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    Chapter 22   

 Antiviral Strategies Against Chikungunya Virus                     

         Rana     Abdelnabi    ,     Johan     Neyts    , and     Leen     Delang      

  Abstract 

   In the last few decades the Chikungunya virus (CHIKV) has evolved from a geographically isolated pathogen 
to a virus that is widespread in many parts of Africa, Asia and recently also in Central- and South- America. 
Although CHIKV infections are rarely fatal, the disease can evolve into a chronic stage, which is character-
ized by persisting polyarthralgia and joint stiffness. This chronic CHIKV infection can severely incapacitate 
patients for weeks up to several years after the initial infection. Despite the burden of CHIKV infections, 
no vaccine or antivirals are available yet. The current therapy is therefore only symptomatic and consists of 
the administration of analgesics, antipyretics, and anti-infl ammatory agents. Recently several molecules 
with various viral or host targets have been identifi ed as CHIKV inhibitors. In this chapter, we summarize 
the current status of the development of antiviral strategies against CHIKV infections.  
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1      Introduction 

 Chikungunya virus (CHIKV), belonging to the  Alphavirus  genus 
of the  Togaviridae  family is an arthropod-borne virus transmitted 
by female mosquitoes of the  Aedes  species [ 1 ]. CHIKV infections 
cause Chikungunya fever which is characterized by abrupt fever, 
rash and bilateral symmetric arthralgia. In most of the CHIKV- 
infected patients the acute phase is followed by persistent disabling 
polyarthritis that can severely incapacitate the patient for weeks up 
to several months [ 1 ]. Despite the widespread emergence of 
CHIKV and the high morbidity rate associated with it, there is no 
approved vaccine or antiviral treatment available at the moment. 
The current therapy is therefore purely based on the relief of the 
patient’s symptoms and consists of the administration of analge-
sics, antipyretics, anti-infl ammatory agents such as paracetamol, 
and nonsteroidal anti-infl ammatory drugs, and of bed rest and fl u-
ids intake [ 2 ]. The use of aspirin during CHIKV infection is to be 
avoided because of the risk of bleeding and the potential risk of 
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developing Reye’s syndrome [ 3 ]. In addition, the use of systemic 
corticosteroids is not recommended due to the strong rebound 
effect after cessation of treatment [ 1 ]. In severe cases, where 
patients have limited response to nonsteroidal anti-infl ammatory 
drugs, disease-modifying antirheumatic drugs (DMARDs) such as 
methotrexate, hydroxychloroquine, or sulphasalazine can be 
administered to relieve the symptoms [ 3 ,  4 ]. The development of 
novel, potent antiviral drugs against CHIKV is thus urgently 
needed.  

2    Antiviral Strategies for the Treatment of CHIKV Infection 

   Antiviral agents targeting the entry of enveloped viruses are of 
major interest since they inhibit an early step in the viral life cycle 
which minimizes the cell damage caused by intracellular viral repli-
cation. In addition, viral entry inhibitors may target extracellular 
components, which are more accessible; therefore, they could be 
effective in lower dosages with limited toxicity [ 5 ]. 

   Chloroquine is an antimalarial drug that has also been shown to 
inhibit the in vitro replication of several viruses, including HIV, 
severe acute respiratory syndrome (SARS) coronavirus, and alpha-
viruses [ 6 ]. Chloroquine was reported to inhibit CHIKV entry into 
cells, possibly by raising the endosomal pH and thus preventing the 
fusion of the CHIKV E1 protein with the endosomal membrane 
[ 7 ,  8 ]. The potential effect of chloroquine treatment was assessed in 
two clinical trials. In a fi rst clinical trial improvement of symptoms 
in the chronic phase of CHIKV infection were reported following 
chloroquine treatment [ 7 ], whereas another study failed to prove 
the effi cacy of chloroquine as a treatment for the acute phase of 
CHIKV infection [ 8 ]. Therefore, the use of chloroquine as anti-
CHIKV antiviral requires further study to prove its effectiveness 
and to determine the appropriate dosage and length of treatment.  

   Arbidol is a broad-spectrum antiviral that has been licensed in 
Russia and China for the treatment and prophylaxis of infl uenza 
and other respiratory infections [ 9 ]. Arbidol was also reported as 
an inhibitor of CHIKV infection in MRC-5 cells [ 10 ]. The mecha-
nism of its anti-CHIKV activity has not been totally elucidated. An 
arbidol-resistant CHIKV strain could be selected and was shown 
to have acquired a mutation at amino acid 407 (G407R) in the 
CHIKV E2 glycoprotein, which may be involved in binding to 
host receptors [ 10 ]. Recently, a series of arbidol analogues have 
been synthesized and evaluated for their anti-CHIKV activity [ 11 ]. 
Two analogues in this series (IIIe and IIIf) inhibited the CHIKV- 
induced cytopathic effect (CPE) with selectivity indices higher 
than that of the parent compound arbidol [ 11 ].  
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   Phenothiazines are clinically approved antipsychotics. In a screen-
ing assay using Semliki Forest virus (SFV) as a bio-safe surrogate 
for CHIKV, six compounds containing a 10H-phenothiazine core, 
including chlorpromazine, perphenazine, ethopropazine, thiethyl-
perazine, thioridazine, and methdilazine were identifi ed as possible 
SFV entry inhibitors. The antiviral activity of these molecules was 
confi rmed using a recombinant CHIKV strain carrying a luciferase 
reporter gene (CHIKV-Rluc). When compared to the SFV-based 
screening results, the molecules showed similar potencies against 
the CHIKV-Rluc; however, the EC 50  values determined using the 
CHIKV-Rluc were higher. The antiviral target of these inhibitors 
still needs to be identifi ed [ 12 ].  

   Epigallocatechin gallate (EGCG) is the major constituent of green 
tea. Recently, EGCG has been reported to have a modest but sig-
nifi cant antiviral activity against CHIKV [ 13 ]. The inhibition of 
CHIKV entry and attachment to the target cells by EGCG was 
confi rmed using pseudo-particles carrying the CHIKV envelope 
proteins [ 13 ].   

     RNA interference is induced by small interfering RNAs (siRNA) 
that are homologous in sequence to the gene that needs to be 
silenced. Small interfering RNAs are 21-23 nucleotides long 
dsRNA molecules having 3′-overhangs of two nucleotides. 
Treatment of cells with exogenous siRNAs results in the assembly 
of a RNA-induced silencing complex (RISC) which degrades spe-
cifi c complementary mRNA molecules. Consequently, protein 
expression of the targeted gene is markedly reduced. 

 Small interfering RNA (siRNA) sequences targeting CHIKV 
nsP3 and E1 genes were reported to signifi cantly reduce CHIKV 
titers at 24 h post-infection in transfected Vero cells [ 14 ]. However, 
the inhibitory effect of these siRNAs was transient and diminished 
after 3 days of infection. These siRNAs could thus be used in com-
bination with other antivirals for more effective treatment. In a 
more recent study, nsP1 and E2 siRNAs were generated and their 
potential activity was evaluated in cell culture and in animal models 
[ 15 ]. SiRNAs directed against nsP1 and E2 as well as their combi-
nations, reduced in vitro CHIKV replication in Vero cells with 
more than 90 %. Interestingly, when CHIKV-infected mice were 
injected 3 days post-infection with these siRNAs, CHIKV 
 replication was completely inhibited at the highest dose of siRNA 
tested (1 mg/kg body weight; [ 15 ]). 

 Plasmid-based small hairpin RNAs (shRNAs) were also designed 
and evaluated as strategy to inhibit CHIKV replication. ShRNAs 
produced from the shRNA-plasmid construct resulted in their 
intracellular processing to siRNAs causing specifi c knockdown of 
viral RNA and subsequent inhibition of viral protein expression. 
Stable cell clones expressing shRNA against CHIKV E1 and nsP1 

2.1.3  Phenothiazines

2.1.4  Epigallocatechin 
Gallate

2.2  Inhibitors of Viral 
Protein Translation

2.2.1  RNA Interference

Antiviral Strategies Against Chikungunya Virus



246

showed signifi cant and sustained inhibition of CHIKV infection 
[ 16 ]. In addition, mice pretreated with E1 targeting shRNA were 
completely protected against CHIKV induced disease and their sur-
vival was observed up to 15 days post-infection (untreated animals 
died between 6 and 10 days post-infection; [ 16 ]).  

   Harringtonine, a cephalotaxine alkaloid derived from  Cephalotaxus 
harringtonia , has been reported asa potent inhibitor of CHIKV 
with minimal cytotoxicity [ 17 ]. In addition, homoharringtonine, a 
more stable analogue of harringtonine, also showed anti-CHIKV 
activity. Homoharringtonine has been recently approved by the 
FDA for the treatment of chronic myeloid leukemia in 2012. 
Harringtonine and homoharringtonine were found to suppress the 
production of viral nsP3 and E2 proteins, most likely through the 
inhibition of the host cell protein translation machinery [ 17 ]. In 
addition, the decrease in nsP3 production resulted in a reduction 
of viral replicase complexes formation. Consequently, the level of 
negative-sense RNAs was decreased leading to the reduced synthe-
sis of the viral positive-sense RNA genome [ 17 ].   

     Ribavirin, a structural analogue of guanosine, is a broad-spectrum 
antiviral drug that has been approved by the FDA for the treatment 
of respiratory syncytial virus in infants [ 18 ], and in combination 
with pegylated interferon alpha (IFN-α) for treatment of chronic 
hepatitis C virus infection [ 19 ]. Ribavirin was shown to inhibit the 
replication of CHIKV in vitro [ 20 ]. In addition, the combination 
of ribavirin and IFN-α2b was reported to result in asynergistic 
inhibitory effect against CHIKV replication in Vero cells [ 20 ]. The 
mechanism of the antiviral action of ribavirin is likely different for 
different viruses. The 5′-monophosphate metabolite of ribavirin 
acts a competitive inhibitor of inosine monophosphatedehydroge-
nase (IMPDH) resulting in a depletion of intracellular GTP (and 
dGTP) pools [ 21 ]. The predominant mechanism by which ribavirin 
inhibits the replication of other RNA viruses such as fl aviviruses and 
paramyxoviruses has been shown to be mediated by depletion of 
GTP pools [ 22 ]. Other  suggested mechanisms by which ribavirin 
inhibits RNA virus replication include the inhibition of viral RNA 
capping, inhibition of the viral polymerase, and lethal mutagenesis 
of the RNA genome [ 23 ].  

   6-Azauridine is a broad-spectrum anti-metabolite that inhibits the 
replication of both DNA and RNA viruses [ 24 ]. It is a uridine ana-
logue that competitively inhibits the orotidine monophosphate 
decarboxylase enzyme, which is involved in the de novo synthesis 
of pyrimidines [ 24 ]. 6-Azauridine showed strong inhibitory effect 
against CHIKV replication in Vero cells with an EC 50  value of 
0.82 μM [ 20 ].  
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   Mycophenolic acid (MPA) is a non-competitive inhibitor of 
IMPDH which has been used clinically as an immunosuppressant 
to prevent the rejection of transplant organs. MPA inhibits 
in vitro CHIKV replication [ 21 ]. The inhibition of CHIKV 
 replication appears to be due to the depletion of intracellular 
GTP pools [ 21 ].  

   Favipiravir (T-705) is a broad-spectrum antiviral agent that was 
originally discovered as an inhibitor of infl uenza A virus replica-
tion. In the cell, T-705 is metabolized to its ribofuranosyl 5′-tri-
phosphate form, which was shown to be a competitive inhibitor 
for the incorporation of ATP and GTP by the viral RNA-
dependent RNA polymerase (RdRp; [ 25 ]). However, the exact 
mechanism of action of T-705 has not been totally clarifi ed yet. 
Recently, it has been reported that T-705 and its defl uorinated 
analogue, T-1105 inhibit the in vitro replication of CHIKV [ 26 ]. 
In addition, the oral treatment of CHIKV-infected AG129 mice 
with T-705 protected these mice from severe neurological disease 
and reduced the mortality rate by more than 50 %. Low-level 
T-705-resistant CHIKV variants have been selected. These vari-
ants carried a K291R mutation in the F1 motif of the RdRp that 
was shown to be responsible for the observed resistance to T-705. 
This position is highly conserved in the polymerase of + ssRNA 
viruses [ 26 ].   

   The CHIKV nsP2 protein exhibits RNA triphosphatase/nucleo-
side triphosphatase activity, as well as helicase activity within the 
N-terminal half while the C-terminal half encodes the viral cysteine 
protease required for processing of the non-structural viral poly-
protein [ 27 ,  28 ]. In addition, nsP2 plays an important role in shut-
ting down host cell mRNA transcription via degradation of a 
subunit of the DNA-directed RNA polymerase II. It also inhibits 
the host antiviral response by suppressing transcription and type I/
II interferon-stimulated JAK/STAT signaling [ 28 ]. In a high- 
throughput screening for CHIKV nsP2 inhibitors that target the 
nsP2-mediated transcriptional shut off, a natural compound deriv-
ative (ID1452-2) was shown to partially block the nsP2 activity 
resulting in inhibition of CHIKV replication in cell culture [ 29 ]. 
In another study, a number of nsP2 inhibitors were identifi ed using 
a computer-aided screening procedure of which one lead com-
pound (compound 1) showed a signifi cant antiviral activity against 
CHIKV [ 30 ]. This compound was predicted to bind to the central 
portion of the nsP2 protease active site. 

 Recently, a number of arylalkylidene derivatives of 
1,3- thiazolidin-4-one have been shown to inhibit the in vitro repli-
cation of CHIKV. The inhibition of the CHIKV protease was sug-
gested to be the mechanism of action of these compounds [ 31 ].  
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     Cellular furins and furin-like proteases are involved in the cleavage 
of viral pE2 into mature E2 and E3 proteins. The inhibition of cel-
lular furin may therefore be expected to inhibit the formation of 
mature viral particles. Decanoyl-RVKR-chloromethyl ketone (dec- 
RVKR- cmk) is an irreversible furin inhibitor that was shown to 
inhibit CHIKV infection in vitro via inhibition of viral glycopro-
tein maturation [ 32 ]. The combination of dec-RVKR-cmk and 
chloroquine resulted in an additive inhibitory effect on CHIKV 
replication. Surprisingly, pretreatment of cells with dec-RVKR- 
cmk revealed a signifi cant inhibition of viral entry, indicating that 
dec-RVKR-cmk treatment could alter the cleavage of proteins 
involved in CHIKV endocytosis or early replication steps or that 
this molecule could even inhibit CHIKV receptor maturation [ 32 ].  

     Prostratin and 12- O -tetradecanoylphorbol 13-acetate (TPA) are 
well-known tigliane diterpenoids with a basic phorbol carbon skel-
eton esterifi ed at position 13 [ 33 ]. Due to their chemical structure, 
they act as natural analogues of diacylglycerol that induce the acti-
vation of protein kinases C. Previously, prostratin and TPA were 
reported to have antiviral activity against HIV [ 34 ]. Prostratin and 
TPA were also identifi ed as potent and selective CHIKV inhibitors 
in vitro [ 33 ]. Further studies are required to determine their mode 
of action against CHIKV.  

   In a cell-based screening of a kinase inhibitor library, six kinase 
inhibitors were found to inhibit CHIKV-associated cell death in a 
dose-dependent manner [ 35 ]. Of these molecules, four com-
pounds have a benzofuran core scaffold, one a pyrrolopyridine and 
one a thiazol-carboxamide scaffold. Using image analysis, it was 
shown that CHIKV-infected cells treated with these molecules had 
less prominent apoptotic blebs, which are typical for the CHIKV 
cytopathic effect. Moreover, these compounds reduced viral titers 
up to 100-fold. It was suggested that the inhibition of the virus- 
induced CPE by these compounds was the result of inhibition of 
kinases involved in apoptosis [ 35 ].   

   HSP-90 is a family of highly conserved molecular chaperones 
which includes two cytoplasmic isoforms: stress-induced HSP-90α 
and constitutively expressed HSP-90β. In general, HSP-90 is 
involved in maturation, localization, and turnover of its client pro-
teins in a cell. HSP-90 has been reported to play an important role 
in the replication of many DNA and RNA viruses such as hepatitis 
B virus, hepatitis C virus, human cytomegalovirus and infl uenza 
virus. Consequently, HSP-90 inhibitors may have a role as 
broad(er)-spectrum antiviral agents. Two HSP-90 inhibitors, 
HS-10 and SNX-2112, were reported as CHIKV replication inhib-
itors. The treatment of CHIKV-infected mice (SvA129) with 
HS-10 and SNX-2112 signifi cantly reduced the serum viral load at 
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48 h post-infection and protected against the CHIKV-induced 
infl ammation in the limb of infected mice [ 36 ]. In co- 
immunoprecipitation studies CHIKV nsP3 and nsP4 were shown 
to interact with HSP-90. Interestingly, the knockdown of the 
HSP-90α subunit resulted in a more pronounced inhibition of 
viral replication than targeting the HSP-90β subunit. HSP-90α is 
thought to be involved in the stabilization of CHIKV nsP4 and the 
formation of the CHIKV replication complex [ 36 ]. Further mech-
anistic studies are required to unravel the role of HSP-90 in the 
replication cycle of CHIKV.  

   The innate immune system plays an important role in the acute 
phase of CHIKV infection. Detection of CHIKV RNA by Toll-like 
receptors (TLRs) 3, 7, and 8, as well as RIG-I like receptors during 
the acute phase of infection is believed to trigger the production of 
type I IFNs. Consequently, type I IFNs activate the transcription 
of interferon-stimulated genes (ISGs), which encode proteins 
involved in the host antiviral defense leading to clearance of the 
infection [ 37 ]. Therefore, activation of the innate immune response 
could be interesting for the treatment of CHIKV infections. 

   Treatment with IFN-α2a and IFN-α2b inhibited CHIKV replica-
tion in Vero cells in a dose-dependent manner [ 20 ]. The combina-
tion of IFN-α2b and ribavirin resulted in a synergistic antiviral 
effect on in vitro CHIKV replication. A CHIKV strain carrying the 
E1 A226V mutation was reported to be more sensitive to the anti-
viral activity of recombinant IFN-α than wild-type virus [ 38 ].  

   The role of OAS3 in the innate immunity towards CHIKV was 
investigated using a stable HeLa cell line expressing OAS3 [ 39 ]. 
The expression of OAS3 by this cell line effi ciently inhibited 
CHIKV infection by blocking the early stages of virus replication. 
A CHIKV variant with a glutamine-to-lysine mutation at position 
166 of the envelope E2 glycoprotein proved resistance to the anti-
viral activity of OAS3 [ 40 ].  

   Polyinosinic acid–polycytidylic acid (poly (I:C)), a synthetic ana-
logue of dsRNA, is a potent stimulant of IFN that interacts with 
TLR3. Treatment of human bronchial epithelial cells with poly 
(I:C) before CHIKV infection suppressed virus-induced CPE up 
to 72 h post-infection. Poly (I:C) resulted in a signifi cant up regu-
lation of IFN-α, IFN-β, OAS, and MxA in uninfected cells [ 41 ].  

   RIG-I (retinoic acid-inducible gene I) is a member of the RIG-I 
like receptor family which recognizes viral dsRNA leading to acti-
vation of multiple antiviral factors that block viral infection at dif-
ferent stages. Interestingly, chemically or enzymatically synthesized 
dsRNA molecules with an exposed 5′-triphosphate end (5′ ppp) 
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were reported to induce RIG-I [ 42 ,  43 ]. It has been recently 
shown that pretreatment of MRC-5 cells with an optimized 5′ tri-
phosphorylated RNA molecule triggered RIG-I stimulation result-
ing in protection against CHIKV infection [ 44 ]. Moreover, the 
protective response against CHIKV induced by this 5′ ppp RNA 
was largely independent of the type I IFN response. These results 
suggest the potential effi cacy of RIG-I agonists as an antiviral treat-
ment for CHIKV infection.    

     Trigocherrierin A is a new daphnane diterpenoid orthoester iso-
lated from the leaves of  Trigonostemon cherrieri  [ 45 ]. Trigocherrierin 
A inhibits CHIKV in cell culture but the mechanism of its action 
remains elusive.  

   Debromoaplysiatoxin and 3-methoxydebromoaplysiatoxin are marine 
toxins isolated from the marine cyanobacterium,  Trichodesmium 
erythraeum  [ 46 ]. Both compounds had signifi cant antiviral activity 
against CHIKV at non-toxic concentrations. The compound was 
reported to block a post-entry step in the CHIKV lifecycle.  

   A number of 5,7-dihydroxyfl avones (apigenin, chrysin, naringenin, 
and silybin) were identifi ed as inhibitors of the CHIKV subge-
nomic replicon [ 12 ]. The molecular target of these compounds is 
still unknown.    

3    Conclusion 

 The global re-emergence of CHIKV and the high morbidity rate 
associated with its infection emphasizes the need to develop potent 
antiviral agents against CHIKV. So far, a number of classes of 
 compounds that inhibit viral replication by targeting either a viral 
or a host factor have been reported. Most of the compounds have 
relatively modest activity and for most of them, activity in infection 
models (in mice) was not assessed. Some of these classes may serve 
as a starting point for the design of more specifi c and selective 
inhibitors of CHIKV replication. Also, to the best of our knowl-
edge, no information is available yet on the effect of antivirals on 
the chronic stage of CHIKV infection. Recently, mouse models for 
CHIKV-induced arthritis and chronic joint disease have been 
developed which will help the evaluation of CHIKV antiviral 
agents in different stages of CHIKV infection [ 47 ,  48 ]. Several 
other viruses belonging to the  Alphavirus  genus, in particular the 
equine encephalitis viruses are considered to be a potential bioter-
roristic threat. When designing/developing antivirals against the 
Chikungunya virus it may be important to develop classes of 
 compounds that have pan-alphavirus activity and that could thus 
also be used for the treatment of alphaviruses other than CHIKV. 
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 Among the reported CHIKV inhibitors, favipravir, ribavirin, 
arbidol, and IFN-α have been approved previously for the treat-
ment of other viral infections. This could markedly facilitate their 
evaluation for clinical use in CHIKV-infected patients. Favipravir, 
a drug with a broad-spectrum antiviral activity, has been approved 
in Japan for the treatment of infl uenza virus infections. It is cur-
rently also being evaluated in Western Africa for the treatment of 
Ebola virus infection. If its activity is demonstrated against this 
infection, this compound may be considered for treatment of other 
infections such as those caused by CHIKV. However, given the 
growing number of patients suffering from CHIKV infections, it 
may be justifi ed to develop specifi c CHIKV/alphavirus drugs. 
Highly potent drugs are today available for the treatment of infec-
tions with herpes viruses, HIV, the hepatitis B and C virus. Without 
a doubt, it should also be possible, when investing suffi cient effort, 
to develop highly effective and safe drugs for the treatment (and 
perhaps even prophylaxis) of infections with alphaviruses.     
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