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Abstract

The proposed study evaluates the efficacy of knowledge transfer gained through an ensemble of 

modality-specific deep learning models toward improving the state-of-the-art in Tuberculosis (TB) 

detection. A custom convolutional neural network (CNN) and selected popular pretrained CNNs 

are trained to learn modality-specific features from large-scale publicly available chest x-ray 

(CXR) collections including (i) RSNA dataset (normal = 8851, abnormal = 17833), (ii) Pediatric 

pneumonia dataset (normal = 1583, abnormal = 4273), and (iii) Indiana dataset (normal = 1726, 

abnormal = 2378). The knowledge acquired through modality-specific learning is transferred and 

fine-tuned for TB detection on the publicly available Shenzhen CXR collection (normal = 326, 

abnormal =336). The predictions of the best performing models are combined using different 

ensemble methods to demonstrate improved performance over any individual constituent model in 

classifying TB-infected and normal CXRs. The models are evaluated through cross-validation (n = 

5) at the patient-level with an aim to prevent overfitting, improve robustness and generalization. It 

is observed that a stacked ensemble of the top-3 retrained models demonstrates promising 

performance (accuracy: 0.941; 95% confidence interval (CI): [0.899, 0.985], area under the curve 

(AUC): 0.995; 95% CI: [0.945, 1.00]). One-way ANOVA analyses show there are no statistically 

significant differences in accuracy (P = .759) and AUC (P = .831) among the ensemble methods. 

Knowledge transferred through modality-specific learning of relevant features helped improve the 

classification. The ensemble model resulted in reduced prediction variance and sensitivity to 

training data fluctuations. Results from their combined use are superior to the state-of-the-art.
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I. Introduction

Data-driven deep learning (DL) algorithms such as convolutional neural networks (CNNs) 

self-discover hierarchical feature representations from raw data pixels and perform end-to-

end feature extraction and classification with minimal expert intervention. These models are 

shown to achieve state-of-the-art performance in visual recognition tasks [1]. State-of-the-
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art, computer-aided diagnostic tools (CADx) applied to chest X-ray (CXR) analysis make 

use of CNNs to support expert radiologist decisions by analyzing the CXRs for the existence 

of typical disease manifestations and localizing the suspicious regions for interpretation [2]. 

Unlike rule-based feature descriptors [3][4], CNNs have demonstrated superior results in 

medical visual recognition tasks, such as detecting parasitized cells in thin-blood smear 

images [5], cardiomegaly [6], and Tuberculosis (TB) manifestations in CXRs [7].

TB is a dreadful infectious disease caused by Mycobacterium tuberculosis. According to the 

2019 World Health Organization (WHO) report, TB remains the top infectious killer across 

the world, with 10 million people falling ill with the disease in 2018 [8]. People from the 

Asian and African sub-continents accounted for more than 60% of those suffering from the 

infection. CXRs are the most common imaging modality used to diagnose conditions 

affecting the chest and its contents [9] and are particularly useful in establishing a possible 

diagnosis of TB.

The study of the literature reveals that researchers are working with CXR collections toward 

improving the performance of automated TB screening. The authors of [9] extracted the lung 

region of interest (ROI) using a graph-cut segmentation approach and computed texture and 

shape feature descriptors including histogram of oriented gradients (HOG), local binary 

patterns (LBP), Hu moments, and Tamura texture descriptors using the publicly available 

Shenzhen CXR dataset [3] to classify them into normal and abnormal classes. Different 

classifiers including multilayer perceptron (MLP), support vector machine (SVM), decision 

trees, and logistic regression were evaluated. The authors reported superior performance 

with the linear SVM classifier that obtained an area under the curve (AUC) of 0.90 and an 

accuracy of 0.84. The authors of [10] designed a CADx system using deep CNNs toward 

automating TB screening. They used custom and pretrained CNNs and trained them on a 

large-scale private CXR collection. The trained models were used to classify the 

radiographic images in the Shenzhen CXR dataset. It was observed that the pretrained CNNs 

delivered a superior performance with an accuracy of 0.837 and AUC of 0.926, as compared 

to randomly initialized models that gave an accuracy of 0.77 and an AUC of 0.82.

The promising performance of CNNs is accompanied by the availability of huge amounts of 

annotated data. Under conditions of limited data availability, the models are pretrained on a 

large-scale collection of natural, stock-photographic images such as ImageNet [1]. This is 

called transfer learning (TL) where the learned feature representations are transferred and 

fine-tuned for a similar task.

It has been asserted that visual characteristics of medical images, such as shape, color, 

texture, spatial dimension, resolution, appearance, and their combinations, tend to be 

different from those in natural images [11]. For instance, unlike natural images, CXRs 

exhibit high inter-class similarity and low intra-class variance. Further, some popular 

disease-specific datasets, such as the Shenzhen TB CXR dataset, are often too small for the 

conventional TL to be reliable. Small sets result in the models overfitting to the training 

samples and consequently generalizing poorly to the unseen data. It is believed that 

improved generalization in the transferred knowledge is possible with the use of pretrained 

model architectures combined with modality-specific features to improve performance on 
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similar tasks, hereafter referred to as modality-specific learning. Then, transferring 

knowledge to the specific tasks which may suffer from small sets is expected to allow better 

adaptation of the models as compared to conventional TL strategy. It is sensible to mention 

that the current literature leaves much room for progress in studying the efficacy of these 

strategies.

CNNs learn through error backpropagation and stochastic optimization to minimize the 

cross-entropic loss and categorize the images to their respective classes. However, these 

models are highly sensitive to the training data fluctuations. This results in modeling random 

noise and overfitting during model training, leading to high prediction variance and limited 

performance. The variance of these models could be reduced by combining the predictions 

of multiple, diverse CNNs that are accurate in different regions in the feature space and 

make different errors. The process is called ensemble learning and is expected to deliver 

promising predictions as compared to any individual constituent learning algorithm [12][13]

[14][15][16][17]. There are several approaches to constructing model ensembles, such as 

majority voting, simple averaging, weighted averaging, stacking, and blending. These 

methods are shown to minimize model variance and enhance learning. The authors of [18] 

evaluated three different proposals including CNN based feature extraction, bag of words 

(BOW) generation and multiple instance learning, and model ensembles toward classifying 

the radiographic images in the Shenzhen CXR dataset. For ensemble learning, the pretrained 

CNNs including VGGNet [19], ResNet [20], and GoogLeNet [21] were used to extract 

features to be fed into an SVM classifier and the final predictions were averaged. It was 

observed that, in terms of accuracy, multiple instance learning demonstrated superior 

performance. In terms of AUC, model ensembles attained similar performance as in [10], 

with an AUC of 0.926. The authors of [7] used four de-identified CXR datasets including the 

publicly available Shenzhen and Montgomery CXR collections, and those collected from 

Thomas Jefferson University Hospital, Philadelphia, and the Belarus TB Portal and 

evaluated untrained and pretrained CNN models including AlexNet [1] and GoogLeNet 

toward detecting pulmonary TB. The authors observed that the averaging ensemble of the 

pretrained CNN models demonstrated superior performance with an AUC of 0.99, as 

compared to the untrained models. The authors of [22] trained different pretrained CNN 

models including AlexNet, VGGNet, and ResNet and created a model ensemble by 

averaging their predictions toward detecting cardiomegaly in CXRs. It is observed that the 

model ensemble classified cardiomegaly with an accuracy of 92% as compared to rule-based 

feature descriptors that attained 76.5%. The combination of DL and ensemble learning is 

shown to efficiently handle visual recognition tasks and improve predictions through their 

inherent characteristics of constructing complex, non-linear decision-making functions.

In this study, we propose an ensemble of modality-specific DL models toward TB detection 

using the Shenzhen CXR dataset and demonstrate improved performance. The customized 

CNN and pretrained models are trained on a large-scale CXR collection to learn modality-

specific features. The retrained models are repurposed to classify TB-infected and normal 

CXRs. We propose the advantages of combining model predictions through different 

ensemble methods, such as majority voting, simple averaging, weighted averaging, and 

stacking, to reduce prediction variance, training data sensitivity, and improve predictions 

than any individual constituent model. The combined use of modality-specific knowledge 
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transfer and ensemble learning is expected to demonstrate improved generalization and be 

applied to an extensive range of visual recognition tasks.

II. Materials And Methods

A. Data Collection And Preprocessing

The following publicly available CXR datasets are used in this retrospective study:

Pediatric pneumonia dataset [23]: The dataset includes anterior-posterior (AP) CXRs of 

children from 1 to 5 years of age, collected from Guangzhou Women and Children’s 

Medical Center in Guangzhou, China. The imaging has been performed as part of routine 

clinical care with the approval of the institutional review board (IRB). The study has been 

conducted in compliance with the United States Health Insurance Portability and 

Accountability Act (HIPAA). The collection includes 1,583 normal CXRs and 4,273 

radiographs infected with bacterial and viral pneumonia. The dataset is curated by expert 

radiologists and screened to remove low-quality, unreadable radiographs.

Radiological Society of North America (RSNA) pneumonia dataset [24]: The dataset is 

hosted by the radiologists from RSNA and Society of Thoracic Radiology (STR) for the 

Kaggle pneumonia detection challenge toward predicting pneumonia in a collection of AP 

and posterior-anterior (PA) frontal CXRs. It includes a total of 17833 abnormal and 8851 

normal radiographs in DICOM format with a spatial resolution of 1024×1024 pixel 

dimensions and 8-bit depth. The authors didn’t obtain IRB approval since the examinations 

were part of the publicly available NIH CXR dataset [25].

Indiana dataset [26]: The dataset includes 2,378 abnormal and 1726 normal, PA chest 

radiographs, collected from hospitals affiliated with the Indiana University School of 

Medicine, and archived at the National Library of Medicine (NLM) (OHSRP# 5357). The 

images and reports were automatically de-identified and manually verified. The collection is 

made publicly available through the OpenI® search engine developed by NLM.

Shenzhen dataset [3]: The dataset includes 336 TB-infected and 326 normal CXRs (both AP 

and PA) collected from the outpatient clinics of Shenzhen No.3 People’s Hospital, China. 

The images were de-identified by the data providers and are exempted from IRB review at 

their institutions. The data was exempted from IRB review (OHSRP# 5357) by the NIH 

Office of Human Research Protection Programs. Radiologist readings are made available to 

be considered as ground-truth.

We collected the data from RSNA pneumonia, pediatric pneumonia, and Indiana datasets 

and divided them at the patient-level into training (80.0%) and test (20.0%) sets. We 

randomly allocated 10% of the training for validation. The performance of the retrained 

predictive models is cross-validated using Shenzhen TB CXR collection at the patient-level 

to provide a more realistic performance evaluation as the test images represent truly unseen 

information for the training process, with no clues about the disease manifestations or other 

artifacts leaking into the training data with an aim to improve model robustness and 

generalization.
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Prior to model training, the following preprocessing steps are applied in common to the 

CXR datasets used in this study: (a) median-filtering with a 3×3 window for edge 

preservation and noise removal; (b) resizing to 224×224 pixel resolution to reduce 

computational complexity and memory requirements; (c) rescaling to restrict the pixels in 

the range [0 1]; and (d) normalization and standardization through mean subtraction and 

division by standard deviation to ensure similar distribution range for the extracted features.

B. Models And Computational Resources

The performance of the following CNNs are evaluated toward the task of detecting TB in 

CXRs: (a) customized CNN; (b) VGG-16; (c) Inception-V3 [21]; (d) InceptionResNet-V2 

[21]; (e) Xception [27]; and (f) DenseNet-121 [28]. The pretrained models are selected 

based on several aspects: We observed their performance on the ImageNet validation dataset. 

Considering the top-1 and top-5 accuracy, the pretrained models used in this study are found 

to deliver promising performance as compared to other models. The authors of [29] 

evaluated several DL models including ResNet-152, DenseNet-121, Inception-V4, and 

SEResNeXt-101 toward CXR lung disease classification. In the process, it was observed that 

DenseNet-121 produced the best results. In another study [30], the authors used the 

DenseNet-121 model to train on the NIH CXR dataset and achieved state-of-the-art results.

We designed and evaluated the performance of a baseline, custom, sequential CNN model 

toward the current task. Fig. 1 shows the architecture of the customized CNN used in this 

study.

Each CNN block has a batch normalization layer, followed by separable convolution, non-

linear activation, and dropout layers. We performed zero paddings at the convolutional layers 

to ensure that the spatial output dimensions match that of the original input. We initialized 

the number of convolutional filters to 64 and increased the number by a factor of two, every 

time a max-pooling layer is added. This is done to ensure the amount of computation 

roughly remains the same across all the separable convolutional layers. We used 5×5 kernels 

uniformly across the convolutional layers. Batch normalization is performed to normalize 

the output of the previous activation layers in an attempt to reduce overfitting and improve 

generalization. Separable convolutional dropouts offer regularization by reducing the 

sensitivity of the model to training data fluctuations [27]. A global average pooling (GAP) 

layer is added to the deepest separable convolutional layer to reduce feature dimensionality 

by spatially averaging the feature maps. The output of the GAP layer is fed to the first dense, 

fully-connected layer, followed by a dropout and final dense layer to predict on the current 

task. The customized model is trained to learn and minimize the cross-entropic loss toward 

classifying the CXRs into their respective categories.

The customized CNN is optimized for its parameters and hyperparameters including (a) 

hidden neurons in the first dense layer, (b) separable-convolutional dropout, (c) dense layer 

dropout, (d) optimizer function, and (e) non-linear activation using Talos optimization tool 

[31]. Fig. 2 shows the process flow diagram toward optimizing the custom model hyper-

parameters. The pretrained models are instantiated with the ImageNet-trained weights.
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The models are truncated at their deepest convolutional layer and added with a GAP and 

dense layer. The models are fine-tuned with smaller weight updates through stochastic 

gradient descent optimization to minimize the categorical cross-entropic loss toward the 

current task.

C. Modality Specific Learning

We propose a modality-specific learning strategy to improve generalization in the transferred 

knowledge and prediction performance by using pretrained model architectures combined 

with modality-specific features. The customized CNN and pretrained models are trained on 

a large-scale CXR collection to learn modality-specific features. The retrained models are 

fine-tuned to classify TB-infected and normal CXRs. Fig. 3 shows the process flow diagram 

for the proposed strategy. The overall process is described herewith:

a. Model A: The custom and pretrained models, otherwisecalled the base models, 

are trained on a collection of datasets including RSNA pneumonia, pediatric 

pneumonia, and Indiana collections to learn the CXR modality-specific features 

and classify them into abnormal and normal categories. Callbacks and model 

checkpoints are used to investigate the performance of the models after each 

epoch. The models are evaluated for 100 epochs or until the performance 

plateau. The learning rate is reduced whenever the validation accuracy ceased to 

improve. The retrained models with the best test classification accuracy are 

stored for further evaluation.

b. Model B: The base models are trained and evaluatedwith the Shenzhen TB CXR 

collection, to categorize into TB-infected and normal classes. Due to limited data 

availability, the models are evaluated through five-fold cross-validation with an 

aim to prevent overfitting and improve robustness and generalization. The 

retrained base models with the best model weights, giving the highest test 

classification accuracy for each cross-validated fold are stored for further 

evaluation.

c. Model C: Retrained models from Model A with CXRmodality-specific 

knowledge are fine-tuned on Shenzhen TB CXR collection to categorize into 

TB-infected and normal classes. Embedding modality-specific knowledge is 

expected to improve model adaption to the target task. The retrained models 

showing the best performance for each cross-validated fold are stored for further 

evaluation. With modality-specific knowledge transfer, Model C is expected to 

demonstrate improved TB detection performance as compared to Model B.

D. Ensemble Learning

Ensemble learning helps to reduce variance and improve generalization by combining the 

predictions of multiple models and obtain promising predictions than any individual, 

constituent model.

In this study, the predictions of the models from Model C are combined through majority 

voting, simple averaging, weighted averaging, and stacking to classify the CXRs into TB-

infected and normal classes. In majority voting, the predictions of multiple models are 
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considered as votes. Final predictions are made based on these votes obtained from the 

majority of the models. Simple averaging averages the prediction probabilities from multiple 

models to arrive at the final predictions. Weighted averaging is an extension of simple 

averaging in which the models are assigned different weights based on their importance in 

making the predictions.

Stacking or stacked generalization is an ensemble method where a meta-learner learns how 

to best combine the predictions from individual models (base-learners) [32]. A stacking 

ensemble has two levels: (a) Level-0 includes the training data input and base-learners, and 

(b) Level-1 takes the predictions of base-learners as input and a meta-learner learns to 

optimally combine the predictions of base-learners. In this study, we used a neural network-

based meta-learner to learn from the predictions of the top-performing models from Model 

C. The layers in the base-learners are marked as not trainable so the weights are not updated 

when the stacking ensemble is trained. The outputs of the base-learners are concatenated. A 

hidden layer is defined to interpret these predictions to the meta-learner and an output layer 

to arrive at probabilistic predictions. Fig. 4 shows the algorithm for training the stacking 

ensemble proposed in this study.

Unlike other ensemble methods, stacking uses the predictions of the base-learners as a 

context and conditionally decides to differentially weigh these predictions to deliver better 

performance than any individual, constituent model. The benefit of this approach is that the 

outputs of the base-learners are fed directly to the meta-learner and the stacking ensemble is 

treated as a single model where the base-learners are embedded in a larger multi-headed 

neural network.

The models in modality-specific knowledge transfer and ensemble pipeline are evaluated in 

terms of the following performance metrics: (a) accuracy; (b) AUC; (c) sensitivity; (d) 

specificity; (e) F-score; and (f) Matthews Correlation Coefficient (MCC). The models are 

trained and evaluated on a Windows system with Xeon CPU, 32GB RAM, NVIDIA 1080Ti 

GPU and CUDA/CUDNN for GPU acceleration. The models are configured in Python using 

Keras API with a Tensorflow backend.

E. Statistical Analysis

DL models are statistical and probabilistic in nature that captures data patterns through the 

use of computational methods. It is highly probable that observations that involve drawing 

samples from a population demonstrate an effect that would have occurred due to sampling 

errors. However, if the observed effect demonstrates P < 0.05 (95% confidence interval 

(CI)), a conclusion is made that the observed effect reflects the characteristics of the entire 

population. Tests for statistical significance help to measure whether the differences between 

the studied groups are significant or occurred by chance.

In this study, statistical analyses are performed to analyze for the existence of a statistically 

significant difference in the mean values of the performance metrics achieved with different 

ensemble methods. One-way analysis of variance (ANOVA) is performed to determine the 

existence of these statistically significant performance differences. However, to perform this 

analysis, the data should satisfy the following assumptions: (a) normal distribution; (b) 
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homogenous variance; (c) absence of significant outliers; and (d) independence of 

observations [33]. Shapiro-Wilk normality analysis [34] is performed to investigate for data 

normality and Levene’s analysis [35], to check for homogeneous variances. The data is 

analyzed for the presence of outliers and the independence of observations. The null 

hypothesis (H0) that all ensemble methods demonstrate similar performance is accepted if 

no statistically significant difference is observed in the mean value of the performance 

metrics for the different ensemble methods under study. The alternate hypothesis (H1) is 

accepted and H0 is rejected if a statistically significant performance difference (P < 0.05) is 

found to exist.

One-way ANOVA is an omnibus test and needs a post-hoc study to identify the specific 

ensemble methods demonstrating this statistically significant performance differences. In 

this study, a Tukey post-hoc test [36] is performed to identify the ensemble methods 

demonstrating these statistically significant performance differences. We used the IBM 

SPSS [37] package to perform statistical analyses.

III. Results

The optimal hyperparameter values obtained with the Talos optimization tool for the 

customized CNN are as follows: (a) hidden neurons in the first dense layer (256); (b) 

separable-convolutional dropout (0.25); (c) dense layer dropout (0.5); (d) optimizer function 

(Adam); and (e) non-linear activation (ReLU).

The performance of the customized CNN and pretrained models in Model A toward 

classifying abnormal and normal CXRs are evaluated and the obtained results are shown in 

Table I. This is the first step in the modality-specific knowledge transfer pipeline where the 

customized CNN and pretrained models are trained to learn the CXR modality-specific 

features across the normal and abnormal categories.

Accuracy demonstrates the model’s ability to correctly classify positive and negative cases. 

Specificity gives a measure of the models’ ability to correctly identify negative cases. 

Sensitivity (recall) demonstrates the ability to correctly identify positive cases. A measure of 

F-score gives the harmonic average of recall and precision, and MCC, the degree of 

agreement between the predictions and ground-truth values. It is observed that the 

DenseNet-121 showed better performance in terms of accuracy (0.897), AUC (0.962), and 

sensitivity (0.926). The Xception model gave higher values for specificity (0.887). However, 

considering the balance between precision and recall, as demonstrated by the F-score, the 

DenseNet-121 demonstrated superior performance in classifying the abnormal and normal 

CXRs.

The performance of the customized and pretrained models in Model B, cross-validated with 

the Shenzhen TB CXR dataset, toward classifying TB-infected and normal CXRs are 

evaluated and the results are shown in Table II. It is observed that DenseNet-121 

demonstrated better performance for metrics including accuracy (0.899), AUC (0.948), 

specificity (0.933), F-score (0.897), and MCC (0.801). The Inception-V3 model showed 

higher values for sensitivity (0.908).

Rajaraman and Antani Page 8

IEEE Access. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The retrained custom and pretrained models in Model A are fine-tuned and cross-validated 

with the Shenzhen TB CXR collection to obtain the models in Model C to classify TB-

infected and normal CXRs and the results are shown in Table III. The notable results are as 

follows: (a) the performance of the models in Model C is promising compared to that of 

Model B models. This may be because the CXR modality-specific features learned from a 

large-scale data collection resulted in a generalized transfer of knowledge, suitable to be 

repurposed for the task of TB detection; (b) the standard deviation of the evaluated metrics 

for the Model C models are significantly lower than that of Model B. This may be because 

of the improved generalization, reduced bias, and overfitting, resulted from the modality-

specific knowledge transfer toward the current task. It is observed that Inception-V3 

demonstrated better performance for the metrics including accuracy (0.940), AUC (0.974), 

sensitivity (0.938), F-score (0.941), and MCC (0.880). The VGG-16 model demonstrated 

higher values for specificity (0.963). However, considering the usage as a screening tool, the 

sensitivity metrics carry high prominence. Also, considering the F-score that demonstrates 

the balance between precision and recall, the Inception-V3 model showed superior 

performance. These results indicated that modality-specific learning improved the models’ 

robustness, generalization, and reduced bias and overfitting toward giving promising results 

in classifying TB-infected and normal CXRs.

We evaluated the cross-validated performance of multiple ensemble methods, including 

majority voting, simple averaging, weighted averaging, and stacking, using the top-3 

performing models in Model C, including InceptionResNet-V2, Inception-V3, and 

DenseNet-121 toward improving the performance of classifying TB-infected and normal 

CXRs in the Shenzhen CXR dataset. Table IV shows the results obtained with the different 

ensemble methods toward the current task.

For weighted averaging, we empirically observed that the use of weights (InceptionResNet-

V2 (0.25), Inception-V3 (0.5), and DenseNet-121 (0.25)) gave the best results. The notable 

results are as follows: (a) stacking ensemble demonstrated better performance in terms of all 

performance metrics (accuracy (0.941), AUC (0.995), sensitivity (0.926), specificity (0.957), 

F-Score (0.941), and MCC (0.884)); and (b) the performance of the stacking ensemble 

appeared promising because the meta-learner learned to correct the predictions of the 

individual base-learners by differentially weighing their predictions to deliver optimal 

predictions than any individual constituent model. The results demonstrated that the 

classification task is benefited by the combination of modality-specific knowledge transfer 

and ensemble learning to deliver superior performance.

The performance of the stacking ensemble appears visually significant. However, the test for 

statistical significance helps to ensure whether the observed difference in performance 

reflects the population characteristics. These tests measure whether the differences between 

the studied ensemble methods are statistically significant in the 95% CI. The tests for data 

normality and homogeneity of variances using Shapiro-Wilk and Levene’s analysis 

respectively demonstrated P > 0.05 to signify that the assumptions of data normality and 

homogeneity of variances hold good. Thus, we performed a one-way ANOVA analysis to 

investigate the existence of a statistically significant difference in the mean values of the 

performance metrics for the different ensemble methods under study. For the accuracy 
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metric, it is observed that no statistically significant difference exists between the different 

ensemble methods (P = .759). Similar characteristics are observed for AUC (P = .831), 

sensitivity (P = .997), specificity (P = .701), F-score (P = .788), and MCC (P = .756). These 

results signify that there exists no statistically significant difference in performance between 

the different ensemble methods toward classifying the TB-infected and normal CXRs in the 

Shenzhen CXR dataset under study.

The performance of the stacking ensemble in classifying TB-infected and normal CXRs is 

compared to that of the state-of-the-art literature as shown in Table V.

It is observed that the proposed ensemble outperformed the state-of-the-art in all 

performance metrics.

IV. Discussion

The customized CNN used in this study converges to a promising solution due to (a) 

hyperparameter optimization, (b) implicit regularization with batch normalization, and (c) 

reduced bias, improved generalization through use of separable-convolutional and dense 

layer dropouts. The use of depth-wise separable convolutions ensured a reduction in the 

trainable parameters, offering the benefit of reduced computational overhead and memory 

requirements. The models are evaluated through cross-validation studies to present a realistic 

and generalized performance measure. Modality-specific knowledge transfer helped to 

embed CXR modality-specific knowledge into the predictive models that resulted in a 

generalized knowledge transfer, appropriate to be fine-tuned for the task of TB detection. It 

is observed that the pretrained CNN models retrained on the large-scale CXR collection 

found superior solutions in the feature space as compared to the custom model with random 

weight initializations. Ensemble learning reduced models’ prediction variance and 

sensitivity to training data fluctuations by combining the predictions and deliver optimal 

performance. In the process, the performance of the stacking ensemble demonstrated 

superior performance by differentially weighing the predictions to deliver superior 

performance than any individual, constituent model.

The performance of the ensemble methods is analyzed for the existence of a statistically 

significant difference to ensure the observed performance difference reflects the 

characteristics of the entire population. It is observed that there existed no statistically 

significant performance difference between the ensemble methods. The stacked modality-

specific model ensemble significantly outperformed the state-of-the-art in terms of accuracy 

and AUC. The values for the other performance metrics are not reported in the literature.

This preliminary study, however, has some limitations. The proposed combination of 

modality-specific knowledge transfer and ensemble learning pipeline is evaluated with the 

Shenzhen TB CXR collection with small sample size. Future work would include evaluating 

the efficacy with a larger CXR collection. There are several ensemble methods, each with its 

own advantages/disadvantages, the method to use depends on the problem under study. 

CNNs are perceived as black-boxes due to lack of interpretability and their predictions need 

explanations. Visualization studies need to be performed with model ensembles to give an 
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explanation of the predictions since a poorly understood model behavior could adversely 

impact medical decision-making. Ensemble methods are computationally expensive, adding 

training time and memory constraints to the problem. It may not be practicable to implement 

model ensembles, however, with the advent of low-cost GPU solutions and cloud 

technology, model ensembles could become practically feasible for real-time applications. 

Future research could include transferring the knowledge of model ensembles into small, 

portable models.

We observe that knowledge transfer imposed using modality-specific medical images (large-

scale CXR collection) for enhancing pretrained models aided them in improving decision-

making. They learned features that are relevant to detect TB manifestations. The predictions 

of these models are combined through ensemble learning that reduced prediction variance 

and sensitivity to training data fluctuations. The combined use of modality-specific 

knowledge transfer and ensemble learning demonstrated superior results as compared to the 

state-of-the-art and led to reduced overfitting and improved generalization. Since the 

proposed methodology is not problem-specific it could be used to develop clinically valuable 

solutions and enable the application to a broad range of visual recognition tasks.
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Fig. 1. 
Architecture of the customized CNN.
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Fig. 2. 
Process flow diagram toward the automated optimization of custom CNN hyperparameters 

using the Talos optimization algorithm.
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Fig. 3. 
Modality-specific knowledge transfer showing the base and retrained models along with the 

patient-level train/test split for each model.
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Fig. 4. 
Stacking ensemble approach.
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Table I

PERFORMANCE METRICS ACHIEVED WITH MODELS IN MODEL A

Models Acc. AUC Sens. Spec. FI MCC

Custom 0.861 0.940 0.869 0.845 0.893 0.697

VGG-16 0.896 0.960 0.922 0.841 0.922 0.764

Inception-V3 0.896 0.960 0.909 0.869 0.921 0.769

InceptionResNet-V2 0.896 0.960 0.919 0.850 0.922 0.766

Xception 0.887 0.959 0.888 0.886 0.913 0.755

DenseNet-121 0.897 0.962 0.926 0.837 0.930 0.766

Acc. = Accuracy; Sens. = Sensitivity; Spec. = Specificity; FI = F-Score.
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Table II

PERFORMANCE METRICS ACHIEVED WITH MODELS IN MODEL B

Models Acc. AUC Sens. Spec. FI MCC

Custom 0.783 0.830 0.759 0.807 0.780 0.570

VGG-16 0.887 0.934 0.872 0.902 0.887 0.778

Inception-V3 0.885 0.942 0.908 0.862 0.890 0.773

InceptionResNet-V2 0.885 0.936 0.887 0.884 0.887 0.772

Xception 0.879 0.930 0.872 0.887 0.880 0.760

DenseNet-121 0.899 0.948 0.866 0.933 0.897 0.801
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Table III

PERFORMANCE METRICS ACHIEVED WITH MODELS IN MODEL C

Models Acc. AUC Sens. Spec. FI MCC

Custom 0.872 0.920 0.866 0.878 0.872 0.748

VGG-16 0.923 0.964 0.884 0.963 0.921 0.850

Inception-V3 0.940 0.974 0.938 0.942 0.941 0.880

InceptiohResNet-V2 0.925 0.968 0.905 0.945 0.924 0.852

Xception 0.891 0.944 0.875 0.908 0.891 0.786

DenseNet-121 0.928 0.960 0.920 0.936 0.928 0.856
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Table IV

PERFORMANCE METRICS ACHIEVED WITH THE ENSEMBLE OF TOP-3 MODELS IN MODEL C 

(INCEPTIONRESNET-V2, INCEPTION-V3, AND DENSENET-121)

Ensemble method Acc. AUC Sens. Spec. FI MCC

Majority Voting 0.925 - 0.923 0.927 0.926 0.852

Simple
Averaging

0.931 0.970 0.920 0.942 0.931 0.863

Weighted
Averaging

0.934 0.975 0.923 0.945 0.934 0.868

Stacking 0.941 0.995 0.926 0.957 0.941 0.884

Bold text indicates thè performance measures of the best-performing ensemble.
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Table V

COMPARING THE RESULTS WITH THE STATE-OF-THE-ART LITERATURE

Parameters Jaeger et al. (8) Hwang et al. (9) Lopes et al. (12) Proposed method

Accuracy 0.840 0.837 0.847 0.941 [0.899 0.985]

AUC 0.900 0.926 0.926 0.990 [0.945 1.00]

Sensitivity - - - 0.926 [0.850 1.00]

Specificity - - - 0.957 [0.883 1.00]

F-Score - - - 0.941 [0.898 0.985]

MCC - - - 0.884 [0.802 0.9671
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