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Abstract  This chapter attempts to encompass and tackle a large problem in 
Astrovirology and Astrobiology. There is a huge anthropomorphic prejudice that 
although life is unlikely, the just-right Goldilocks terrestrial conditions mean that 
the just-right balance of minerals and basic small molecules inevitably result in life 
as we know it throughout our solar system, galaxy, and the rest of the universe. 
Moreover, when such conditions on planets such as ours may not be quite right for 
the origin of life, it is popularly opined that asteroids and comets magically produce 
life or at the very least, the important, if not crucial components of terrestrial life so 
that life then blooms, when their fragments cruise the solar system, stars, and galax-
ies, and plummet onto appropriately bedecked planets and moons.

It is no longer extraordinary to detect extraterrestrial solar systems. Moreover, since 
extra-solar system space exploration has commenced, this provides the problem of 
detecting life with enhanced achievability. Small organisms, which replicate outside of 
a living cell or host, would not be catalogued as viruses. How about viruses that cohabit 
with life? On the Earth, viruses are a major, if underestimated, condition of life – will 
that be the case elsewhere? Detection of extra-solar system viruses, if they exist, 
requires finding life, since viruses necessitate life to replicate. (It should be noted, 
though, that viruses could be detected through various types of portable ultra-micro-
scopes, including Electron Microscopes (EM) (scanning and transmission) as well as 
Atomic Force Microscopes (AFM).) However, extra-solar system detection of life does 
not oblige that viruses exist ubiquitously. Viruses are important potential components 
of biospheres because of their multiple interactions and influence on evolution, although 
viruses are small and obligatory parasitic. In addition, nanotechnology – living or rep-
licating nano-synthetic machine organisms might also be present out there, and require 
consideration as well. An imposing caveat is that, if found, could some extraterrestrial 
viruses and synthetic nanotechnological microorganisms infect humans?
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Possibly, intelligence and cognition may at times be contemporaneous with life. 
Concomitantly, life and viruses that may be detected, could well be impacted upon 
by intelligences existing on such exoplanets (and vice versa). Coming to an under-
standing of the plurality of extraterrestrial intelligence is an optimal objective, in 
order to avoid causing harm on exoplanets, as well as avoiding conflict and possible 
human devastation. This is especially the case if we encounter greatly advanced 
galactic-level civilizations, compared to terrestrial civilizations. Their machine and 
bionic technologies on the Dyson engineering civilization scale may be prominently 
superior to ours; their biological expertise may be similarly critically radical. For 
example, they may use viruses for purposes for which we are barely aware, and 
which could be utterly deadly for humans.

A series of steps is being taken in space exploration. Scientists hypothesize and 
claim that types of life may be near the Earth, in the solar system, and outside the 
solar system, similar to ours in the sense that only such conditions, Goldilocks con-
ditions, are key sine qua non requirements, based on our terrestrial chemistry and 
biochemistry. If detected within the solar system, will life or its remnants resemble 
terrestrial life? Outside the solar system a similar chauvinism exists, although the 
likelihood for life, in any event, remains probably low, according to more cautious 
approaches to the problem. The study of our solar system includes planets, aster-
oids, comets, and other planetesimals that have been in overall contiguity during 
several billion years; anthropomorphisms claims life consequently has been devel-
oping along terrestrial-type mechanisms. However, a non-anthropomorphic view 
would surmise, probably not, especially for extra-solar system locales. The prime 
warning and admonition in all these deliberations is the contamination and damage, 
which current and past practice and procedures has caused and continues, due to 
insufficient biocontainment concepts and technology to date.

Advances in the development of robotics, artificial intelligence (AI), and high 
capacity ultrafast quantum computers (QC) greatly enhance the sophisticated con-
trol and logical development of extra-solar system studies. Consequently, future 
long-range manned space exploration seems unwarranted. Clearly, reduced dangers 
to human health and safety, will result from the use of intelligent machine-based 
investigations and besides, with increased cost-effectiveness. Space exploration 
comes at great cost to humanity as a whole and utilizes global resources. 
Consequently, appropriate organizational measures and planning/cooperation need 
to be in place. Moreover, the bottom line is that despite all the slogans and claims, 
there have been next to no financial benefits to our planet as a whole. Such financial 
and heedless difficulties need to be addressed, the sooner the better. In addition, 
prior to exposure to exoplanetary life, deep understanding of the problems of infec-
tious diseases and immune dysfunction risks are needed. In addition, global efforts 
should avoid serendipity and stochasticity as this work should be directed with 
long-term organization, commitment, scientific, and technological methodology. 
This chapter briefly reviews such questions assuming a new paradigm for oversight 
of extrasolar system viral investigations including intelligence and life. Finances are 
included as an essential adjunct.
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Key Concepts
Virus detection in extra-solar system locales depends on the presence of life. 
Intelligence detection in extra-solar system locales depends on the presence of 
life or on the presence of machines. Can these be detected? What is the extent 
of contamination with biological and junked material of the prior pristine 
extra-terrestrial environments in our Solar System? Have all the planets, aster-
oids, and planetesimals to which spacecraft were sent already damaged and 
contaminated the entire program of life detection in our solar system with bio-
logical, toxic, and junk contamination? In case terrestrial and extra-terrestrial 
biologies were similar, can biological hybrids form that are more pathogenic or 
toxic compared to either parental progenitor? Is this a danger even if they are 
dissimilar? Will this admonition endure with spacecraft having departed from 
our solar system? The highest level of biosafety biocontainment level (BSL-4) 
is used for the deadliest of known terrestrial viruses, such as Ebola virus. The 
severe problem of extraterrestrial contamination by terrestrial microbes and 
vice versa, the reverse possibility, requires careful and detailed examination, 
analysis, and technological improvement. Assessment of many constraints 
requires that intelligent machines sent to investigate life beyond the solar sys-
tem, should have preeminent capabilities including Artificial Intelligence (AI), 
Quantum computers (QC), robotics, self-replication, and repair, nanotechnol-
ogy, and von Neumann’s “Universal Constructor”. It is counter-productive to 
foster human exploration of life beyond the solar system, current human, finan-
cial, and technological conditions all considered. This chapter briefly provides 
synopses of diverse background and significant advances for virology/life 
detection elsewhere, within and beyond the solar system.1

1 This includes viruses that can grow in microbes as well as in larger living systems.
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1  �Introduction

The Goldilocks or through the looking glass paradigm assumes, usually that univer-
sally, all life embodies the same or similar terrestrial processes. This terrestrial-
centric view of life is limited in scope. The complete chemistry of all the natural 
elements, metals and non-metals, is unknown, and the predictive abilities of quan-
tum chemistry are thus far unable to solve such salient issues that face us, while 
extraterrestrial exploration continues.

Humans have been anthropomorphic, ethnocentric, and Earth-centric for millen-
nia, as far back in time that we know of. This led to widespread provincial limited 
unscientific deficiencies to grasp intelligence and life in the universe. However, 
many ancient Greek and modern scientists and technologists opposed such views. 
As investigations commence of locales outside our terrestrial and solar system envi-
ronments, we need to re-examine fundamental assumptions, hypotheses, and direc-
tions. Key concerns in such explorations include unnecessary human life 
endangerment, global wastefulness, improvidence, duplicative financial cost, and 
huge irresponsible toxic accumulation of terrestrial and space junk. This chapter 
contends that unrelenting development of AI, QC, and intelligent robotics for extra-
terrestrial exploration will remove human risk and endangerment from the equation, 
as well as reduce global costs.) [1–4]

2  �Extra-Terrestrial Life

Could galactic-level civilizations exist that are greatly advanced? Is the Fermi-
paradox of detection still extant? Astronomers are inventorying the solar system 
including planets, planetoids, asteroids, comets, dust, particles, etc. Nonetheless, 
although objects circulate within the solar system, some arrive from extra-solar sys-
tems and interstellar space, can life be detected anywhere among these? If not 
detected directly, which objects may have putative signatures of life? [5–13].

2.1  �Opposing View – The Hidden Civilization Survival 
Hypothesis

Wandel epitomizes the view that there is an inimitable abundance of life in the uni-
verse; this is based on threadbare evidence, if at all. The Drake equation is applied, 
the biosignature paradigm for the presence of life is applied, and the conclusion 
drawn. The assumption is, as usual, that Goldilocks planets are the harbingers of 
life, and percentages calculated to purportedly demonstrate the anticipation as to 
just how life must be so abundant [14].
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This returns to a chapter theme that if there were any life elsewhere in the uni-
verse the problem of contact must be faced in regard to human health and safety 
based on virology, biology, and intelligence estimates therefrom. Moreover, there 
have already been proposals as to human measures of extraterrestrial intelligence 
base on feats of engineering accomplishments. Dyson proposed that sufficiently 
advanced civilizations could build spheres around their suns to provide greater 
energy capture needed for advanced technological progress – a stage of civilization 
technological development. Kardashev further proposed stages of development that 
proceed from the Dyson sphere capability, to the ability to move planets, and then 
finally to civilizations that could modify the structure of space-time itself to suit 
their needs. However, nothing of the sort has been detected as yet [6, 7, 11, 14].

The absence of life detection based on the Goldilocks paradigm could be the 
result of no existence of life in the first place out there, or it may be rarer than 
thought. In addition, intelligent life may survive some time prior to extinguishing 
itself. Possibly, intelligent life that does survive, may then rapidly hide itself. In this 
regard, several thousands of years of human history demonstrates the folly of dis-
played ostentatious resources readily discerned by others compared to less dis-
played wealth and existence.

Thucydides, in his history of the Peloponnesian war2 describes how Athens was 
able to initially grow and flourish, developing civilization and resources, because it 
was founded in an arid area that most other civilizations and cultures avoided [15]. 
Similarly, civilizations that hope to survive the unidentified dangers of the universe 
may know how to hide, strategically, from potential dangers and risks, and thus, to 
actually avoid Goldilocks zones.

2.2  �Life Cycles

Various forms of life may have wide range cyclic durations, from transitory evanes-
cence to long-term endurance. The time scales and examination methods used are 
critical and fundamental. Investigators could miss important clues as to the exis-
tence of such living systems, depending on the intervals, flexibility, and adaptability 
of how and when analyses were to be accomplished. A few demonstrative exem-
plars follow.

Possibly, investigators could miss cicada-like organisms that hide away for 
lengthy interludes. In Northeastern America, for example, distinctive cicada species 
have 13- and 17-year synchronous life-cycles. These two separate periodicities, 
generally, do not overlap, geographically. However, where there is geographical 
overlap, 221-year cycles occur [16, 17].

At the other end of the life cycle temporal spectrum, extra-solar system investi-
gators could miss organisms that appear randomly (temporally and geographically), 

2 Peloponnesian War occurred 431–404 B.C.
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and very briefly. For example, species of mayfly adults live near fresh watersheds in 
England and have brief lifespans that vary from 5 minutes to 14 days. Their eggs are 
found in river beds and the next stage of development, nymphs, are found in prox-
imity on river water plants. Subsequently, two separate additional adult stages 
develop on other riverside plants [18]. Consequently, if the investigators happened 
to look at night, or with inappropriate durations, or miss any of the precise locales, 
such explorers might not detect such mayflies. Moreover, even if they did detect 
various separate components of, as yet unknown (to them) life cycles, would they 
be able link the various mayfly developmental and maturational stages to then amal-
gamate the information into mayfly life cycles?

Undoubtedly, sequenced DNA genome phylogenies would divulge a lot; how-
ever, we cannot dubiously assume, per chance, that extra-solar system explorers 
will find living systems that utilize DNA. Some other types of genetics, inheritance, 
or propagatory systems may be used that have other means of genetics or ‘memory’ 
required as to how organisms reproduce or propagate. Panoplies of temporal range, 
location, and multiplicity of stages are thus important considerations investigators 
must address. Intelligent robotics, AI, and QCs are exceedingly applicable to con-
ceive, plan, and address what needs to be constructed and assembled for successful 
and efficient extra-solar system investigations. Much work is currently being 
accomplished and the paradigm shift from utilization of humans to utilization of AI 
will accelerate the understanding and implementation of what needs to be done in 
preparation for such explorations. Additionally, large intelligent mechanical inven-
tive systems necessitate development, which will implement obligatory changes 
upon arrival at extra-solar system target locales. Clearly AI will outperform humans 
and human intelligence [19, 20].

2.3  �Microfossils and Isotope-Radioisotope Quantification

The detection of microfossils is important in confirming the early appearance of life 
on our planet and the use of isotope/radioisotope ratios is vital in enhanced dating 
methodologies [21, 22]. By the same token, in unmanned exploration of exoplanets, 
sophisticated apparatus using robots, AI, and QC are needed as well that can design 
and carry out measurement for isotope-radioisotope quantification in situ, in micro-
fossils. This would have to be done across vast expanses of regolith, basalt, and 
sedimentary layers on such planets, carrying out in briefer times, what has taken 
more than a century of scientific and technological development and progress to 
accomplish, on our planet.

In addition, the conundrum of possible microfossils in foreign bodies that have 
plummeted onto planetary surfaces, fall into this domain. However, artefacts pro-
duced by severe heating when such objects fall through planetary atmospheres, and 
survive impact without complete annihilation, become questions of credibility and 
require additional support studies. Subsequently, how convincing is the claim for 
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microfossils in such circumstances? Moreover, when falling onto planets or moons 
that are devoid of any atmospheres, such as the Moon, it is anticipated that such 
fossils will be more likely to survive under those conditions. To wit, if Martian 
microfossils have fallen to Earth, then as a control, should we not detect a plethora 
of such fossils on our Moon, which, after all, has weaker gravitation, negligible 
atmosphere, and a softer powdery regolith. An in depth analysis of the degree of 
flaw of claimed microfossil findings in terrestrial Martian rocks, is provided by 
Grady et al., who ask the question: “Martian meteorites are ancient microfossils. Do 
the data demand faith, hope, or charity?” Based on questions of chemical analysis 
techniques, generated artefacts in these fallen objects, and methods of evaluation, 
Grady et  al. oppose the microfossil conclusion purported findings. It should be 
noted that as of January 2019, 224 of 61,000 (0.4%) meteorites that fell to Earth 
were ejected from Mars [23, 24]. This does not support the occurrence of exobiol-
ogy in our solar system.

2.3.1  �Viral and Particle Contamination – Biosafety

Space exploration requires analysis of the conditions of physical and biological 
contamination including inanimate, such as dust, grains, and particles, and animate 
such as organisms of various sizes. Exploration of the Moon commenced some 
50 years ago. In 1969, 1971, and 1972, six Apollo missions 11, 12, 14, 15, 16, and 
17 landed on the moon and exhibited problems with lunar dust contamination of 
personnel clothing, space suits, and space vehicle cabins. Ubiquitous dangerous and 
deleterious effects of lunar dust were included in ten categories: inhalation and irri-
tation, vision obscuration, false instrument readings, dust coating and contamina-
tion, astronaut space suit surfaces, loss of traction, thermal control problems, 
abrasion, clogging of mechanisms, and ball-bearing and seal failures. There were no 
effective procedures available to diminish the most serious problems of abrasion, 
clogging, and weakened heat rejection. The authors concluded that prior studies of 
these problems had been insufficient, so that additional studies will be needed prior 
to returning to the Moon and similarly prior to exploring Mars, if that is done. 21st 
Century ultra-sterile futuristic BSL-4 methods to prevent material and biological 
contamination should be used [25–29].

The complexity of detecting extra-solar system viruses and associated life is fur-
ther heightened in consideration of incursion and clash with life that is potentially 
deleterious or hostile towards humans and their vehicles, AI, and other derivatives 
of our machines and technologies. Tribulations arising may be intentional or unin-
tentional. Such warnings are exemplified using the following example of an unan-
ticipated grim and dangerous lethal terrestrial virus, for which there is, as yet, no 
fully efficacious cure, Ebola.

This example is a huge international public health problem. Ebola epidemics are 
unanticipated, sporadic, and have high mortality. Based on phylogenetic studies, it 
appears that Ebola evolved in Africa for at least 1200 years, prior to its discovery. 
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Ebola virus disease was discovered in 1976 in the Sudan and also occurred in the 
same year in Democratic Republic of the Congo (DRC).3 Ebola outbreaks and epi-
demics occurred in DRC in 1977, Sudan 1979, Philippines in 1989, Gabon 1994, 
Cote d’Ivoire in 1994, Gabon, 1995; DRC 1995, Gabon 1996 and 1997, Uganda 
2000, Gabon 2001 and 2002, DRC 2001, 2002, and 2003, Sudan 2004, DRC 2005 
and 2007, Uganda 2007, DRC 2008, Spain 2010, Uganda 2011 and 2012, DRC 
2012, and a huge outbreak in West Africa (Liberia, Guinea) in 2013. Human Ebola 
virus infections were also detected in Lagos, Ghana, and Sierra Leone. Fruit bats are 
the reservoir for Ebola virus. Virus infected bats have been found in the DRC, 
Gabon, Lagos, Nigeria, and Ghana. Moreover, satellite telemetry is used to track bat 
migrations. Direct exposure to fruit bats can result in Ebola virus infection. In addi-
tion, Ebola virus has been identified in several animals including great apes such as 
chimpanzees. Ebola virus laboratory, clinical, and epidemiological studies are con-
tinuing due the devastating impact of this largely unanticipated disease [30–32].

At the start of the last few Ebola outbreaks and epidemics, however, international 
organizations, the NIH, and CDC were well prepared and promptly mustered the 
indispensable organizational, professional skill, complex technology, and rapid 
response required for the situations that unfolded. Biohazard suits were available 
for emergency teams and BSL-4 laboratories were already equipped and prepared 
to receive specimens for optical and electron microscopy as well as for various 
virologic, immunological, biochemical, and molecular analyses. Procedures for the 
proper transport of BSL-4-level specimens via commercial public airlines were in 
place and immediately utilized. In fact, there are 50 known BSL-4 laboratories 
world-wide, so the planet has a high degree of improved preparedness for various 
types of biological contamination problems. Indeed, the current 2019 Ebola epi-
demic in the Democratic Republic of the Congo is considered now at its worst and 
still spreading [29, 33–38].

National and international space programs should coordinate with US and 
International biological, microbiological, and virologic organizations, including 
NIH, CDC, and WHO. These Biomedical organizations are highly skilled expert 
and accomplished. They are well-rehearsed and prepared for preventing and dealing 
with viral including biological and material contamination and are expert in care-
fully controlled, statistical analysis of experimental-design limitations, as well as 
augmented predictive capabilities. Such cooperative planning will reduce unneces-
sary duplication and financial waste [39].

Such considerations, including the panoply and plethora of emerging virus 
infections in recent decades, cast great doubts on the dubious optimism shown 
by many astronomers and exobiologists that exoplanetary microorganisms are 
unlikely to cause damage to humans. This is counter to extensive evidence that 
viruses cross species barriers [40]. Moreover, whether microorganisms and viruses 

3 There was a Marburg virus outbreak in 1967 in Uganda; Marburg virus is a Filovirus related to 
Ebola virus.
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have arisen on Goldilocks4 or on non-Goldilocks exoplanetary environments, it is 
counter-productive and damaging to credibility, when avowed that the potential 
infectious pathogenicity and lethality of exoplanetary microorganisms and viruses, 
if they exist, are shrugged aside.

2.3.2  �Viruses Cross Species Barriers

There is a plethora of viruses that have their origin in species other than where they 
are initially discovered. The following examples of such viruses, their original host, 
and original species jump-time are as follows: Measles virus (cattle and monkeys, 
since the origin of Homo sapiens), Smallpox virus (other primates and camels, more 
than 10,000  years ago), Influenza virus (water birds, pigs, horses, more than 
5000 years ago), canine parvovirus (CPV) (cats and feline carnivores, since 1970’s), 
HIV-1 and HIV-2 (old world primates, chimpanzees, early 20th century), SARS 
Corona virus (bats, since 1970’s), Dengue virus (old world primates, less than 
500 years ago), Nipah virus (fruit bats, continuously), Marburg and Ebola viruses 
(bats, continuously), Myxoma virus (rabbits, since 1950’s), Hendra virus (fruit bats, 
continuously), and canine influenza virus (horses, 21st century) [41].

Remarkably, more recent studies among 19 virus families demonstrate that host-
switching is universal among the viruses studied including Hepadnaviridae, 
Polyomaviridae, Poxviridae, Papillomaviridae, Adenoviridae, Caliciviridae, 
Coronaviridae, Potyviridae, Herpesviridae, Paramyxoviridae, Parvoviridae, 
Togaviridae, Retroviridae, Flaviviridae, Bunyaviridae, Orthomyxoviridae, 
Reoviridae, Picornaviridae, and Rhaboviridae [42].

2.4  �Origin of Life

Where and when were organic compounds first synthesized, how did they accumu-
late, and how were they disbursed? Possibly, there are multiple developmental 
phases resulting in the origin of life from abiotic biomolecular synthesis and organ-
elle formation required for living systems. In addition, was there a slow or rapid 
process during which living systems arose and assembled? Be that as it may, the key 
issue raised is a contrast between the problem of how life arose on the Earth, vs. its 
arising on asteroids and comets, and in these cases infalling onto the Earth. 
Temperatures of ejection are important in understanding the temperatures rocks 
were exposed to prior to reaching Earth. For example, rocks on the Earth from Mars 
could have been exposed to ejection temperatures of 400  °C. Additional studies 

4 Frequently, a paradigm, termed Goldilocks, or through the looking glass, is used that life found in 
the panoply of terrestrial environments is indicative of what should be anticipated for life in the rest 
of the solar system and universe.
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indicate a higher temperature when asteroids collide expelling chondrites. The 
ranges of temperature maximum of 1850–1900  °K and 17–20  GPa for pressure 
peak were attained [43–46].

However, infall temperatures for rocks reaching the Earth could reach more than 
a thousand degrees K. For example, Jenniskens et al. found that cometary debris and 
asteroids that traverse the Earth’s atmosphere are exposed to atmospheric tempera-
ture range of 2900–6000 °K (traveling at 19–61 km/sec) and 7600–14,000 °K (trav-
eling at 71–85  km/sec). However, depending on whether such events occur in a 
predominantly CO2 or O2 atmosphere influences the results. As the ejecta are 
expelled from the infall rocks, they cool the further away they travel. Organic mol-
ecules could then be synthesized in a predominantly CO2 atmosphere compared to 
an O2 atmosphere where C would react to produce CO and CO2 [47].

2.5  �Early Sources of Organic Molecules

Chyba and Sagan hypothesized [48] that the early Earth, prior to 3.5 Gyr ago, had 
several equivalent sources of organic molecules: impact shock-, UV radiation-, 
electrical discharge-propelled synthesis and infall from extraterrestrial objects. 
However, questions can be raised as to the actual quantification of each putative 
source, the accuracy of measurements, the degree of solar nebula opacity to UV 
radiation, influence and types of radioactivity, the strength and destructiveness of 
the solar wind during the course of these events, the reaction-rate and chemistry of 
isotope effects of deuterium in the aqueous environment, and the relative distribu-
tions of infall from chondrites, comets, and other solar system debris.

2.6  �Organic Compound Survival 
Under Extraterrestrial-Interplanetary Conditions: 
A Paradox

Immanuel Kant, in the 18th century (in 1755), first proposed that the solar system 
condensed from gases and particles. In this theory, he relies on the concept of the 
atom derived from Lucretius in combination with the application of Newton’s laws 
of gravitation, leading to processes of condensation [49]. The work of Immanuel 
Kant set the stage for subsequent inferences to be based on planetary evolutionary 
phenomena, leading to the origin of life.

The evolution of carbon-containing molecules is of subsequent relevance in 
terms of possibly detecting Goldilocks-zone hypothesized Earth-like life, as 
advanced in the 20th century. The analyses of the Murchison and many other carbo-
naceous chondrites have been typical study foci. However, the question as to the 
survival of organic prebiological compounds continues to be a prime question in 
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studies related to the origin of life in the solar system, as well. For example, 
carbonaceous chondrites have been sources of amino acids, purines, and perhaps 
some pyrimidines. Do they reflect conditions related to the origin of life or synthesis 
during transit to the earth’s surface? [50–53]. First, were compounds continually 
produced during the early history of the solar system (e.g. during the first Gyr) and 
then, second, various conditions would degrade and destroy these compounds (e.g. 
heat, impacts, radiation, radioactivity, ultraviolet light, cosmic rays, and solar wind.) 
Olivine basalt was returned from the lunar regolith to the Cornell University Space 
Center Planetary Laboratory (Ithaca, NY) and was pulverized and then mixed with 
amino acids. These mixtures were subjected to lunar surface proton irradiation, tem-
perature, and high vacuum, and resulted in complete amino acid destruction, in 
entirety, in 5-cm mixture columns. The half-life of the amino acids was calculated 
at 4000 years [54].

Conditions would be different at various times and durations on asteroids, chon-
drites, proto-planetoids, planetesimals, Earth, other planets, satellites, and comets. 
Thus, one may ask the crucial question, did pre-biotic biochemistry occur and 
evolve on planets such as Earth, Mars, and Venus at various times in their histories 
or did this occur on a solar system-wide panorama, early in the solar system history. 
However, if it were solar system-wide, then did this occur in two phases for the 
Venus, Earth, and Mars? First as the planetary material precursors and compounds 
accreted, then when some planetary critical mass was attained resulting in volca-
nism and melting, consequent concomitant destruction of biological compounds 
ensued. Next, was it only after some level of cooling that there was in situ synthesis 
of protobiologicals on the Earth (and Venus and Mars) as well as raining down of 
such molecules, as described by Chyba and Sagan in1974 [48].

Is life then a product of individually rare events such as on planets alone, or as a 
result of solar system-wide events that contributed increased probabilities of biomo-
lecular assembly and biogenesis. As time goes by, with additional well-controlled 
studies, this paradox should be resolved. Be that as it may, Loeb proposed that 
because at a redshift of 100–137, because the cosmic background temperature was 
273–373  °K, (thus, a widespread Goldilocks universe) organic molecules could 
have formed and perhaps life originated, though at that early stage of development 
of the expansion of the universe (only 10–17 million years of age) [55]. Using this 
slant, there could have been very early widespread origins of life over several mil-
lion years, prior to the further cooling and evolution of the universe, towards what 
we observe today. This overall vantage is also proposed by Gibson [56].

2.7  �Terrestrial Ribosomes and the Origin of Life

The thermodynamics involved in ribosome evolution and multiple linkages among 
proteins and nucleic acids may be involved in the energetics imposing evolutionary 
constraints in selection at the molecular intracellular level, especially during the 
epoch when the terrestrial atmosphere changed from a UV-penetrating atmosphere 
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with no oxygen to one with little UV and an abundance of oxygen.5 The complexity 
of the origin of ribosomes involving proteins and RNA’s may have taken place at an 
early stage of life, when RNA genetics predominated prior to the proliferation of 
DNA genetics, termed the RNA world [57–62].

Briefly, subsequent evolution of life including ribosomes and cell organelles, 
point to endosymbiont evolutionary processes. Eukaryotes (with mitochondria, 
plastids (chloroplasts), and mitotic apparatus) appeared due to the fusion of several 
separate endosymbiont prokaryote groups. Accordingly, note then, that at some 
stages of evolution, some prokaryote nucleated cells interacted with mitochondrial 
symbionts and others with both mitochondrial and plastid endosymbionts. The 
endosymbiont origin hypotheses were originated by Mereschkowsky in 1905 and 
championed by Margulis since 1967 [63–67].

Extra-solar system life searches utilize panels of sophisticated experiments avail-
able to establish the presence of many types of chemical reactions, pre- and post-
origin of life, depending on the states of development, where exploratory vehicles 
land. Of under-rated importance, there should be improved biocontainment proce-
dures in place to avoid upsetting and perturbing the evolution of life in such environ-
ments. As technology improves and further exploratory vehicles are sent, the danger 
of biocontamination becomes even greater. Each exploratory vehicle should have a 
probability value (p-value) attached - which should be lower than some crucial value 
that should be determined with appropriate scientific investigation. Many control 
experiments are required to fully investigate such potential contamination outcomes. 
The degrees of complexity involved additionally require AI and QC to accomplish 
such difficult and multifaceted tasks without destroying such environments. Such 
issues are obviously important in extra-terrestrial Goldilocks zone environments.

2.8  �Thermodynamics and Life

Besides the many apparatuses and characteristics of life mentioned, it is also recog-
nized that analysis of organization, symmetries, energetics, and thermodynamics 
are crucial components in the analysis of life. This way early recognized by 
Schrodinger. Life as we know, demonstrates several biochemical cycles including 
Nitrogen, Carbon, Oxygen, and Sulfur cycles as well as electron flow cycles in 
organelles including mitochondria and chloroplasts. For energy production, many 
electron-chain oxidation cycles are based on sulfur or oxygen. Molecular biosyn-
thesis- and degradation-coupled cycles are additionally often cited including nitro-
gen fixation, urea cycle, glycolysis, Krebs cycle, and photosynthesis. Demonstrating 
extreme plasticity and adaptability, terrestrial life has infiltrated wide varieties of 
inhospitable extreme environments, nonetheless, of temperature, earth, atmosphere, 
and water (however, all considered in the Goldilocks zone) [68–74].

5 Such considerations may be obviated for extra-terrestrial life, where other conditions may become 
imposed, in the event of the absence of UV and/or oxygen in the first place.
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Life demonstrates increased order and lowered entropy. The Gibbs equation is 
fundamental in such calculations.

	 ∆ ∆ ∆G H T S= − 	

where G is Gibbs free energy, H is enthalpy, T is temperature, and S is entropy 
[75–77].

Since the external environment is an open system, it supplies energy for this to 
occur as well as an increase in disorder and increased entropy to offset life’s 
demands on energetics. Indeed, according to some cosmologies, entropy is increas-
ing in the universe (second law of thermodynamics) [68, 78, 79]. Thermodynamics 
and kinetics of chemistry in space exploration is productive as exemplified for 
Enceladus [80] An additional example of living thermodynamics is the Gibbs-
Donnan equilibrium effect [81]. Technology needs to be developed to detect such 
thermodynamic effects due to the presence of life, prior to taking samples for analy-
sis, thereby potentially harming and destroying what is under examination. The 
application of difficult and sophisticated methods including fractal, multifractal, 
and thermodynamic approaches would require some time to develop and optimize 
[82–89]. Anthropomorphism not intended, in terms of intelligence, scanning for the 
extraterrestrial equivalent of neurons (from an external vantage) is a daunting task. 
Robotics, AI, and QC would surely require development, in order to do such diffi-
cult and complex tasks.

Unanticipated and counter-intuitive properties of replication occur in terrestrial 
life, which are being comprehensively assessed, as indicated, for example, by stud-
ies of prions and prion-like proteins. On the one hand, prion proteins are produced 
from coding DNA exons; on the other hand, infectious prions can induce malforma-
tion of correctly folded proteins into misfolded neuropathological prions. This 
transformation is associated with a variety of human and animal diseases that have 
been carefully and scientifically studied since the early 20th century. Moreover, 
many proteins have prion-like sequences and may additionally participate in various 
disease processes. Unanticipated, amyloid fibril fatal associated involvement in 
Alzheimer’s disease, may involve synergistic action with prions. Further relevant to 
Astrovirology, there is negligible immune response to prion disease itself (transmis-
sible encephalopathies) in the natural setting. If anything, incipient immune reac-
tions promote replication and spread of prion disease [28, 90–94]. Thus, exovirology 
portends unanticipated elevated health risks for human exploration, should life and 
viruses be discovered elsewhere.

Biomedical scientists recognize and widely discuss our incomplete understand-
ing of the human genome. The salient feature of the incomplete information is that, 
remarkably, 98% of the human genome does not code for proteins. Therefore, the 
human genome is appropriately under close scrutiny using cutting edge contempo-
rary molecular analytic technologies; these studies lead towards individualized 
medicine and are being done through extensive institutional organizational skills 
coupled with critical peer review [87, 88, 90, 95–102].
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2.9  �Abiogenesis

Abiogenesis may depend on how water interacts with other environmental vari-
ables. It should be noted, however, that although there is little evidence that such 
conditions intrinsically produce life (besides the single example of the Earth), such 
zones are certainly environments to where terrestrial life could relocate. As an addi-
tional example in the field, along such lines, using the anthropomorphic insular 
approach, a probability equation is postulated, to calculate probabilities for life on 
Earth [103].

However, an earlier Bayesian approach came to the conclusion that despite the 
existence of life on the Earth, it is an extremely unlikely event [104]. From this, it 
may be inferred that the focus on the Goldilocks zone in this restricted search for 
life may not be the most productive approach to take; detection may fail for many 
other life-forms.

The possibility of material exchange among planets is used to enhance the prob-
ability of abiogenesis [105]. There is a range of histories and types of planetary 
systems under which such exchanges could occur. Histories of migrating planets 
and their roving excreta further tone the clarification of planetary surface properties 
to be included in the framework of exploration of extra-solar systems [106–108].

2.10  �Extinction Events

There have been five commonly acknowledged terrestrial extinctions of life to date on 
the Earth. Across the last 560 million years (MY), the mass extinction names and approx-
imate dates are late-Ordovician, 440 MY ago; late-Devonian, 370–350 MY ago; end-
Permian, 250 MY ago; end-Triassic, 199 MY ago; and end-Cretaceous, 65 MY ago. 
How such cataclysmic events terminate life is under study. For loss of life, a ‘trigger’ 
mechanism is separated conceptually from a ‘kill’ mechanism. Trigger mechanisms 
are whatever events (e.g. asteroids) cause or initiate kill mechanisms. An interesting 
example, though subtle, is a kill mechanism proposed when atmospheric partial pres-
sure pCO2 levels of 560 ppmv are associated with an oceanic toxic pH of 7.9. This 
level can be reached both from below and from above [109].

Subsequent to each extinction event, the fundamental building blocks and bio-
chemistry of life persisted, as some organisms survived and continued to evolve 
each time. A question posed is to what extent intelligent life evolved prior to or after 
each extinction event. However, the consensus appears to be that highest intelli-
gence was attained after the fifth extinction, with the rise of mammals, primates, and 
humans. What about extinction events in our scientific exploration of extra-solar 
system life? Our explorations necessitate including methods to ascertain whether 
extinction events have taken place, if our arrival is in the midst of such an event, and 
whether our arrival itself may cause such events. Dealing with questions of contami-
nation is crucial. The footprint impacts of our exploration and arrival elsewhere 
should be explored scientifically.
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3  �Goldilocks Zone – Through the Looking Glass

Many biochemists and biologists have concluded that although several possible 
lineages of life may have got started at the dawn of life, there was one lineage origi-
nated that gave rise to all life on Earth, though exceedingly complex and diversi-
fied. This approach is not as straight forward as it once appeared because all life on 
the planet is divided among three groups (Archaebacteria, Eubacteria, and 
Eukaryotes), which occupy ranges of several extreme environmental niches, and 
utilize many different and disparate energy sources. The unity of life derived from 
a single lineage is a charismatic hypothesis but not yet really scientifically fully 
proven [68, 72]. Be that as it may, it is not an optimally scientific tactic in the 
exploration of the universe, like looking in a mirror, to pursue evidence only for 
what we already presuppose to know. Chemistry, biochemistry, physics, and ther-
modynamics need to be examined in concert, since that will improve the chances 
of detecting life of any sort, without prior prejudice. Fractal forms and symmetries 
should be compared among various environments. Possibly fractal forms in dif-
ferentiated environments may be able to discriminate the presence or absence of 
life. Various principles have been formulated [82, 102]. Statistical analysis and 
dynamics has become much more complex, including chaos theory and fractals vs. 
the methods of the last century, such as Gibbs, Maxwell, and Boltzmann theory. 
The need to utilize new methods looms over future life studies and exploration of 
exobiology/virology [83–85].

Goldilocks conditions have been located on Enceladus, one of Saturn’s moons 
and the presence of methane has been ascribed as possibly due to microorganisms 
that are similar to terrestrial deep-sea microorganisms. The terrestrial microorgan-
isms referred to include a methanogenic archaeon, Methanothermococcus okinaw-
ensis, that lives in non-aerobic environments in the Pacific Ocean. It is reported that 
these unique methanogens rely on natural hydrogen production and that they can 
produce methane. Furthermore, the hydrogen production rate on Enceladus is suf-
ficient to support methanogenic life that is hydrogenotrophic and autotrophic. That 
an detection of methanol are also discussed in terms of possible life biomarkers [80, 
110]. The fundamental question is when a chemical profile is a biosignature.

3.1  �Goldilocks Elements

The carbon-, nitrogen-, oxygen-, and sulfur-based life positioned on DNA, RNA, 
proteins, and the rules of terrestrial molecular biology, may not comprise life else-
where. Detecting organic molecules in exo-environments may relate to other forms 
of life that we simply have not yet imagined. Even among some terrestrial life 
forms, for example, silicon enters into metabolism: radiolarians, silici-sponges, and 
diatoms secrete silica [109]. Life detection elsewhere should include diverse unan-
ticipated scenarios.
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3.2  �Goldilocks Abiogenesis

That life as we know it arises on Goldilocks habitable zones, relies on the assumption 
that terrestrial-like environments are the primary harbingers of life [103]. It should 
be noted that although there is little evidence that such conditions intrinsically pro-
duce life (besides the single example of the Earth), though such zones are certainly 
environments to where terrestrial life could move. An equation was postulated to 
calculate probabilities for life on Earth. The possibility of material exchange among 
planets was used to enhance the probability of abiogenesis. However, a Bayesian 
approach came to the conclusion that despite the existence of life on the Earth, it 
remains an extremely unlikely event. Moreover, it should be noted that earlier spec-
ulations considered that life resembling known terrestrial biochemistry was unlikely 
[9, 11, 68, 104, 105]. From this one may infer that the focus on the Goldilocks zone 
conditions in the search for life is an excessively restrictive approach.

4  �Technology Development

Since the advent of the Industrial Revolution, science, medicine, and technology 
intensely developed and progressed. Continued development as it points to extra-
solar system investigations requires appropriate additional improvements and 
advances.

4.1  �von Neumann Universal Constructor Machines

von Neumann established in the last century, the feasibility of machine replication 
and error detection and correction. Central is the concept of the “Universal 
Constructor” of von Neumann’s [111, 112]. Taking this to the next stage of AI, QC, 
and intelligent robotics, it appears we are embarking on a new age of life made of 
various metals, semi-conductors, plastics, and other synthetics.

4.2  �AI Robotics in Space Exploration

Robotics and AI are burgeoning fields in extra-solar system exploration. Such work 
is proceeding at an accelerated pace. For example, robotic self-supervised learning 
was accomplished in the laboratory environment to assist independent robot perfor-
mance in the space exploration environment [113]. This is indicative of progress to 
fully function and independent robotics that can carry out all functions required 
ultimately for extra-solar system exploration.
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4.3  �AI and Machine Learning Computation Approaches 
Related to Medicine and Infectious Diseases (ID)

AI and machine learning computation approaches related to Medicine and ID were 
used to develop a more advanced search engine-decision support system of bio-
medical ontologies than hitherto accomplished. This system utilized infectious dis-
ease and antibiotics information for diagnosis classification. This system is for use 
by ID physicians and care-givers. This is especially useful, when extrapolation of 
exceedingly complex situations is required, when there is missing data, and when 
nonetheless, decisions require being made [114].

4.4  �Extra-Solar System Interplanetary Lasers

Lasers have numerous uses, including communications, optical transponders, preci-
sion clocks, pathfinding, orbital dynamics, altimetry, laser propulsion in space, 
navigation, attitude control, construction, precision alignment, structural control in 
space, power generation and distribution, resource location including 3D-sensing, 
materials science, planetary, satellite, asteroid, cometary interior structure and geol-
ogy, regolith and ice surface mapping, and of course, fulfilling measurement require-
ments due to Special and General Relativity. Further development will be essential 
for exo-solar system interplanetary exploration [115, 116]. Such development is 
perfect for robotics, AI, and QCs.

Very recently, a closer realization of the use of lasers in communications and life-
detection has been proposed. Stellar gravitational lensing as described in Albert 
Einstein’s theory of General Relativity was used to recommend an inter-solar system 
means of communication. This is shown to be feasible using an equivalent to a 
1 Watt 1 nm channel laser light in juxtaposition between stars such as the Sun and 
alpha-Centauri. Possibly, more advanced civilizations may communicate with each 
other, using even more advanced related technology [117]. This is hardly unreason-
able considering how recently we commenced developing our current technologies.

4.5  �Complexity: AI and QC

Given the numbers of calculations and complexity of interactions that would be 
required for life to start, let alone the detection of intelligent life, the use of artificial 
intelligence (AI) as well as Quantum computers (QC) are anticipated to make the 
calculations and carry out the modeling required to estimate various possibilities, 
alternatives, and exigencies [87, 88, 118–121]. Scientific development will be 
greatly accelerated by the development of independent robotics, AI, and 
QC.  Moreover, the sophistication of roving laboratories in planetary and other 
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environments will be greatly enhanced with the use of AI and QC improvements. 
QCs will have to be enhanced so that they operate at several ambient temperatures, 
utilizing materials that do not require cooling to close to zero degrees Kelvin. These 
are monumental tasks.

4.6  �A Recent Solar System Event: 1I/2017 U1 (Oumuamua) 
Transit

To date, 750,000 asteroids and comets have been detected. However, an unantici-
pated novel object, 1I/2017 U1, was observed during several nights in October 
2017, which twice transited the plane of the solar system, traveling at anomalously 
high velocity, in an unusual orbit. 1I/2017 U1 is the first object recognized as an 
extra-solar system visitor. It was suggested that due to various complex calcula-
tions, such interstellar visitors have been missed previously. However, it could not 
be traveled to by direct means. 1I/2017 U1 was initially identified as probably an 
asteroid, but not a comet. It traversed our solar system with a jolt from the Sun that 
assisted its hyperbolic exit. It was oblong shaped, with axes that were 200 by 20 
meters. Spectroscopic analysis indicated it had a red color, coated with damaged or 
degraded organic molecules of some kind, and possibly hollow (perhaps with or 
without trapped internal ice). It was also reported that, unfortunately, we did not 
have any rockets prepared, which could reach the object and place a probe on it to 
plot its path as it exited the Solar system beyond visual range. Could laser technol-
ogy have been used to extend the tracking range [122–124].

Currently, analysis continues for the 4 days of observational data produced from 
this extra-solar system object. It is most recently considered to have a spotty red 
color or graded red color scheme. The analysis of this color issue also involves con-
cluding that it has a tumble rate that influences the apparent color analysis. Moreover, 
1I/2017 U1 may have been involved in a collision in the distant past, perhaps the 
cause of its expulsion from the solar system from which it originated [125]. Analysis 
of the object for signs or signatures of life remain indefinite. Loeb, in 2018, [126] 
proposed an artificial extraterrestrial interstellar origin for 1I/2017 U1. Of further 
interest is the proposal of a few stars, originally, calculated to within 2 pc of 1I/2017 
U1 as possible prior sources with ranges of distance and travel times of 0.6 pc at 
1 Mya and 1.6 pc at 3.8 Mya [127]. However, it is as yet not anticipated which star, 
previously to that or originally, may have given rise to 1I/2017 U1. (How old is it? 
Could it be an intergalactic as well as an interstellar messenger?)

Supporting the notion that interstellar traveling objects have entered our solar 
system, Siraj and Loeb, in 2019, proposed a 0.45  m size meteorite (2014-01-08 
17:05;34 UTC), with an unbounded hyperbolic orbit and asymptotic extra-solar 
system velocity of 43.8 km/sec (60 km/sec away from the velocity of the Local 
Standard of Rest [LSR]), is of interstellar origin. In addition, they estimate that there 
are eight such interstellar objects that have fallen on the Earth [128].
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5  �Launching Extra-Solar System Exploration: Possible 
Protocol

As time goes by, the planning and implementation of extra-solar system missions 
will be increasingly effective and accelerate with augmented utilization of AI and 
QC to produce the robotics, universal construction, and analytic and self-sufficient 
intelligent equipment required. The paradigm suggested for exobiological explora-
tion is to: (1) first produce the robotics (including universal construction), vehicles, 
communication skills, AI, and QC necessary to analyze, select, and focus on extra-
solar planets for detecting intelligence, life, and viruses; (2) This should be done at 
the feasible distant limits of our solar system; (3) Next, send all these and all neces-
sary probes and landers to various targets and groups of targets (which by then may 
have different priorities compared to what we know currently); (4) Interstellar space 
is cold so that with long range communications, QCs that may require cold environ-
ments to function, could be stationed at suitable distances from stars. Calculations 
will be performed at central hubs during extra-solar system investigations; (5) Orbit 
the selected targets (stars, planets, or other objects); (6) Assess the presence of intel-
ligence6 and decide whether to exit or proceed with communications and/or direct 
exploration; (7) Then, map the targets and analyze them across several wavelengths 
(X-ray, IR, and visible spectra) and sound, and detect atmospheric chemistry, bio-
chemistry, and particulates (including odors); (8) Send the lander vehicles that will 
contain the apparatus required to carry out the experiments; (9) All the while, com-
munication links will be maintained; (9) Include detection of migrant planets and 
planetoids within and outside of solar systems; (10) Along the way, consider the 
prospect that other such investigations may be taking place. (11) Last and not least, 
definitely, the appropriate parallel controls for all components of such missions will 
be continued in suitable places within our solar system, evolving here while the mis-
sions evolve distantly during the investigations.

5.1  �Europa Lander Mission Report of 2016

The development of the Europa Lander Mission report of 2016 demonstrates evolu-
tion in approach towards such ends with a wide scope in scientific planning and 
organization [129, 130]. The 264-page technical report and 734-page planned bud-
get report are very wide-ranging, convey detailed planning, expectations when 
probes arrive, as well as the sophistication required to get there. These are early 
steps towards exploration within the solar system; however, the $19 billion requested 
for work 2018–2022 may not be ratified and realistically, the deadline may be 
shifted towards the late 2020’s.

6 Models of extraterrestrial intelligence include both ‘natural’ and ‘artificial’ [89]. Both require 
evaluation prior to interaction with any exobiology or exorobotics.
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6  �NIH and NASA Budgets

What has been the cost for the work done by the US space exploration agency, 
NASA? According to Wikipedia, the NASA budget from 1958 to 2020 is estimated 
$1,188,919,000,000. In comparison, the NIH budget from 1938 to 2018 is estimated 
$737,016,000,000. The NIH budget expended across 80  years is approximately 
62% of the NASA budget consumed across 62 years. (NIH-supported researchers 
received 90 Nobel prizes across 78 years, 1939–2017.) [131–133].

7  �What Are the Caveats, if there Is Life Elsewhere?

NASA scientists, most recently, produced a body of work, related to the possibility 
of life on Mars.

7.1  �Space Exploration and Potential Contamination 
of Extraterrestrial Worlds, Planets, and Planetesimals

Criteria and standards of material/particle contamination have been published for 
example, related to the European Space Agency (ESA) [134, 135]. However, the 
implementation, enforcement, and monitoring quality control, followed by peer 
review publications is not yet implemented globally. Moreover, this entails manu-
facturing, assembly, and launch stages and there is no systematic program globally 
in this regard. In addition, since there is a variety of components and procedures 
internationally, without international monitoring, publication, and quality con-
trol, more needs to be done. Clearly, where only materials and particles are moni-
tored, biological (including potential microbial contamination) are not addressed. 
Although some procedures used could be toxic to microorganisms, it does not 
mean that living microorganisms are not present as well; furthermore, this cannot 
be taken to mean that the biological fragments and components of life are absent. 
Experiments, controls, and simulations are continually required, followed by public 
reports and expert peer review.

There are many sources of contamination by biological and microbiological 
organisms, materials, by-products, waste, and detritus. The International Space sta-
tion, currently and in its prior stages of development, are prime examples. NASA 
points out that such issues need discussion and practice [136].
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7.2  �Point-Counter-Point Paradigms: Interplanetary 
and Inter-Stellar Spread of Life – Svante Arrhenius 
and Goldilocks

Sidestepping the all-inclusive question of the probability of more than a single ori-
gin of life event within and outside the solar system, is the possibility that micro-
scopic life, once it has originated, could spread throughout any galaxy including our 
Milky Way. For example, upto 1 cm size meteorites, originating on a planet such as 
the Earth, which has microbial life, could be ejected and more than one could reach 
exoplanets at least 20 light years (ly) distance. Upon terrestrial ejection, such mete-
orites could reach comets. If the microorganisms remained alive on such ejecta, 
coupled with comets and other interstellar travelers, then the entire galaxy could be 
accessible. Along similar lines, the authors state that if life originated, for example, 
1010 (ten billion) years ago, anyplace in the Milky Way, then, by 4.6 billion years 
ago, life forms could have reached the Earth [137].

There have been heated arguments in contemporary times, relating to the pan-
spermia hypothesis of Svante Arrhenius by many scientist including Wickramasinghe 
and Hoyle. It should be noted that in ancient times, Anaxagoras (born 510 BCE) 
first proposed that life came from elsewhere and Arrhenius, in more recent times, 
proposed this in 1903 [138–141].

Ginsburg and colleagues succinctly summarized ideas and models related to pan-
spermia, with the pervasive presumption of the Goldilocks paradigm. In addition, 
they assert the possibility of terrestrial ejecta traversing the solar system as well as 
Milky Way, a central canonical issue for panspermia. Furthermore, they include 
viruses in their discussions. Suttle and others had previously point out that there are 
approximately 1030 viruses, currently, in the Earth’s oceans and that viruses have a 
huge impact globally – that they exhibit the widest genetic diversity on Earth, cause 
mortality, affect phytoplankton (one of the bases of the ecosystem and food chain on 
the planet), and drive geochemical cycles. Gonzalez recently pointed out, in a more 
restricted sense, that although Arrhenius’ original canonical panspermia hypothesis 
in unlikely, what he terms as lithopanspermia of microorganisms that are endolithic 
and evolve in the same solar system, have increased positive consideration. In addi-
tion, terrestrial endolithic life shows unanticipated propensities to survive in caves 
and other hostile environments [106, 107, 142–146].

However, as inviting as these proposals are in regards to panspermia, for the 
single known origin of life on the Earth, no evidence except for organic compounds 
and Goldilocks environments are provided in support. Moreover and most damag-
ing, is the hard experimental evidence that amino acids will not survive the solar 
wind to a depth of 5 cm of regolith, let alone the high temperature susceptibilities of 
biological components and organelles found in any Biochemistry and Biology text-
books [54].
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7.3  �Reverse Interplanetary and Inter-Stellar Spread 
of Pathogen Paradigms: Big Bad Wolves Visiting  
Little Red Riding Hood Habitats

The dangers of contamination as a direct result of human exploration has been pointed 
out and discussed for some time – especially in regards to contamination of the Moon 
and Mars. In addition, it is keenly indicated that samples returned to Earth then 
inevitably, will contain such contamination and thus distort any subsequent analyses 
[147, 148] Moreover, depending upon the ability of microbial life to replicate, which it 
has shown even on the Earth to have great capabilities to survive extreme environ-
ments, such replication could result in further evolution of such life to then become 
more toxic and pathogenic. This is an additional stipulation unexplored as yet.

The obverse issue of contamination is whether terrestrial environments could be 
harmed by toxic and disease-causing reverse contamination – i.e. derived from out-
side the Earth [149]. These authors conclude that there is very little reason to be 
concerned and provide a list of reasons why this is of very low probability to occur 
in the future. The authors thus ignore the lessons taught by all the hundreds of mil-
lions of human and animal mortalities and morbidities that have occurred due to 
microorganisms, including viruses, throughout the last few thousand years of known 
history on the Earth. (Cf. other chapters in this book as well as references [40, 49]. 
Most of the epidemics and pandemics were unanticipated, occurred due to lack of 
understanding of the biology and epidemiology of infectious diseases, as well as lack 
of understanding of basic molecular biology and biochemistry. This is of course, an 
ongoing process, and emphasizes the need for greater caution than is the norm.

Before the grave issue of whether there is life on Mars or not is decided, propos-
als are being made to terraform Mars and for example, increase the Martial surface 
temperature to bring it more into the Goldilocks zone, [150] i.e. more fit for human 
habitation. Clearly, this will degrade the problem from being feasible with scientific 
difficultly, to impossible, and a great opportunity for such study will be lost. That is 
to say, if it has not already been lost, due to the various objects that have been pro-
pelled to Mars. It is important to note that methods for prevention of microbial 
contamination were in a lower lack of expertise when the first landers were placed 
on Mars. Even upto contemporary times, as mentioned, although there are many 
cogent proposals for improved microbial disinfection, there is a lack of organization 
and standardization that demonstrates lack of clarity and purpose in this regard – 
since the inception of Martian exploration - to prevent terrestrial microbial infection 
and biological waste on Mars.

7.4  �Deliberate Panspermia – Astrobiology Stem Cells

There is a concern, in addition to the conundrum as to whether panspermia has 
occurred among stars and solar systems within galaxies: synthetic panspermia. In 
addition to the accidental spread of viral and bacterial contamination of Goldilocks 
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potential habitats, as previously discussed, there is the possibility of intentional 
seeding of life with synthetic organisms, synthetic biology. The first such steps have 
been taken by synthesis of microorganism genomes and their use in the assembly 
of bacteria.

Synthetic biology has appeared as a promising field for research into the nature 
of what is alive, health, and financial dynamics. A few key stepping stones are the 
complete synthesis of several microorganism genomes: poliovirus cDNA by Cello 
et al., in 2002; phiX174 bacteriophage DNA by Smith et al., 2003; SARS Coronavirus 
genome by Becker et al. in 2008; and the complete synthesis of the Mycoplasma 
genitalium genome in 2008. The assembly of a bacterial cell with synthesis of its 
genome by Venter and colleagues was completed in 2010. Hutchison synthesized a 
minimal bacterial genome in 2016. Improvements in DNA synthesis techniques 
assist continued work – difficulties encountered include production of longer than 
1 kb synthons, their assembly into larger structures, the presence of DNA sequences 
that are toxic to the host organism, sequences that have increased secondary struc-
tures, and repetitive sequences [151–153].

As part of studies in evolutionary biology, as synthetic biology advances, organ-
isms may be produced that have evolutionary potential. Adult stem cells and pluripotent 
cells are used to assist in organ repair in various medical situations. A major hypoth-
esis being researched is whether there are universal stem cells in the adult that exhibit 
a sufficiently elevated degree of plasticity, circulate throughout the blood stream, able 
to enter various organs, and then perform their functions [154, 155].

Additionally, it should be noted that possibly, the ability to produce stem cells 
must have occurred early in evolution prior to the divergence within the eukaryote 
kingdom, since both plants and animals have stem cells. However, some plants 
tested can be produced from adult isolated single cells. This is of interest because 
both plants and animals were exposed to Darwinian evolution [154–156].

In application to panspermia and the origin of life, as genetic and biological 
engineering progress, a point may be reached whereby cells (Astrobiology stem 
cells) are produced, which have the capacity for evolution into various unknown and 
unanticipated life-forms under controlled laboratory conditions, or when released 
into Astrobiological Goldilocks environmental conditions. Such astrobiology stem 
cells could be included as von Neumann universal astrobiological constructor living 
machines [111, 112].

7.5  �Astrobiology Ethics

Ethical considerations are needed for all the topics covered by this chapter as in any 
scientific field. This is essential in order to better understand the ethical imperatives 
of past, current, and future space exploration and its impact on the Earth, Solar sys-
tem, and galactic Astrobiology. Ethics in science is a well-developed field today and 
is being applied in the above contexts as well. In addition, the question of sustain-
ability in connection with ethical analysis and understanding are also proposed 
[12, 13, 157–159].
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7.6  �Concluding Postscript – Neutrinos and Astrovirology

Neutrinos are fundamental particles (lepton Fermions) that are distinguished in 
what are termed, actually, three flavors, electron, muon, and tau neutrinos. They are 
produced in stars, nuclear reactors, particle accelerators, radioactivity, and in nuclear 
(bomb) explosions. Once created, through what is termed the Weak force (W± and 
Z0 Bosons), although much lighter, compared to all the other known particles, neu-
trinos crisscross the universe, rarely interacting with matter. However, they can 
metamorphose into each other, in transit, called oscillations, and have internal 
‘clocks’, governing them when to do so. Be that as it may, at the Big Bang, appar-
ently though, a special fourth neutrino was produced that is different from the elec-
tron, muon, and tau neutrinos, and has been navigating the universe for 14 billion 
years since the Big Bang [160–168]. All in all, the universe is bathed in several 
generations and epochs of neutrinos and they are currently being mapped and char-
acterized with a high level of interest.7

The fundamental unitary matrix equation describing neutrino oscillations in 
terms of their flavors, generations, and masses is:

	
ν νi ij jU=

	

where νi represent the three neutrino flavors, Uij is the unitary matrix, and νj is the 
three putative neutrino masses, which are currently under investigation.

It has been proposed, originally by Pasachoff and colleagues in 1979, that neu-
trino production by advanced civilizations may someday be detected when our 
own technologies may advance sufficiently. Strikingly, Stancil et al. were able to 
demonstrate communication using detectors aimed at terrestrial-produced neutrinos 
[117, 169–174].

In fine, Ettore Majorana proposed new types of fundamental particles that revo-
lutionized unanticipated concepts of what matter composes the universe, and 
thereby influenced how we may approach the problems of Astrobiology and 
Astrovirology in the known universe8 [175–178].

8  �Conclusions

This chapter attempts to encompass and tackle a large problem in Astrovirology and 
Astrobiology. There is a huge anthropomorphic prejudice that although life is 
unlikely, the just-right Goldilocks terrestrial conditions mean that the just-right bal-
ance of minerals and basic small molecules inevitably result in life as we know it 
throughout our solar system, galaxy, and the rest of the universe. Moreover, when 

7 Trillions of neutrinos traverse each person per second, to provide an idea of their ubiquity.
8 E.g. are neutrinos Dirac or Majorana fermions?
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such conditions on planets such as ours may not be quite right for the origin of life, 
it is popularly opined that asteroids and comets magically produce life or at the very 
least, the important, if not crucial components of terrestrial life, so that life then 
blooms, when their fragments cruise the solar system, stars, and galaxies, and plum-
met onto appropriately bedecked planets and moons. Be that as it may, it is agreed 
that life shapes the milieu in which viruses evolve (and vice versa.)

On the one hand, we need to understand how viruses and life originated and 
evolved on the Earth and indeed great progress has been made. On the other hand, 
we should not assume it is safe to collide with similar or different forms of life as 
we and or our machines travel elsewhere. The identification of Goldilocks zone 
worlds does not self-evidently support the assumption of life, but is indicative, 
rather, of our possible ability to live on such worlds, hopefully without damaging 
them. Space agencies and their governments have been well aware of the problems 
of biological contamination from Earth of extraterrestrial places to be visited and 
explored. Improved priorities and regulation were set [179, 180].

Although such priorities were promulgated repeatedly, the responsible officials 
apparently over-all ignored the forewarnings and difficulties pointed out, and con-
tamination has resulted, within a few decades of sloppy and premature exploration, 
severely annihilating our current and future ability to explore and possibly detect 
life under the correct pristine scientific conditions that our solar system had pro-
vided during some 5 billion years of its prior evolution. Examples of problems 
already in progress include innumerable artificial satellites orbit the Earth, many 
have been sent to orbit Mars, the Moon, and other planets, asteroids, and comets, 
etc. and many probes have crashed or landed on Mars, the Moon, as well as other 
objects, and several have been propelled out of the solar system. Consequently, 
these need to be fully catalogued and inventoried to ascertain more fully the extent 
of the contamination by terrestrial microorganisms and materials that contaminated 
these probes. This microbial contamination problem is being addressed from a peer 
review and public perspective and should be corrected before further exacerbations 
of the problems are continued [181, 182].

Clearly, if life were to exist on Mars, it could be deleterious and pathogenic for any 
terrestrial life, especially if the Goldilocks approach to life in our solar system were 
correct. In addition, some Martian and terrestrial organisms could produce new life 
forms (by synergistic (symbiotic) interactions as well as inter-breeding, depending on 
their ‘biochemistries’), which could then be pathogenic and have unanticipated stark 
effects. Surely, as one surveys the history of terrestrial catastrophic epidemics and 
pandemics, most were unanticipated and should be lessons not to under-rate the 
aggressiveness of many life-forms. Thus, in summary, pathogenicity to any terrestrial 
life could result from Martian organisms, terrestrial organisms that were conveyed to 
Mars, and pathogenicity could result in the Martian and terrestrial contexts, including 
new organisms that interbred. In the obverse, terrestrial life could be inimical to 
Martian life. This applies to all such exoplanetary explorations.

Finally, to obtain an enhanced perspective of the magnitude and difficulty of the 
biocontainment problem, please refer to the chapter in this book by Logue et al., 
which addresses the issue of terrestrial biocontainment at the highest level, BSL-4, 
for the most pathogenic terrestrial known viruses [29].
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