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Abstract Air travel facilitates the international spread of infectious disease. While
global air travel data represent the volume of travel between airports, identifying
which airport an infected individual might use, or where a disease might spread
after an infected passenger deplanes, remains a largely unexplored area of research
and public health practice. This gap can be addressed by estimating airport catch-
ment areas. This research aims to determine how existing market area delineation
techniques estimate airport catchments differently, and which techniques are best
suited to anticipate where infectious diseases may spread. Multiple techniques were
tested for airports in the Province of Ontario, Canada: circular buffers, drive-time
buffers, Thiessen polygons, and the Huff model, with multiple variations tested for
some techniques. The results were compared qualitatively and quantitatively based
on spatial patterns as well as area and population of each catchment area. There were
notable differences, specifically between deterministic and probabilistic approaches.
Deterministic techniquesmay only be suitable if all airports in a study area are similar
in terms of attractiveness. The probabilistic Huff model appeared to produce more
realistic results because it accounted for variation in airport attractiveness. Addition-
ally, the Huff model requires few inputs and therefore would be efficient to execute
in situations where time, resources, and data are limited.
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1 Research Background

Air travel is a key mechanism facilitating the international spread of infectious dis-
ease. The increasing volume and ease of air travel promotes the dispersal of pathogens
and importation of infectious diseases worldwide. This poses a significant threat to
environmental conservation and public health (Golnar et al. 2016;Hatcher et al. 2012;
Kilpatrick et al. 2006; Tatem et al. 2006). Severe acute respiratory syndrome (SARS),
West Nile virus and Zika virus are well-known examples of this phenomenon (Bird
and McElroy 2016; Bogoch et al. 2016a, b; Fauci and Morens 2016; Golnar et al.
2016; Lounibos 2002; Powers 2015; The SARS Commission 2006). The majority of
processes that aim to address infectious disease threats are reactive in nature (Kil-
patrick et al. 2006). In response to events such as the outbreaks of SARS, West Nile
and Zika, researchers have increasingly studied the global movement of humans to
predict and possibly prevent the emergence of infectious disease. However, this has
proven to be notoriously difficult, and many approaches involve numerous assump-
tions and analyses based on incomplete data (Kilpatrick et al. 2006). Despite these
inherent challenges, researchers continue to find new ways to provide necessary
support to decision-makers (Golnar et al. 2016).

Multiple studies have identified human air travel as one of the most important
pathways for the importation of infectious disease to new areas (Golnar et al. 2016;
Kilpatrick et al. 2006). Data on passenger and flight volumes have been used to
model international connections and anticipate where infectious diseases might be
imported. For example,Bogoch et al. (2016a) analyzed air travel volumes for travelers
departing Brazil, to anticipate the international spread of Zika virus during the 2016
outbreak. Such analyses aim to help health care workers anticipate whether they
may see travel-related infectious disease cases, and support public health officials
in guiding resource distribution (e.g. for screening or communication campaigns) to
locations at risk for local transmission if a case was imported. In fact, Zika virus
was presumably imported to Miami from Brazil via air travel, and local transmission
was initiated due to the presence of Aedes mosquitos and suitable environmental
conditions (Bogoch et al. 2016a, b; Centers for Disease Control and Prevention,
2017).

The processes of infectious disease importation and spread are complex, but sim-
plified modelling efforts can be effective (Golnar et al. 2016). While analysis using
global air travel data indicates volume of travel between airports, identifying which
airport an infected individual might use, or where a disease might spread after an
infected passenger deplanes, remains a largely unexplored area of research. This gap
can be addressed by estimating the area fromwhich an airport attracts its passengers,
referred to as its catchment area (Lin et al. 2016). In the absence of observed data,
airport catchment areas can be estimated through a variety of models. While many
catchment area techniques were developed for trade area analysis in retail geogra-
phy (Boots 1980; Huff 2003; Huff and Black 1997; Reilly 1931), they have also
been applied to model service areas for transportation (Debrezion et al. 2009; Lin
et al. 2016; Wittman 2014). Existing methods can be classified into three main cate-
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gories: deterministic, probabilistic, and customer profiling (Hernandez et al. 2004).
Only deterministic and probabilistic methods are relevant to this study, since data
representing spatial concentrations of airport users, which would be necessary for
customer profiling, are lacking.

Deterministic approaches make a clear-cut assumption about the spatial dimen-
sion of the trade area (Hernandez et al. 2004). Trade areas are polygons that have
definite boundaries, and assume that all customers come from the defined catchment
(Hernandez et al. 2004). Proximity-only models are included in the deterministic
category and include circular buffers or drive-time buffers along a road network
(Hernandez et al. 2004; Lin et al. 2016). Another deterministic technique calculates
Thiessen polygons (also known as Voronoi polygons) around sites (Boots and South
1997; Hernandez et al. 2004). Here, every customer is assigned to the closest site
based on Euclidean distance. Customers are assigned to only one site, and the mid-
points between sites form the trade area boundaries. The Thiessen polygon method
has been adapted to incorporate weights based on store/site attractiveness (Boots
1980; Hernandez et al. 2004). While deterministic methods such as circular buffers
have been used to estimate airport catchment areas for the purpose of anticipating
spread of infectious disease (Brent et al. 2018), they may over-simplify the problem
(Cervero et al. 1995; Debrezion et al. 2009; Lin et al. 2016; Sanko and Shoji 2009).

In contrast to deterministic approaches, probabilistic approaches do not assume
that customers always choose the closest option, and therefore assign customer
groups (households, census tracts, neighbourhoods) partially to the alternative sites
(Hernandez et al. 2004). A widely-used probabilistic model is the Huff model (Huff
2003), which defines catchment or trade areas as series of zonal probability contours
(Huff 1963). The Huff model is popular in retail geography because it is relatively
straightforward to apply, conceptually appealing, and applicable to a wide range of
problems (Huff 2003; Huff and Black 1997).

The Huff model results represent the probability of the population at each origin
location to patronize each alternative service location. The two basic parameters of
the model are attraction and distance, both of which have explicit behavioural bases
(Huff and Black 1997). The attraction parameter represents the “impact of store
size on consumer patronage for a given product when distance is held constant”
(Huff and Black 1997). For certain products or services, size (or other associated
attractiveness measure) is more important to consumers, and therefore would more
greatly impact their choice alternative. The distance decay parameter represents the
consumer’s willingness to travel for different types of products (Huff 1963). The
choice set is another critical element of the Huff model. In a choice situation, there
exists a universal set of alternative sites from which a consumer selects a subset
based on their individual preferences. For example, some choice alternatives may
be beyond a maximum distance the consumer is willing to travel (Huff and Black
1997). Specifying an accurate choice set is essential to minimizing prediction errors
(Huff and Black 1997).

When selecting a method to estimate airport catchment areas, it is important to
consider existing knowledge of how airports are used. For example, Debrezion et al.
(2009) found that less than half of passengers at a Dutch railway survey chose their
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nearest train station (Lin et al. 2016). Leon (2011) found that airline travellers in
North Dakota will not use the local airport but instead use the competing major
hub airport located 250 miles away. There is general consensus that consumers are
willing to travel further to reach a more desirable location, but it is difficult to deter-
mine the maximum distance they would be willing to travel especially considering
this distance likely changes between regions (Leon 2011; Lin et al. 2016). These
examples suggest that for the application of delineating catchment areas for trans-
portation, deterministic proximity-only models may be too coarse (Debrezion et al.
2009; Leon 2011; Lin et al. 2016;Wittman 2014), although circular buffers have been
used frequently to define airport catchment areas (Bilotkach et al. 2012; McLay and
Reynolds-Feighan 2006; Wang 2000; Wittman 2014). Lin et al. (2016) suggest that
gravity models (such as the Huff model) may be a more appropriate approach than
proximity-only approaches, since they incorporate not only distance but also attrac-
tion. The main considerations of the Huff model align with what studies have shown
to be the greatest determinants of airport choice (Başar and Bhat 2004; Hess and
Polak 2005; Ishii et al. 2009; Leon 2011; Suzuki 2007).

While some localized analyses have been conducted to model airport catchment
areas (Augustyniak and Olipra 2014; Lieshout 2012), their techniques would be
complex to apply at a national, or global scale. For example, if a drive-time distance
or cut-off were incorporated in a model, it might be unrealistic to apply a single
appropriate distance to the entire study area, where characteristics of the population
and environment likely differ widely (Lin et al. 2016; Upchurch et al. 2004).

To support rapid response to infectious disease outbreaks, we explore the dif-
ferences in how the multiple available methods estimate airport catchment areas.
This research aims to answer two questions: How do various market area delineation
techniques estimate airport catchments differently? And, which techniques are best
suited to anticipate where infectious diseases may spread internationally? Airports
in the Province of Ontario, Canada, served as a test case for which to compare results
between techniques.

2 Data and Methods

The case study of Ontario, Canada, was selected because of the province’s large
territory and high population, and the relevant context of the outbreak of severe acute
respiratory syndrome (SARS) in Toronto, Ontario, in 2003. Ontario is the second-
largest province in Canada and home to over 13.5 million people (Government of
Ontario 2018). The highest population densities are clustered around Toronto with
smaller clusters of moderately-high population density near London, Hamilton, and
Ottawa (Fig. 1). Ontario’s 77 airports are also concentrated in the south. Figure 1
shows the eightmajor airports that had 2016 passenger volumes reported by Statistics
Canada.

Ontario’s high proportion of foreign-born population (29%) also makes the
province relevant to this study (Ontario Ministry of Finance 2017). This high pro-
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Fig. 1 Population density and locations of Ontario’s major airports by 2016 passenger volume
(Statistics Canada 2016a)
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Fig. 2 Catchment area delineation techniques applied to Ontario airports, with input specifications
for circular buffer radius, drive-time extent, and the Huff model’s airport attractiveness metric

portion is indicative of a high volume of transnational migrants, and increased fre-
quency of cross-border travel for personal, education, and business purposes (Levitt
and Jaworsky 2007). This phenomenon adds to the magnitude of international air
travel to and from Ontario. The concern of importation of infectious disease via air
travel is especially relevant to Toronto, in which immigrants make up close to one
half of the city’s population. In 2003, Toronto experienced the largest outbreak of
SARS outside of Asia (Bell 2004; Muller et al. 2006; Summers 2013). Bell (2004)
noted “limiting the spread of infection by domestic and international travel” as one
of the interventions that aided in containing this outbreak in some parts of the world.
The importation of SARS to Toronto via international travel is an example of where
interventions failed and had a devastating impact on both human health and the
economy (The SARS Commission 2006).

The catchment area delineation techniques applied to Ontario’s airports included
three deterministic techniques (circular buffers, drive-time buffers, and Thiessen
polygons) and one probabilistic technique (Huff model) (Fig. 2), with some vari-
ations based on parameter inputs. Each technique had unique data requirements
(Fig. 3). Results from each technique were compared and evaluated based on the
applicability to analyzing the potential for international spread of infectious disease.
We assume that these methods are more representative of Ontario residents than
tourists or visitors, who might take longer routes to reach various tourist attractions.

Data on air passenger traffic and flights for Ontario airports were obtained from
Statistics Canada (2016a). Only eight of 77 airports had associated passenger traffic
and flights data, as detailed in Table 1.

To estimate catchment areas using circular buffers the only necessary input was
the spatial locations of the airports. Buffers were produced based on two distances:
200 and 300 km. Brent et al. (2018) applied a 200 km buffer to airports in their
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Fig. 3 Data requirements and sources by catchment area delineation technique (double line indi-
cates data source was used to fulfill two data requirements)

analysis of potential international spread of Yellow Fever globally. They used flight
itinerary data of travelers who departed yellow fever-endemic areas. 200 km served
as the lowest buffer distance. While visualized as full circles on the resulting map,
the area and population associated with each buffer was calculated based only on the
portion that intersected the Ontario boundary (including smaller inland water bodies
but excluding the Great Lakes and Hudson’s Bay).

The drive-time buffers approach required an additional dataset representing the
road network. A road network dataset was created for Ontario using a road network
file from the Ontario Ministry of Natural Resources (2010). Since this road network
covered Ontario only, resulting buffers were automatically restricted to provincial
land. Buffers were produced based on two drive-time cut-offs: two and three hours. A
maximumdriving-distance to reach an airport inOntario could not be referenced from
existing literature. Thus, a 2-h cut-off was selected because preliminary exploration
revealed that itwas generally comparable in extent to the 200 kmbuffer forYYZ—the
airport with the highest passenger volume (Table 1). A 3-h cut-off was also applied
to include a larger drive-time cut-off for comparison.

Like the circular buffer technique, Thiessen polygons required the single input
of airport locations. Thiessen polygons form a tessellation that exhaustively fills the
study area and do not overlap. Locations that are equally close to more than one
airport collectively form the boundaries of the Thiessen polygons (Yamada 2016). In
this study, each Thiessen polygon represented the catchment area of the respective
airport.

The Huff model was the only probabilistic technique that was tested. It estimates
catchment areas using both distance to and attractiveness of each airport, while also
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incorporating distance to and attractiveness of all other airports. The Huff model is
described by:

Pi j =
Saj /D

β

i j
∑n

i=1 S
a
j /D

β

i j

where Pij is the probability of an individual located at i choosing airport j, Sj is a
measure of attractiveness for j, Dij is the distance from i to j, α is the attractiveness
exponent and β is the distance decay exponent.

Probabilities were calculated for census subdivisions, which correspond to the
municipalities (Statistics Canada 2016b), the level at which many public health pro-
grams and procedures are operationalized. To represent airport attractiveness, we
tested multiple variables including total flights, total domestic passengers, and total
international passengers. These data were obtained from the same Statistics Canada
dataset that included airport locations. Parameterization of the Huff model was based
on findings from a related study by one of the authors. On this basis, a value of 2
was applied as the distance decay exponent (beta), while no attractiveness exponent
was applied (i.e., alpha = 1).

For all spatial analysis,modeling, andmapping, an open-source software package,
QGIS, was used in conjunction with the “Location Analytics” toolset, which is under
development (https://github.com/ryersongeo/qgis_location_analytics).

The results were visually compared within and between catchment area delin-
eation techniques. Results were also quantitatively compared based on total area and
population within each catchment area. For the Huff model, a probability threshold
had to be defined to indicate which census subdivisions should be included in the
area calculation. Aminimum probability of 20%was selected to define the boundary
of each catchment area. This threshold is similar to thresholds used to define mar-
ket areas in the retail sector (Dolega et al. 2016). Population within each catchment
area was calculated using population totals by census subdivision for 2016, obtained
fromStatistics Canada (2016c). For circular buffers, drive-time buffers, and Thiessen
polygons, the total population within the catchment area was summed. If a subdivi-
sion was split by the catchment area boundary, the population of that subdivision was
split proportionally based on area. For Huff model results, the population of each
subdivision in the catchment area was multiplied by the probability of using each
airport. The relationship between area and population for estimated catchment areas
based on each technique was analyzed as an indicator of the spatial patterns of the
risk of disease spread.

3 Analysis and Results

As expected based on the inherent characteristics of each technique, the estimated
catchment areas notably differed. Results of each technique are shown in Figs. 4,

https://github.com/ryersongeo/qgis_location_analytics


272 C. Huber and C. Rinner

Fig. 4 Circular buffers for major Ontario airports overlaid on census subdivision boundaries. Insets
provided for the London, Toronto, and Hamilton airports in Southern Ontario

6, 8, 10, 11 and 12, which reveal qualitative differences in the shape and extent
of catchment areas. Quantitative differences in the estimated area and population
associated with each catchment are shown in Table 2.
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Table 2 Area (km2) and population for airport catchment areas as defined by different market area
delineation methods

Airport code Circular buffers

200 km 300 km

Area Population Area Population

YYZ 68,716 10,414,146 118,971 11,054,816

YOW 40,899 1,752,100 69,416 2,441,445

YQT 61,441 135,615 139,409 166,984

YXU 48,540 9,945,855 70,582 10,885,048

YQG 16,654 1,298,391 38,038 3,998,808

YHM 56,291 10,295,559 93,135 11,183,121

YSB 92,110 414,373 180,120 1,467,060

YTS 112,561 125,490 218,602 397,199

Airport code Drive-time buffers Thiessen polygons

2 h 3 h

Area Population Area Population Area Population

YYZ 39,248 9,663,296 72,801 10,573,212 40,378 7,366,464

YOW 20,304 1,415,375 34,790 1,669,496 40,487 1,707,563

YQT 10,962 112,798 21,605 116,650 497,319 227,353

YXU 33,978 5,818,639 49,786 10,210,489 19,072 982,067

YQG 9116 905,679 20,492 1,999,344 5161 549,935

YHM 32,642 9,309,201 59,500 10,385,373 8072 2,050,521

YSB 7805 118,815 24,820 234,147 80,232 452,685

YTS 12,394 39,614 29,551 82,002 293,508 111,906

Airport code Huff model

Flights Passengers, domestic
sector

Passengers, intl. sector

Area Population Area Population Area Population

YYZ 961,118 10,285,369 968,352 10,812,078 981,143 12,146,910

YOW 35,000 1,366,554 44,206 1,397,449 17,137 1,032,229

YQT 143,910 162,333 N/A N/A N/A N/A

YXU 6457 394,297 7638 410,131 867 91,049

YQG 2046 349,831 N/A N/A N/A N/A

YHM 1152 123,331 1183 180,212 N/A N/A

YSB 12,628 146,714 N/A N/A 0 0

YTS 9642 55,226 8945 49,541 0 0
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Fig. 5 Area and population for estimated airport catchment areas based on 200 and 300 km circular
buffers

3.1 Circular Buffers

Despite the drastic difference in the number of annual passengers and flights between
airports, the catchment sizes based on the circular buffers approach are equal by
definition. The full circular buffers (shown in Fig. 4) were 125,535 km2 for the
200 km buffer, and 282,453 km2 for the 300 km buffer. Catchment areas were not
impacted by the presence of other proximate airports—though this could have been
incorporated if buffers were truncated.

The area and population for the portions of each catchment that were within the
study area are detailed in Table 2. YTS was the largest in area for both the 200 km
and 300 km buffer sizes at 112,561 km2 and 218,602 km2, respectively. YYZ and
YHM had the largest population sizes based on both the 200 and 300 km circular
buffers.

Figure 5 reveals that based on circular buffers, a larger catchment in terms of area
was not necessarily associated with a larger population. While area was impacted by
the proportion of the circular buffer that fell within the land boundaries ofOntario, the
spatial distribution of population in the province meant that in many cases, circular
buffers that had relatively small proportions of area falling within Ontario had the
highest population sizes, and vice versa. For example, YYZ and YHM fell within the
middle of all airports based on area but had the largest population. In contrast, YTS
had the largest area but had one of the smallest populations. While the trend line in
Fig. 5 shows that area was negatively associated with population, the relationship
was weak and not statistically significant (r = −0.199, p = 0.637 for 200 km, and r
= −0.437, p = 0.237 for 300 km).
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3.2 Drive-Time Buffers

Generally, the size of catchment areas based on 2-h and 3-h drive-time buffers was
similar between airports (Fig. 6), but could be categorized into twomain groups based
on whether they were located in areas with relatively high or low population density.
Figure 1 shows that YQT, YTS, and YSB are surrounded by census subdivisions
with relatively low population density. The road network is also less dense here. For
these airports, the extent of the catchment area formed a web-like shape around the
major roads. Thus, the catchment areas covered less area. These airport catchments
were less than 13,000 km2 based on a 2-h drive-time, and less than 30,000 km2 based
on a 3-h drive-time (Table 2).

In contrast, Fig. 1 shows that YYZ, YOW, YXU, YQG, and YHM are surrounded
by census subdivisions with relatively high population density. The road network
is also denser here so the catchment areas formed a fuller polygon. The area of the
catchments for four of these five airports (excluding YQG) was between 20,000 and
40,000 km2 based on a 2-h drive-time and between 34,000 and 73,000 km2 based
on a 3-h drive-time (Table 2). For airports surrounded by higher population density,
catchments based on drive-time were similar to the circular buffers in extent.

As shown in Fig. 7 and in contrast to circular buffers, based on the drive-time
buffers approach there was a strong, positive correlation between area and population
that was significant based on Pearson’s correlation coefficients (r= 0.942, p= 0.000
for 2-h, and r= 0.919, p= 0.001 for 3-h). For both buffer sizes, the airports with the
largest catchments in terms of area also had the largest populations. As with circular
buffers, YYZ and YHM had the largest catchment areas and associated populations.

3.3 Thiessen Polygons

In contrast to the two buffer approaches, there is great variation in the area of catch-
ments based on Thiessen polygons (Fig. 8). Since there were more airports located in
southern Ontario than in the rest of the province, catchment areas in southern Ontario
were much smaller. Airports in less densely populated parts of Ontario, where fewer
airport options existed, had much larger catchment areas. For example, Table 2 indi-
cates that YQT located in northern Ontario had a catchment area of 497,319 km2

while YYZ located near Toronto only had an area of 40,378 km2. BothYQT andYTS
had large catchment areas that extended to the northern boundary of the province.

Variation in population seemed to follow the opposite trend as variation in area.
The airports in southern Ontario (plus YOW) tended to have larger population sizes
associated with them even though the catchment areas were smaller. For example,
Table 2 shows that a populationof 227,353 fellwithin the catchment ofYQT(northern
Ontario), while a population of 7,366,464 fell within that of YYZ (southern Ontario).
This follows the spatial pattern of population density in the province.
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Fig. 6 Drive-time buffers for major Ontario airports overlaid on census subdivision boundaries
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Fig. 7 Area and population for estimated airport catchment areas based on 2-h and 3-h drive-time
buffers

These findings are confirmed by Fig. 9, which shows that the airports with the
larger catchments in terms of area did not necessarily have large populations. There
was a negative correlation between area and population, though it was weak and
not statistically significant (r = −0.356, p = 0.386). YYZ is most notable in Fig. 9,
because it had a relatively small area but has a population much higher than any other
airport.

3.4 Huff Model

Estimated catchment areas based on the Huff model are shown in Figs. 10, 11 and 12,
with airport attractiveness represented by total passenger flights, total domestic pas-
sengers, and total international passengers, respectively. Across all three variations
of the Huff model, the most obvious pattern is that most census subdivisions were at
least 40% likely to use YYZ over all other airports. Another notable characteristic of
the Huff model results was that subdivisions located near one airport were less likely
to use any other airport. While circular and drive-time buffers did not account for
proximity to other airport options at all, Thiessen polygons arguably over-accounted
for proximity to other airports by defining catchments based on only the midpoint
between airport locations.

Between the Huff models based on total passenger flights, total domestic passen-
gers, and total international passengers, very similar spatial patterns resulted. In all
three cases, YYZhad the largest catchment, YOWhad amoderately-large catchment,
and all other airports were small or non-existent. A notable difference in results based
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Fig. 8 Thiessen polygons for major Ontario airports overlaid on census subdivision boundaries

on flight volume, domestic passenger volume, and international passenger volume
can be seen in the results for YTS. For this airport, subdivisions within close proxim-
ity have greater than 40% probability to use the airport based on total flight volume
and on domestic flight volume. However, without reported international passenger
volume, this airport disappears from the corresponding Huff model. Results for YXU
and YOW followed a similar pattern, since they had fewer international passengers
as compared to domestic passengers or total flights. In contrast, there was a clear
increase in probability to use YYZ when attractiveness was based on international
travel volume, specifically into northern Ontario. YYZ’s catchment had an area of
981,143 km2 when airport attractiveness was based on international passenger vol-
ume, as compared to 968,352 km2 when it was based on domestic passenger volume
(illustrated in Figs. 11 and 12).

Like Thiessen polygons, the Huff model produced large variation in the extent
of each airport’s catchment area. While for Thiessen polygons this variation was
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Fig. 9 Area and population for estimated airport catchment areas based on Thiessen polygons

the result of solely the distance between airports, variation produced by the Huff
model was the result of both distance between airports and the attractiveness of each
airport. Where YQT had the largest catchment area based on Thiessen polygons at
497,319 km2, YYZ had the largest catchment areas based on all three variations of
the Huff model at approximately 970,000 km2 (Table 2).

This variation in area in turn impacted the catchment area populations with a
strong, positive association between area and population based on the Huff model
(Fig. 13). The Pearson’s correlation revealed that the relationship was significant for
all three variations of results (r = 0.982, p = 0.000 for results based on passenger
flights, r= 0.997, p= 0.000 for results based on domestic passengers, and r= 0.998, p
= 0.000 for results based on international passengers. However, these statistics were
likely impacted by YYZ being an outlier.

4 Discussion and Conclusion

This study illustrated that variousmarket area delineation techniques produce notably
different estimates of airport catchments. Differences existed in both the general
shape and extent of the catchment areas as well as the land area and population
associated with each. Moreover, area and population had varying relationships based
on each technique. There were notable differences in the proportion of the study area
belonging to each airport’s catchment based on the deterministic approaches (circular
buffers, drive-time buffers, and Thiessen polygon) and the probabilistic approach
(Huff model).
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Fig. 10 Huff model results for airports with greater than zero total enplanements or deplanements,
with airport attractiveness represented by total passenger flights, reported by census subdivision
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Fig. 11 Huff model results for airports with greater than zero total enplanements or deplanements,
with airport attractiveness represented by total domestic passengers, reported by census subdivision
(airports not appearing in an inset map had suppressed or unavailable data)
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Fig. 12 Huff model results for airports with greater than zero total enplanements or deplanements,
with airport attractiveness represented by total international passengers, reported by census subdi-
vision (airports not appearing in an inset map had suppressed or unavailable data)
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Fig. 13 Area and population for estimated airport catchment areas based on the Huff model, using
total passenger flights, domestic passengers, and international passengers to represent airport attrac-
tiveness

The application envisioned is the forecasting of the spread of infectious diseases.
Such analyses often must be conducted rapidly, with limited data. Therefore, the
trade-off between efficiency of execution and validity of results must be considered
when evaluating each technique. Table 3 provides a summary of the evaluation of
each technique based on this trade-off. While this study was conducted based on the
test case of Ontario’s eight major airports, it is expected that results are generalizable
to other areas.

Of the techniques tested, the circular buffers and Thiessen polygon approaches
would be the most efficient to execute, since their only data inputs are the airport
locations. However, selecting a radius for the circular buffer techniquemight be diffi-
cult due to limited recommendations for an appropriate distance. This parameter may
also depend on the specific public health at hand. There were no inputs parameters
required for the Thiessen polygon technique. While this makes it efficient to execute,
it is impossible to tailor the method to the use case and study area of concern.

The drive-time buffer also required only the single parameter of a defined drive-
time cut-off, but required the additional dataset for the road network. If an analyst
had a defined study area in which they knew their analyses would be conducted,
this network could be pre-processed. However, if this technique had to be executed
for locations globally, it would likely require additional resources to prepare a road
network dataset. Moreover, infectious disease events may occur in remote or rural
areas, or in developing countries, for which road network data often do not exist or
are not readily available. Furthermore, road transportation via vehicle is not always
the main method of transportation in remote areas. For example, during the recent
outbreak of Ebola in Bikoro, Democratic Republic of Congo, the primary transporta-
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tion route to the nearest major population centres was not by road but via the Congo
River (WHO 2018).

While the three deterministic methods can be efficient, the results for our study
area did not appear to be realistic in the context of the differences in attractiveness
between airports; there are few airports in Ontario with high flight and passenger vol-
umes. The distance-only deterministic methods might be more appropriate in cases
where airports are equally distributed across a study area and are similarly attractive.
Alternatively, for circular and drive-time buffer methods multiple buffer sizes could
be applied. For example, a larger buffer could be applied for international airports
or those with higher passenger/flight volumes, and a smaller buffer could be applied
for domestic airports or those with lower passenger/flight volumes. Overall, deter-
ministic methods could likely provide a general estimate of airport catchment areas
in time-limited situations, though results would come with numerous limitations.

The probabilistic Huff model required additional inputs but was still relatively
efficient to execute. In contrast to the deterministicmethods, theHuffmodel estimated
the greatest variation between catchment areas of the different airports. While this
study did not incorporate validation of results based on observed data, the Huff
model results appear to be reasonable considering the passenger and flight volume
associated with each airport. It would be expected that people travel from much
further to reach YYZ due to its high volume of flights, and because they might not be
able to travel to their intended destination from smaller airports in Ontario. However,
the Huff model estimated that subdivisions even at the northern border of Ontario
were most likely to use YYZ. This is unrealistic and could be addressed by defining a
distance cut-off in the model to restrict the choice set to airports within a reasonable
distance. Additionally, the Huff model, as it was implemented in this study, does not
account for the potential of flight connections. For example, an individual could take
a domestic flight from YTS to YYZ, and then fly to an international destination from
YYZ. Such itineraries could be represented in the attractiveness variable if more
detailed data were available.

The characteristics of results based on each technique must also be considered
based on the situation inwhich this approachwould be implemented. Specifically, it is
important to consider whether full coverage of the study area is required, i.e. whether
all locations in the study area must be assigned to at least one airport catchment area.
This may be needed if the spread of a local outbreak through outbound passengers
was to be forecast. Only the Thiessen polygon and Huff model techniques meet
this requirement, while the buffering methods do not cover the entire study area.
However, if considering an inbound infected individual, catchment area resultswould
not necessarily need to cover the entire study area to estimate the area within which
the individual would likely travel after deplaning.

Considering the context of SARS, all methods would have assigned the City of
Toronto to YYZ. This was expected, due to Toronto’s close proximity to YYZ as well
as the high volume of flights and passengers associated with YYZ. However, results
based on each technique defined YYZ’s catchment area differently in extent—af-
fecting the area that an infected traveler who deplaned at YYZ might travel to. The
catchment area for YYZ, in this case, could be considered at risk for SARS spread.
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While the risk area based on Thiessen polygons was restricted to a small portion of
southern Ontario, most of the province would have been included based on the Huff
model. Resources might be focused on the defined risk area; therefore, it is impor-
tant to select the most appropriate method, and apply appropriate data inputs, to best
guide this distribution of resources. Considering YYZ’s high flight and passenger
volume compared to the other airports, it may be possible that its true catchment area
covers a large portion of the province, as estimated by the Huff model. In this case, it
could be useful to incorporate the population distribution within the catchment area
to help guide resource distribution, as is common in the field of retail geography to
estimate the spatial distribution of potential customers.

The results of this study were impacted by limitations in data access and con-
ceptualization of air travel. In the airport locations and associated passenger dataset
obtained from Statistics Canada, some data were suppressed and at least one impor-
tant airport location was not included for unknown reasons. In future research, Billy
Bishop Airport (YTZ) in Toronto, which serves approximately 2.8 million travelers
annually (PortsToronto 2018), should be included to better understand its impact on
the catchment area of Pearson International Airport (YYZ). Second, the comparison
between results based on domestic and international passengers did not include travel
to the U.S., since that is included in the “transborder” variable. Additional analysis
could be conducted to analyze results based on travel to the U.S. specifically, or
the variable could be merged with international passengers. Third, the open-source
Huff model tool did not have an option to apply a distance cut-off to represent a
maximum distance that an individual would be willing to travel. Without the use of
a distance cut-off, Toronto’s YYZ received high probability for individuals living in
northern Ontario—in some cases over 1500 km away. The option to apply a distance
cut-off would ensure a more realistic representation of travel to airports. Instead of
travelling an unreasonably far distance, someone might choose to take a connecting
flight from a local airport to a larger, more attractive airport from which to fly to their
final destination. There was no obvious solution to including connecting flights in the
modeling approaches, yet this would likely result in larger at-risk areas. Essentially,
the catchment areas of larger airports would need to be extended to include the local
catchments of smaller, connected airports, resulting in a network of airport catchment
areas. Fourth, the methods did not consider airports outside of Ontario, such as US
airports in Buffalo and Detroit just outside the Canadian border, which would likely
reduce the estimated catchment sizes of some southern Ontario airports. Addressing
this limitation would require expanding the study area to include parts of the United
States. Fifth, we could not validate results with empirical data due to lack of access
to such data. Validation is an essential next step. Primary data could be collected
through surveys at airport locations or by collecting license plate information, or
secondary data such as mobile phone data could be leveraged.

Infectious disease outbreaks can occur almost anywhere across the globe, and
with high volumes of international air travel they can be imported to essentially any
location. Thus, it is difficult to pre-define the study area that predictive analyseswould
need to be conducted for. With an understanding of the different characteristics of
eachmarket area delineation technique, it is important to focus on the requirements of
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eachparticular use case.The airport catchment estimate shouldnot onlybe as accurate
as possible, but the technique must be manageable in situations where time and/or
data are limited. This is often the case when there is an infectious disease outbreak,
and analysis must be conducted rapidly to guide decision-making to respond and
prevent further spread. In contrast to our case study, open-access airport and travel
data would be more difficult to obtain globally, though options exist to purchase
such datasets (e.g. from the International Air Transport Association). If a distance
cut-off were incorporated to refine the results, the Huff model provides a balance
between ease-of-execution and validity of results, so that catchment areas could be
estimated rapidly and produce valid results to properly guide decision-makers when
responding to infectious disease threats.
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