 1961;55:89–90. [Google Scholar]
  21. Martins C.L.V., Scholl T., Mebus C.A., Fisch H., Lawman M.J.P. Modulation of porcine peripheral blood-derived macrophage functions by in vitro infection with African swine fever virus (ASFV) isolates of different virulence. Viral Immunol. 1988;1:177–190. doi: 10.1089/vim.1987.1.177. [DOI] [PubMed] [Google Scholar]
  22. Mebus C.A. African Swine Fever. Adv. Virus Res. 1988;35:251–269. doi: 10.1016/s0065-3527(08)60714-9. [DOI] [PubMed] [Google Scholar]
  23. Pan I.C., Hess W.R. Virulence in African swine fever: Its measurement and implications. Am. J. Vet. Res. 1984;45:361–366. [PubMed] [Google Scholar]
  24. Pescovitz M.D., Lunney J.K., Sachs D.H. Preparation and characterization of monoclonal antibodies reactive with porcine PBL. J. Immunol. 1984;133:368–375. [PubMed] [Google Scholar]
  25. Revilla Y., Pena L., Viñuela E. A protein of molar mass 12 KDa incorporates into the membrane of ASF virus-infected cells. Virus Res. 1988;11:193–197. doi: 10.1016/0168-1702(88)90043-3. [DOI] [PubMed] [Google Scholar]
  26. Santaren J.L., Viñuela E. African swine fever virus induced polypeptides in Vero cells. Virus Res. 1986;5:391–405. doi: 10.1016/0168-1702(86)90031-6. [DOI] [PubMed] [Google Scholar]
  27. Tabares E., Martinez J., Ruiz Gonzalvo F., Sanchez Botija C. Proteins specified by African swine fever virus. Analysis of the viral structural proteins and antigenic properties. Arch Virol. 1980;66:119–132. doi: 10.1007/BF01314980. [DOI] [PubMed] [Google Scholar]
  28. Toews G.B., Vial W.C., Dunn M.M., Guzzeta P., Nunez G., Stasny P., Lipscomb M.F. The accessory cell function of human alveolar macrophages in specific T cell proliferation. J. Immunol. 1984;132:181–187. [PubMed] [Google Scholar]
  29. Unanue E.R. Antigen presenting function of macrophages. Annu. Rev. Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  30. Vigario J-D., Terrinha A.M., Moura J.F. Antigenic relationship among strains of Africa swine fever virus. Arch. Gesamte Virusforsch. 1974;45:272–277. doi: 10.1007/BF01249690. [DOI] [PubMed] [Google Scholar]
  31. Viñuela E. Molecular biology of African swine fever virus. In: Becker Y., editor. African Swine Fever. Martinus Nijhoff Pub; Boston, MA: 1987. pp. 31–50. [Google Scholar]
  32. Wardley R.C., Norley S.G., Martins C.L.V., Lawman M.J.P. The host response to African Swine fever virus. Prog. Med. Virol. 1987;34:180–192. [PubMed] [Google Scholar]
  33. Wardley R.C., Nordley S.G., Wilkinson P.J., Williams S. The role of antibody in protection against African swine fever virus. Vet. Immunol. Immunopathol. 1985;9:201–212. doi: 10.1016/0165-2427(85)90071-6. [DOI] [PubMed] [Google Scholar]
  34. Whyard T.C., Wool S.H., Letchworth G.L. Monoclonal antibodies against African Swine Fever Viral antigens. Virology. 1985;142:416–420. doi: 10.1016/0042-6822(85)90350-2. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Immunology and Immunopathology are provided here courtesy of Elsevier

RESOURCES