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Abstract

We performed in situ oxygen three-isotope measurements of chondrule olivine, pyroxenes, and 

plagioclase from the newly described CVRed chondrite NWA 8613. Additionally, oxygen isotope 

ratios of plagioclase in chondrules from the Kaba CV3OxB chondrite were determined to enable 

comparisons of isotope ratios and degree of alteration of chondrules in both CV lithologies.

NWA 8613 was affected by only mild thermal metamorphism. The majority of oxygen isotope 

ratios of olivine and pyroxenes plot along a slope-1 line in the oxygen three-isotope diagram, 

except for a type II and a remolten barred olivine chondrule. When isotopic relict olivine is 

excluded, olivine, low- and high-Ca pyroxenes are indistinguishable regarding Δ17O values. 

Conversely, plagioclase in chondrules from NWA 8613 and Kaba plot along mass-dependent 

fractionation lines. Oxygen isotopic disequilibrium between phenocrysts and plagioclase was 

caused probably by exchange of plagioclase with 16O-poor fluids on the CV parent body.

Based on an existing oxygen isotope mass balance model, possible dust enrichment and ice 

enhancement factors were estimated. Type I chondrules from NWA 8613 possibly formed at 

moderately high dust enrichment factors (50× to 150× CI dust relative to Solar abundances); 

estimates for water ice in the chondrule precursors range from 0.2 to 0.6× the nominal amount of 

ice in dust of CI composition. Findings agree with results from an earlier study on oxygen isotopes 

in chondrules of the Kaba CV chondrite, providing further evidence for a relatively dry and only 

moderately high dust-enriched disk in the CV chondrule-forming region.

1. Introduction

Most chondritic meteorites contain chondrules - globular, once-molten objects often 

comprising olivine and low-Ca pyroxene phenocrysts in addition to glassy or crystalline 
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mesostasis (Hewins 1996; Brearley and Jones 1998; Scott and Krot 2007). Chondrules 

formed through ephemeral high-temperature events in the protoplanetary disk (Grossman 

1988; Rubin 2000; Connolly, Jr. and Desch 2004) some 1-4 m.y. after CAI formation (Kita 

et al. 2005; Krot et al. 2009; Villeneuve et al. 2009; Kleine and Rudge 2011; Kita and 

Ushikubo 2012). Recent in-situ SIMS analyses of chondrules from various groups of 

carbonaceous chondrites demonstrated that mean chondrule Δ17O values (=δ17O–

0.52×δ18O) typically fall in the range between −10‰ and 0‰ (e.g., Jones et al. 2004; 

Chaussidon et al. 2008; Connolly and Huss 2010; Libourel and Chaussidon 2011; 

Rudraswami et al. 2011; Ushikubo et al. 2012; Schrader et al. 2013, 2014; Tenner et al. 

2013, 2015, 2017; Hertwig et al. 2018). On the familiar oxygen three-isotope diagram, many 

chondrule phenocrysts plot along a slope-1 line (e.g., Jones et al. 2004; Rudraswami et al. 

2011; Ushikubo et al. 2012; Schrader et al. 2013; Tenner et al. 2017) such as the PCM 

(primitive chondrule minerals, Ushikubo et al. 2012) or CCAM (Clayton et al. 1977; 

Clayton 1993, 2008) lines. On the other hand, minerals in chondrules from ordinary 

chondrites usually plot along a mass-dependent trend parallel to - and slightly above - the 

terrestrial fractionation (TF) line (e.g., Kita et al. 2010).

Most chondrules are internally homogeneous, i.e., olivine and pyroxenes are 

indistinguishable in terms of Δ17O values given the relevant analytical uncertainty limits 

(e.g., Rudraswami et al. 2011; Ushikubo et al. 2012; Tenner et al. 2013, 2015, 2017; Hertwig 

et al. 2018). Internal homogeneity of chondrules indicates that minerals probably formed 

from a homogenized final chondrule-forming melt and, therefore, that the corresponding 

mean oxygen isotope ratios of chondrules reflect those of the final melt (e.g., Ushikubo et al. 

2012; Tenner et al. 2013, 2015). Although the majority of chondrules comprise isotopically 

indistinguishable phenocrysts, some contain relicts of olivine grains that resisted complete 

melting. Relict olivine can be apparent within chondrules, e.g., in the form of dusty olivine 

grains or forsteritic olivine cores in FeO-rich chondrules (e.g., Nagahara 1983; Jones 1996; 

Wasson and Rubin 2003); they have also been identified by SIMS oxygen isotope analysis 

because of distinctly different oxygen isotope ratios in comparison with other grains within 

the same chondrules (Kunihiro et al. 2004, 2005; Krot et al. 2006; Ruzicka et al. 2007; 

Rudraswami et al. 2011; Ushikubo et al. 2012; Tenner et al. 2013). Prior studies on 

chondrules in pristine chondrites with minimal aqueous alteration have shown the oxygen 

isotope ratios of glass and/or plagioclase to be indistinguishable from those of chondrule 

phenocrysts (Ushikubo et al. 2012; Tenner et al. 2015, 2017). This is not the case, however, 

in chondrites that show evidence of aqueous alteration (Semarkona, Kita et al. 2010; 

Allende, Rudraswami et al. 2011; Kaba, Krot and Nagashima 2016).

While mean oxygen isotope ratios of chondrules provide constraints on the effective isotopic 

composition of the chondrule-forming melt (e.g., Ushikubo et al. 2012; Tenner et al. 2015), 

mean Mg#’s of chondrule phenocrysts allow for estimating redox conditions (e.g., Ebel and 

Grossman 2000; Krot et al. 2000; Tenner et al. 2015). The mean Mg# of a chondrule (MgO/

[MgO+FeO], mol.%) is calculated by averaging the Mg#’s of all ferromagnesian mineral 

phases and is, to a first approximation, a function of the oxygen fugacity fo2 of the melt 

(e.g., Tenner et al. 2015) given that Fe-availability does not become a limiting factor. The 

fo2-conditions that permit the formation of chondrules with Mg# ~98, such as those common 

in carbonaceous chondrites, are considerably higher (i.e., more oxidizing; log(fo2): IW – 2) 

Hertwig et al. Page 2

Meteorit Planet Sci. Author manuscript; available in PMC 2020 April 03.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



than thought plausible in the canonical Solar nebula (e.g., log(fo2): ~ IW – 6 at 1600 K, Krot 

et al. 2000). As discussed comprehensively by Ebel and Grossman (2000), the local oxygen 

fugacity of the protoplanetary disk can be higher if the disk is enriched in dust of CI 

composition relative to Solar abundances. Furthermore, accumulation of H2O ice in the 

chondrule-forming region would significantly raise the oxygen fugacity (e.g., Connolly and 

Huss 2010; Schrader et al. 2013; Tenner et al. 2015).

Based on the calculations of Ebel and Grossman (2000), Tenner et al. (2015) developed a 

model that facilitates estimation of dust enrichment and ice enhancement factors (relative to 

Solar nebula compositions) via mean chondrule Mg#’s and Δ17O values. Initially developed 

for CR chondrites, this model has been recently applied to chondrules of the Kaba CV 

chondrite, yielding moderately high dust enrichment factors (50×−100× CI dust) and a low 

water ice abundance in the precursor dust (0-0.6× of the nominal ice in dust of CI 

composition, Hertwig et al. 2018). Similar to CR chondrites, the Δ17O values of chondrules 

from Kaba tend to increase with decreasing Mg#’s although the trend is less pronounced due 

to higher and less variable Mg#’s of Kaba’s type I chondrules (Hertwig et al. 2018).

Vigarano-type carbonaceous chondrites (CV) are sub-divided into oxidized and reduced 

groups (CVOx and CVRed, respectively) (McSween 1977); oxidized CV chondrites comprise 

magnetite and Ni-rich sulfides as predominant opaque phases, while metal alloys and troilite 

are the primary opaque phases in reduced CV chondrites (e.g., McSween 1977; Krot et al. 

1995). Further, oxidized CV chondrites are subdivided into the Bali-like (CVOxB) and 

Allende-like (CVOxA) subgroups (Weisberg et al. 1997). Phyllosilicates, likely the products 

of hydrous alteration on the CV parent body, are abundant in chondrules of oxidized Bali-

like CVs but absent in reduced CV chondrites (Keller and Buseck 1990; Kimura and Ikeda 

1998; Krot et al. 1998). Kaba is a member of the Bali-like oxidized subgroup of CV 

chondrites and Δ17O values of Kaba chondrules are broadly consistent with those from 

Allende (CVOxA) (Hertwig et al. 2018). Unlike Kaba (CV3.1, Grossman and Brearley 2005; 

Bonal et al. 2006), Allende experienced significant thermal metamorphism (e.g., Bonal et al. 

2006) that caused secondary, diffusion-related FeO zonation in olivine and complicates 

comparison of chondrule Mg#’s between both chondrites. It is plausible that the primary, 

undisturbed Δ17O-Mg# systematics of CV chondrites is recorded in Kaba chondrules. 

General statements regarding the CV chondrule-forming environment are hindered, however, 

by a lack of systematic isotope studies of chondrules of the reduced CV chondrites.

To fill this gap, we performed SIMS oxygen three-isotope analyses of chondrules from the 

CVRed Northwest Africa (NWA) 8613. In terms of thermal metamorphism, chondrules of 

NWA 8613 were less affected than those of the CVOxA group and experienced less aqueous 

alteration compared to chondrules of the CVOxB group. NWA 8613 is a rare reduced CV 

with a low shock stage and a relatively low petrologic subtype (3.1-3.2), which makes this 

meteorite one of the most pristine CV chondrites described so far (Sato et al. 2016). We 

report detailed descriptions of chondrules in NWA 8613 and their oxygen isotope 

systematics, which are compared to those of the Kaba and Allende CV3 chondrites reported 

in previous studies (Hertwig et al. 2018; Rudraswami et al. 2011). Using these data, dust 

enrichment as well as ice enhancement factors of the CV chondrule-forming region are 

estimated. We further performed oxygen three-isotope analyses of plagioclase in chondrules 
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of NWA 8613, as the oxygen isotope ratios of plagioclase are particularly sensitive to parent 

body processes (Rudraswami et al. 2011; Krot and Nagashima 2016). We also analyzed 

plagioclase in selected chondrules of Kaba to evaluate how oxygen isotopes in plagioclase 

behave at different degrees of parent body alteration.

2. Analytical techniques

2.1. Sample description

General petrographic features of NWA 8613 have been previously described in a conference 

abstract by Sato et al. (2016); a summary of their work is provided here. NWA 8613 was 

purchased in 2013 and classified as reduced CV chondrite (Meteoritical Bulletin No. 103; 

Ruzicka et al. 2017). A low petrologic subtype (3.1-3.2) was suggested based on mineral 

textures indicative of only minor alkali-calcium exchange in the mesostasis (nepheline 

lamellae), scarce secondary zoning in chondrule olivine, and no alteration of low-Ca 

pyroxene. The particular thin section analyzed in this study (NWA 8613-1, from the 

collection of the Ibaraki University, Japan) comprises ~41.2 vol.% chondrules (apparent 

average diameter : 0.84 mm), ~45 vol.% matrix, and 13.8 vol.% refractory inclusions with 

the latter being primarily type A CAIs and AOAs. NWA 8613 is unshocked (S1) as shown 

by aspect ratios of chondrules and only moderately weathered (W3).

2.2. Electron Microscopy

The NWA 8613-1 thin section and individual chondrules were examined by back-scattered 

electron (BSE) and secondary electron (SE) images using the Hitachi S-3400N SEM at the 

Department of Geoscience, UW-Madison. For a first assessment of the mineral chemistry of 

chondrule minerals including opaque phases, semi-quantitative energy dispersive X-ray 

spectrometer (EDS) analysis were carried out utilizing the NORAN System SIX analytical 

system and, after an upgrade of the Hitachi SEM, the AzTecEnergy X-ray analysis system 

(x-act detector). For the Kaba 1052-1 thin section, we fall back on BSE/SE imaging done 

earlier (see Appendix of Hertwig et al. 2018). Detailed BSE and SE images were used to 

select locations of SIMS analyses. After oxygen isotope analysis, the quality of each 

individual SIMS pit was evaluated by SEM imaging. This includes new SIMS pits in 

plagioclase of chondrules in the Kaba 1052-1 thin section.

Quantitative analyses of the chemical composition of olivine and pyroxenes (focused beam, 

20 nA, 15keV), and plagioclase (5 μm, 10nA, 15keV) were performed using the Cameca 

SXFive FE electron microprobe hosted at the Department of Geoscience, UW-Madison. 

Concentrations of the following major and minor oxides were measured: SiO2, TiO2, Al2O3, 

Cr2O3, MgO, FeO, MnO, CaO, K2O, and Na2O. Counting times were 10s on the peak and 

5s on the background. In the order listed above, analyte detection limits (3σ) in olivine and 

pyroxenes were not exceeding 0.03, 0.05, 0.03, 0.05, 0.01, 0.05, 0.06, 0.01, 0.02, and 0.02 

wt.%. The following minerals from the reference collection were used to calibrate the x-ray 

response of each analyzed element: Fo90 or synthetic enstatite (Si); rutile (Ti); jadeite (Al); 

Cr2O3 (Cr); synthetic forsterite or enstatite (Mg); hematite (Fe); manganese olivine (Mn); 

wollastonite (Ca); microcline (K); jadeite (Na). Plagioclase analyses were performed using a 

defocused beam and the following minerals to calibrate the x-ray response: Andesine (Na, 
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Ca, Al, Si); synthetic forsterite (Mg); microcline (K); rutile (Ti); Cr2O3 (Cr); manganese 

olivine (Mn); fayalite (Fe). ZAF correction and data reduction were done with the “Probe for 

EPMA” software (Donovan 2015).

To evaluate the alteration state of the mesostasis, average compositions of chondrule 

mesostasis were determined by EPMA with a highly defocused beam (10 μm diameter, 

performed at NIPR, Japan) to analyze plagioclase together with nepheline lamellae and 

diopside (see Data S1 in supporting information).

2.3. SIMS oxygen isotope analysis

Oxygen isotope ratios of olivine and pyroxene were determined by in-situ SIMS oxygen 

three-isotope analysis utilizing the Cameca IMS 1280 SIMS at the UW-Madison and using 

multi-collector Faraday cups (FCs). Analytical routines were similar to those described in 

Kita et al. (2010) and Tenner et al. (2013). Further, precision of δ17O analyses was improved 

by replacing the original FC amplifier board with a board originally designed for the IMS 

1280-HR. The newer board is characterized by a low thermal noise which is close to the 

theoretical limit (Johnson-Nyquist noise). A primary Cs+ beam of 3.0-3.5 nA was tuned to 

generate a ~12 μm diameter spot on the sample surface. Secondary 16O− ion intensities were 

~4×109 cps (counts per second). A single spot analysis took 4 minutes including 60 s 

baseline measurement, ~ 1 minutes of DTFA scan, and 100 s signal acquisition, which is 

about a half of previous studies (e.g. Kita et al. 2010). At the end of each analyses, the 

intensity of 16O1H− was determined automatically to calculate the contribution of the tailing 

of the 16O1H− to the 17O− peak. The resulting correction was always insignificant (< 0.1 ‰).

Oxygen isotope ratios of plagioclase in chondrules of NWA 8613 and Kaba were determined 

during a separate analytical session using the same analytical parameters cited above, except 

for a lower primary beam current (1.8-2.0 nA) which results in lower secondary intensity 

(16O−, ~ 2.5×109 cps) and slightly larger analytical uncertainties compared to olivine and 

pyroxene analyses.

In both sessions, analysis was performed in such a way that 8-18 analyses of unknowns were 

enclosed in one bracket of the San Carlos olivine standard (4 before, 4 standard analyses 

after the unknowns). Analytical uncertainties were determined by repeated analyses of the 

San Carlos olivine standard. For the first session (olivine and pyroxene), uncertainties for 

δ17O, δ18O, and Δ17O were on the average ~0.3, ~0.2, and ~0.3‰ (2SD); for the second 

session (plagioclase in NWA 8613, Kaba), ~0.5, ~0.3, and ~0.6‰ (2SD). Instrumental 

biases in δ18O for olivine and pyroxene analyses were calibrated using 3 olivine (Fo100, 

Fo89, Fo60) and 4 pyroxene (En97, En89, En85; En50Wo50) standards (Kita et al. 2010) with 

chemical compositions similar to those determined for the chondrule minerals of this study. 

For the second session, instrumental mass bias was calibrated using two plagioclase 

standards (An90, An60) (Valley and Kita 2009) that bracket the chemical composition of 

unknowns. Oxygen isotope ratios are reported relative to VSMOW (Baertschi 1976). 

Throughout this paper, analyses are identified by chondrule number followed by SIMS 

analysis number and mineral name.
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2.4. Position of SIMS analyses

In NWA 8613, all chondrules with a clearly defined outline and diameters > ~1 mm were 

considered for SIMS analyses. Because of geometry constraints placed by the SIMS sample 

holder, some chondrules on the edge of the thin section were not available for SIMS 

measurements. In addition to chondrules > ~1 mm across, the only FeO-rich chondrule and 

two other chondrules with diameters < 1 mm were selected for SIMS analyses. All selected 

chondrules, labeled from N1 to N31, are shown in the BSE mosaic of the NWA 8613 thin 

section in Data S2. In each of these chondrules, at least 8 locations (preferably 4 olivine and 

4 pyroxene) were chosen for SIMS measurements based on a thorough evaluation of high-

resolution BSE and SE images. Locations free of cracks and inclusions were analyzed by 

EPMA to determine the mineral composition (see Data S3 for EPMA analyses) which is 

required to be known for instrumental bias correction of SIMS analysis. Subsequently, 

olivine and pyroxene were analyzed by SIMS for oxygen three-isotopes (complete SIMS 

data set in Data S5) followed by SEM imaging of individual SIMS pits in order to check 

whether pits are free of cracks or inclusions (see Data S6 for pit images). Based on this 

assessment, individual SIMS analyses were rejected from discussion (e.g., if pits hosting a 

significant number of cracks or inclusions were hit).

For oxygen isotope analysis of plagioclase, chondrules in NWA 8613 and Kaba were 

screened for plagioclase grains that can accommodate SIMS spots of ~10 μm (1-4 per 

chondrule). Further, plagioclase grains must be free of phyllosilicates and nepheline lamellae 

visible at ~1k magnification (NWA 8613). Crystallinity was confirmed by optical 

microscopy for some of the prospective SIMS locations. After SIMS analysis (see Data S2 

for location of measurements), pits were evaluated by SEM imaging (see Data S7 for pit 

images).

2.5. Assessment of mean oxygen isotope ratios: data reduction scheme and 
corresponding analytical uncertainties

Mean chondrule isotope ratios were calculated using only olivine and pyroxene analyses. We 

closely follow the data reduction scheme previously described in detail by Hertwig et al. 

(2018). This iterative reduction theme draws upon previous work (Ushikubo et al. 2012; 

Tenner et al. 2013); a synopsis is provided here. Critical for the determination of the mean 

Δ17O value is a criterion that allows for differentiating isotopically distinguishable analyses 

from a cluster of homogeneous analyses (with respect to Δ17O values); the mean 3SD of San 

Carlos olivine analyses during the whole analytical session (±0.45 ‰) provides such a 

criterion. The mean chondrule Δ17O value is defined as the mean of all individual analyses, 

if Δ17O values are within the threshold of ±0.45 ‰ from the chondrule mean. If analyses of 

isotopic relict grains are present, a subset of analyses is selected that excludes these potential 

isotopic relicts but preferentially includes pyroxene analyses; thereof a new mean is 

calculated and tested for homogeneity with respect to the ±0.45 ‰ criterion. The last step is 

repeated until a subset of internally homogeneous analyses is found. The mean Δ17O value 

should include at least 2 individual analyses per chondrule or the chondrule is called 

isotopically heterogeneous. The same analyses that are selected for calculating the mean 

Δ17O values are also used for calculating the mean chondrule δ17O and δ18O values.
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Uncertainties (unc.) for mean chondrule δ17O and δ18O values are propagated using the 

square root of the quadratic sum of (i) twice the standard error (2 SD/√n) considering those 

analyses that are included in the mean (SD: standard deviation of the unknowns or, when 

larger, the SD of the standard bracket), (ii) twice the standard error of those San Carlos 

olivine analyses that bracket the unknowns, and (iii) a constant value that takes into account 

the impact of the sample geometry and topography as well as the reproducibility of 

calibration standards on mean oxygen isotope ratios due to mass-dependent fractionation 

processes (±0.3‰ for δ18O, ±0.15‰ for δ17O, Kita et al. 2009). Uncertainties related to 

mean Δ17O values are the sum of components (i) and (ii).

The 2SD of mean chondrule Δ17O values of plagioclase describe the variation of analyses 

within individual chondrules. Mean δ17O or δ18O values have not been calculated.

3. Results

3.1. Petrography of chondrules in NWA 8613

Olivine and pyroxene from 31 chondrules were analyzed for oxygen three isotopes. 

Chondrules are FeO-poor (type I) except for one small fragmented FeO-rich chondrule 

(N16). The apparent diameter of analyzed chondrules ranges from 0.5 - 2.5 mm (longest 

dimension). Most of the chondrules (21 of 31, Fig. 1a-e,) are clearly defined, spherical 

masses, although some possess strongly frayed or otherwise irregular margins (10 of 31, Fig. 

1f). In general, porphyritic textures (28 of 31) are predominant in relation to barred (2 of 

31); Most chondrules are porphyritic olivine-pyroxene (POP) chondrules. One porphyritic 

olivine (PO) chondrule consists primarily of a single FeO-poor olivine fragment.

A closer look at porphyritic chondrules reveals a variety of textural features. For example, 

poikilitic low-Ca pyroxene laths form either complete (N1, N14; Fig. 1a,c; N7) or only 

partially enclosing shells (N2, Fig. 1b; N12) around chondrule interiors. These shells contain 

variable amounts of olivine and opaque phases; the latter are often concentrated near the 

interface with the chondrule interior, but can also be found dispersed within low-Ca 

pyroxene crystals (N14, N6; Fig. 1c,e). In the case of chondrules N13 and N20, low-Ca 

pyroxene in the shell is finer-grained and subordinate to olivine in abundance; these shells 

resemble igneous rims (e.g., Rubin 2000). In general, chondrule interiors surrounded by 

pyroxene shells are similar to granular (N12, Fig. 1h) or porphyritic olivine (N1, Fig 1a) and 

rarely comprise opaque phases (N14, Fig. 1c). Irregularly-shaped chondrules are opaque-

phases-rich and can contain one or several clusters of PO material enclosed in low-Ca 

pyroxene (N17, N27, N29); one irregularly-shaped chondrule is composed entirely of 

poikilitic low-Ca pyroxene (N26), as is one roundish porphyritic pyroxene (PP) chondrule 

(N9). Some chondrules show adhesions of smaller chondrules (e.g., N12, Fig. 1h).

In terms of morphology, olivine in porphyritic chondrules occurs as anhedral to euhedral 

grains in mesostasis, irregularly-shaped grain aggregates, and as inclusions in low-Ca 

pyroxene. Although generally inclusions-free, olivine grains occasionally contain blobs of 

opaque phases. Olivine in the interior of chondrule N13 revealed trails of tiny metallic iron 

inclusions characteristic of “dusty” relict olivine. Cores of forsteritic relict olivine are 
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present in fayalitic olivine of the fragmented type II chondrule N16. In porphyritic 

chondrules, no replacement of pyroxene by ferroan olivine was observed.

Figure 2 illustrates the three most common types of mesostasis textures. In some chondrules, 

the mesostasis is devitrified and consists of high-Ca pyroxene (Hpx) dendrites embedded in 

plagioclase (Fig. 2a). As shown in Figure 2a and b, high-Ca pyroxene can occur as euhedral 

crystals in the mesostasis or form overgrowths on pyroxene of lower Ca content. Although 

the mesostasis in most chondrules is composed of anorthitic plagioclase and pyroxenes, 4 of 

the 31 chondrules (N14, N23, N27 N30) contain nepheline as an additional phase (Fig. 2c). 

Where present, nepheline forms thin (<1 μm) lamellae in anorthitic plagioclase and its 

abundance is low. No sodalite was observed in any of the chondrules.

Most commonly, the opaque mineral phases are dispersed within chondrules as either fine, 

roundish inclusions or as irregularly-shaped blobs. These phases were also observed 

concentrated at boundaries between textural zones or confined to the low-Ca pyroxene-rich 

shells. Noteworthy is a large aggregate sphere (0.8 mm in diameter) composed of various 

Fe-Ni-rich phases that is attached to chondrule N2 (Fig. 1b). This sphere is enveloped by the 

same incomplete pyroxene shell that rims the entire BO chondrule. Aggregates of opaque 

mineral phases also occur isolated in the chondrite matrix.

3.2. Chemical composition of chondrule minerals in NWA 8613 and plagioclase in Kaba

Olivine—Chemical analysis of olivine in type I chondrules yielded Mg#’s (or Fo content) 

in the range between 99.6 and 88.6 (96.3 ±4.9, 2SD, n=124). As can be seen in Figure 3, the 

Mg#’s can be variable within individual chondrules. On average, olivine with higher Mg#’s 

tends to have high CaO (Fig. 3a), Al2O3 (Fig. 3b), and Cr2O3 (Fig. 3c) contents while their 

MnO contents (Fig 3d) are close to or below the mean detection limit. Box charts of selected 

minor elements are presented in Data S8 in supporting information to illustrate the variation 

of those elements in different olivine grains of the same chondrule.

Olivine in the type II chondrule N16 yielded Mg#’s that range between 49.9 to 68.6, 

excluding forsteritic cores with Mg#’s of up to ~93. The Cr2O3 content was near detection 

limit (0.05 wt.%, 3SD), whereas MnO and CaO are present at average concentration of 0.3 

wt.% and 0.2 wt.%, respectively (forsteritic cores included).

Pyroxenes and plagioclase—Alongside low-Ca pyroxene (defined as Wo < 3, where 

Wo = Ca/(Ca+Mg+Fe) × 100, mol.%), many chondrules contain intermediate (3 < Wo < 10) 

and/or high-Ca pyroxene (Wo > 10). For example, in chondrule N3, low-Ca pyroxenes (Wo 

~ 1) are restricted to the opaque-phases-rich outer shell, while intermediate (Wo ~ 5) and 

high-Ca pyroxene are present in the mesostasis (Fig. 2b). Similarly, low-Ca pyroxene laths 

(Wo ~ 1) dominate the pyroxene shell of chondrule N1, whereas intermediate (Wo ~ 4 - 5) 

and high-Ca pyroxene (Wo ~ 39 - 44) occur in the chondrule interior (Fig. 1a). Pyroxenes 

are generally Fe-poor (Fs < 2, where Fs = Fe/(Fe+Mg+Ca) × 100, mol.%) with the exception 

of intermediate and high-Ca pyroxenes in the BO chondrule N15 (Fs ~ 7 - 9). Mean 

pyroxene Mg#’s from type I chondrules all exceed 98 (excluding chondrule N15) which 

contrasts with mostly lower mean olivine Mg#’s (Fig. 5). Ti and Al contents are lower in 
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low-Ca (Ti < 0.01, Al ~ 0.01 - 0.08, apfu, O = 6) and intermediate (Ti < 0.02, Al ~ 0.05 - 

0.10) pyroxenes than in high-Ca pyroxenes (Ti ~ 0.2, Al ~ 0.1 - 0.4).

EPMA analyses (5 μm electron beam) of plagioclase in unaltered and nepheline-free 

chondrules of NWA 8613 yielded anorthite-rich compositions (An78-85, An = Ca/(Ca+Na

+K), mol.%). A separate set of EPMA measurements using a highly defocused beam (10 

μm) confirmed small lamellae of nepheline in plagioclase of some of the chondrules in NWA 

8613 (Fig. 4, see also Section 4.1.). Plagioclase in Kaba is nepheline-free but partly replaced 

by phyllosilicates in most chondrules (Hertwig et al. 2018); EPMA analyses of plagioclase 

in seven chondrules of Kaba show anorthite-rich compositions (An83-95).

Opaque phases—In a subset of chondrules, the mineral chemistry of opaque phases was 

determined and all the evaluated chondrules contain either kamacite or taenite or both. In 

addition to alloys, chondrules contain troilite but pentlandite has been also described (Sato et 

al. 2016). Primary minerals are partly replaced by Fe,(Ni)-oxides and -oxyhydroxides, 

probably due to terrestrial weathering.

3.3. SIMS oxygen three-isotope analysis

Oxygen three-isotope ratios of olivine and pyroxene in NWA 8613—Excluding 

standard analyses, a total number of 262 SIMS oxygen three-isotope analyses were 

performed (olivine=137, pyroxene=125) of which 11 were rejected from discussion because 

of pit imperfections such as abundant cracks in the pit area. As shown in Figure 6, most 

olivine and pyroxene analyses plot on or slightly below the PCM line with δ17O and δ18O 

values ranging from −15‰ to −2‰ and −13‰ to −5‰ (Δ17O ~ −9 - 0‰), respectively; one 

olivine is exceptionally 16O-rich (N17: 431.Ol; δ17O ~ −32‰, δ18O ~ −30‰; Δ17O ~ 

−16‰). Contrary to oxygen isotope ratios of minerals in other chondrules, olivine and 

pyroxene in chondrule N13 yielded isotope ratios which consistently plot above the PCM 

line; analyses of the BO chondrule N15 also lie above the PCM but on the TF line. Some 

olivine grains in the type II chondrule N16 show fractionated oxygen isotope ratios with one 

analysis being located even below the CCAM line (Fig. 6).

Oxygen three-isotope ratios of plagioclase in chondrules of NWA 8613 and 
Kaba—Plagioclase in chondrules of both chondrites is clearly distinguishable from 

chondrule phenocrysts with respect to oxygen isotope ratios. Analyses plot below the TF 

line and isotope ratios vary between −1‰ and +7‰ for δ17O and +5‰ and +15‰ for δ18O 

(Fig. 7 and Tab. 1). Analyses in chondrules from Kaba closely follow a mass-dependent 

trend (sample mean: Δ17O = −0.9 ±0.5‰, 2SD; see Fig. 7); plagioclase in NWA 8613 is 

more variable in (Δ17O = −2.0 ±1.2‰, 2SD). The highest variability of chondrule 

plagioclase in terms of δ18O values was observed in chondrules K1 of Kaba and N3 of NWA 

8613 (analyses marked with an asterisk in Fig. 7).

Distribution of Δ17O values and relict olivine—Figure 8 presents oxygen three-

isotope diagrams illustrating the general isotopic characteristics of olivine, low-Ca, 

intermediate, and high-Ca pyroxene for selected chondrules of NWA 8613. Most chondrules 

(21 of 31, e.g., Fig. 8a-d) are isotopically homogeneous with respect to Δ17O and the 
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homogeneity criterion of ±0.45‰ defined in Section 2.5, i.e., olivine and pyroxene in these 

chondrules are isotopically indistinguishable and isotopic relict grains were not observed. It 

can be seen in Figure 8e-h that intermediate and high-Ca pyroxene located mainly in the 

chondrule mesostasis possess Δ17O values indistinguishable from olivine and low-Ca 

pyroxene phenocrysts in the respective chondrules.

Graphs in Figure 8h-l show isotope ratios of olivine and pyroxene for chondrules containing 

relict olivine (10 of 31 chondrules). In these chondrules, there exist at least 4 

indistinguishable pyroxene and/or olivine analyses that define the respective mean chondrule 

Δ17O values. Relict olivine is mostly 16O-rich (7 of 10 chondrules, e.g., Fig. 8h-j, l), spreads 

along the PCM line, and can occur in various textural positions. For example, some small 

olivine inclusions in low-Ca pyroxenes of chondrule N9 are 16O-rich with respect to their 

pyroxene hosts (Fig. 8j, 9a). Relict olivine also occurs as a massive grain aggregate that 

builds up most of the large (~ 2.5 mm diameter) chondrule N4 (see Data S2). This 16O-rich 

relict olivine is isotopically homogenous (Fig. 8i) and distinct from pyroxene and olivine in 

the chondrule rim. Texturally and isotopically remarkable dusty olivine is located in the 

interior of chondrule N13. Dusty olivine relicts are 16O-poor in comparison to minerals in 

the chondrule rim (Fig. 8h, 9b). Forsteritic olivine cores (Mg# ~90) in type II chondrule N16 

are more 16O-rich than fayalitic olivine (Fig. 8l, 9c).

Mean chondrule Δ17O values of chondrules in NWA 8613—Mean chondrule Δ17O 

values were calculated using only olivine and pyroxene analyses and range from −6.7‰ to 

−0.1‰ (Fig. 10; Tab. 2; δ18O = −7.5 - +3.4‰, δ17O = −10.5‰ - +1.7‰), when applying a 

homogeneity threshold of ±0.45‰ (see Section 2.4), and 22 of 31 chondrules possess mean 

Δ17O values between −6‰ and −4‰. The type II chondrule N16 shows a mean chondrule 

Δ17O value of −2.28 ±0.15‰ (n = 4, 2SE); analysis of the BO chondrule N15 yields the 

highest mean Δ17O value (−0.09 ±0.16‰, n = 10, 2SE). There is no apparent correlation of 

chondrule texture and mean chondrule oxygen isotope ratios.

4. Discussion

4.1. Parent body processes recorded in NWA 8613 and Kaba chondrules

The oxidized CV lithologies experienced extensive hydrous alteration that lead to the 

formation of secondary minerals in the chondrule mesostasis (e.g., Krot et al. 1995). 

Reduced CV chondrites were less affected by fluid-rock interactions, but were nonetheless 

subjected to various degrees of thermal metamorphism as described by Krot et al. (1995) or 

Kimura and Ikeda (1997). These differences in alteration style between oxidized and 

reduced CV lithologies can be also observed in chondrules of NWA 8613 and Kaba.

The degree of hydrous alteration experienced by chondrules in NWA 8613 (CV3Red) is only 

mild compared to chondrules in Kaba (CV3OxB), since phyllosilicates, often present in Kaba 

chondrules, are absent in chondrules of NWA 8613. However, plagioclase in mesostasis of 

NWA 8613 does show evidence for the presence of fluids; plagioclase oxygen isotopes are 

clearly distinguishable from those of olivine and pyroxene phenocrysts (Fig. 11a,b), i.e., 

plagioclase and phenocrysts are not in equilibrium in terms of oxygen isotopes. Similar 

observations were reported by Krot and Nagashima (2016) for plagioclase in Kaba and 
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related to re-equilibration of plagioclase with metasomatic fluids on the CV chondrite parent 

body. Data presented here on oxygen isotopes of plagioclase in Kaba, confirm these 

findings. Further, although data is limited, it appears that plagioclase in Kaba is more 

homogeneous regarding oxygen isotopes than plagioclase in NWA 8613 (Fig. 11b). 

Individual plagioclase analyses in chondrule N3 of NWA 8613, for instance, define a trend 

that - when extended - intersects the PCM line near to where the mean value of chondrule 

N3 plots (defined by olivine and pyroxene phenocrysts). This is interpreted as evidence for 

incomplete isotopic re-equilibration of these plagioclase crystals with asteroidal fluids. 

Moreover, more advanced oxygen isotope re-equilibration of plagioclase in Kaba chondrules 

is consistent with a more severe hydrous alteration of this chondrite compared to NWA 

8613.

The degree of thermal metamorphism and aqueous alteration experienced by chondrites of 

petrologic type 3 can be assessed, for example, by studying the replacement of primary 

plagioclase by secondary minerals such as nepheline. Plagioclase grains selected for oxygen 

isotope analysis were determined to be free of nepheline lamellae based on careful 

backscattered electron imaging (see Section 2.3) of chondrules from both chondrites; EPMA 

analysis of these grains yield compositions that plot close to the ideal anorthite endmember 

composition on the anorthite-albite join (Fig. 4), demonstrating that nepheline formation was 

at most minor in the chondrules of NWA 8613 and Kaba that were surveyed in this study. 

Whereas all Kaba chondrules are visually free of nepheline, 4 of the 31 analyzed chondrules 

in NWA 8613 contain plagioclase with nepheline lamellae; EPMA analyses of those grains 

using a highly defocused beam (10 μm) are shifted towards the anorthite-nepheline join (Fig. 

4).

Further, most chondrules in NWA 8613 contain olivine phenocrysts of variable FeO contents 

and mean Mg#’s of olivine are lower than those of corresponding pyroxenes (Fig. 5). This 

suggests that Mg-Fe diffusion during thermal metamorphism has altered pristine Mg#’s of 

olivine (Kimura and Ikeda 1997), whereas those of pyroxenes – in which diffusion rates are 

lower (e.g., Dohmen and Chakraborty 2007; Dohmen et al. 2016) – remain largely 

unaffected. This contrasts with findings from chondrites with lower petrologic grade (≤3.1) 

such as Acfer 094, CR chondrites, and also Kaba (Ushikubo et al. 2012; Tenner et al. 2015; 

Hertwig et al. 2018) in which Mg#’s of olivine and pyroxene are typically similar. Hence, to 

avoid underestimation, only pyroxene values were used in assigning mean Mg#’s to the 

chondrules of NWA 8613. Note that the overall nature of the pyroxenes present – such as no 

observed low-Ca pyroxene replacement and lack of any hedenbergite – is indicative of only 

mild thermal metamorphism.

4.2. Inferred dust enrichment and ice enhancement factors for chondrules in NWA 8613

This study reinforces the findings of previous investigations (Ushikubo et al. 2012; Tenner et 

al. 2013, 2015, 2017) which have shown that, when excluding isotopic relicts, olivine and 

low-Ca pyroxene phenocrysts as well as high-Ca pyroxene in chondrule mesostasis are 

indistinguishable in terms of Δ17O values given analytical uncertainties (Fig. 10). Hence, 

during successive crystallization of chondrule phenocrysts and high-Ca pyroxenes, the 

isotopic composition of oxygen in the final chondrule melt did not change significantly. To 
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be clear, no systematic difference of Δ17O values was observed among olivine, pyroxene, 

and high-Ca pyroxenes, which, if present, would be indicative of isotope exchange between 

ambient gas and a chondrule melt with distinct oxygen isotope ratios (e.g., Chaussidon et al. 

2008; Marrocchi and Chaussidon 2015).

The curves of constant dust enrichments and ice enhancements shown in Figure 12 were 

calculated using the model of Tenner et al. (2015). The essence of this model is an oxygen 

isotope mass balance which considers Solar nebula gas, anhydrous silicate dust, water ice, 

and organics as oxygen reservoirs with distinctive Δ17O values. Material originating from all 

of these reservoirs may become part of the chondrule precursor assemblage. Mean chondrule 

Δ17O values are witnesses of mixing relations among them. For example, at constant dust 

enrichment but increasing ice enhancement factors, the mean Δ17O values of chondrules 

increase and mean Mg#’s decrease due to the influence of the 16O-poor and oxidizing water 

ice reservoir. The model considers anhydrous silicate dust and water ice separately. The 

composition of the anhydrous silicate dust is calculated by treating all H in the dust of CI 

composition as part of the water ice (Tenner et al. 2015). Hence, only dust enrichment 

factors at an ice enhancement of 1x (the amount of ice in dust of CI composition) are 

directly comparable to those of other studies (e.g., Ebel and Grossman 2000).

For calculating the curves of constant dust enrichment and ice enhancements in Figure 12, 

effective Δ17O values of the Solar nebula gas (−28.4‰) and organics in dust (+11.3‰) were 

adopted from Tenner et al. (2015); plausible Δ17O values for the anhydrous silicate (−8‰) 

and water ice (+2‰) reservoirs in the CV chondrule-forming region were taken from 

Hertwig et al. (2018). The Mg#’s and Δ17O values determined in this study for type I 

chondrules of NWA 8613 are consistent with moderate dust enrichment factors of between 

50× and 150× CI dust relative to Solar abundances and with relatively dry conditions during 

chondrule formation (0.2-0.6× or up to 60% of the nominal ice in dust of CI composition). 

The BO chondrule N15 shows slightly higher values (~200× dust enrichment, 3× ice 

enhancement); formation of the only type II chondrule N16 would require dust enrichments 

>2000×. In comparison to NWA 8613, chondrules in Kaba tend to be more MgO-rich 

leading to slightly lower dust enrichment at similar ice enhancement factors (Fig. 12) 

(Hertwig et al. 2018). Estimated enrichment/enhancement factors are dependent on the 

assumed effective Δ17O values of oxygen reservoirs, especially on the Δ17O value of the 

anhydrous dust and water ice. However, as discussed by Tenner et al. (2015) and Hertwig et 

al. (2018), at moderately high dust enrichment factors (> ~50×), uncertainties in the effective 

Δ17O value of anhydrous dust translate to only small differences in the estimated dust 

enrichment factors. Uncertainties in the isotope ratio of water ice, on the other hand, have a 

significant influence on ice enhancement factors, in such a way that, for instance, higher 

Δ17O values cause lower estimated ice enhancements. These dust enrichment factors (~100× 

CI dust relative to gas of Solar composition) are within the range expected for turbulent 

protoplanetary disks (Cuzzi et al. 2001), but significantly higher than those estimated by 

Hubbard et al. (2018) (typically much smaller than 10×).
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4.3. Comparison to CV and other carbonaceous chondrites

By comparing data sets from different CV and other carbonaceous chondrites, it is now 

possible to deduce general oxygen isotope characteristics of CV chondrules. The histogram 

in Figure 13a shows that most chondrules in the CVred chondrite NWA 8613 (27 of 31, or 

87%) possess Δ17O values ranging from −7‰ to −4‰. A similarily narrow range of 

chondrule Δ17O values was also observed in the Kaba CVoxB (Hertwig et al. 2018) and in 

the Allende CVoxA (Rudraswami et al. 2011) chondrites as illustrated in the cumulative 

distribution plot of Figure 13b. Although Kaba contains a few chondrules with Δ17O values 

below −7‰ (absent in NWA 8613), the distribution of chondrule Δ17O values in both CV 

chondrites is almost identical (congruent distribution function in Fig. 13b). Around 60% of 

chondrules analyzed in Allende show Δ17O values that fall between −6‰ to −5‰ and 81% 

of all chondrules possess values below −4‰ indicating the general prevalence of low Δ17O 

values. The suite of CV chondrites shares the prevalence of MgO-rich (type I) chondrules 

with low Δ17O values (< −4‰) with most other carbonaceous chondrites such as 

Yamato-81020 (CO, Tenner et al. 2013), Yamato-82094 (ungr. CC, Tenner et al. 2017), and 

Acfer 094 (ungr. CC, Ushikubo et al. 2012).

Varying proportions of type I chondrules in carbonaceous chondrites possess higher (e.g., ≥ 

−3‰) than typical Δ17O values, while type II chondrules analyzed for oxygen isotopes are 

constantly 16O-poor (e.g., Schrader et al. 2014; Hertwig et al. 2018). In all carbonaceous 

chondrites but CR chondrites, type I chondrules with high Δ17O values are subordinate. For 

example, in Allende, only 3 of in total 24 and in Yamato-81020 3 of 21 type I chondrules 

have Δ17O values ≥ −3‰ but the proportion of such 16O-poor type I chondrules is slightly 

higher in Acfer 094 (6 of 26). Conversely, NWA 8613 and Kaba don’t contain type I 

chondrules with Δ17O values ≥ −3‰ which might be due to sampling bias. Type I 

chondrules with mean Δ17O values < −4‰ are less abundant in the CR chondrites analyzed 

by Tenner et al. (2015) (25%, see Fig. 13b) and the bulk of chondrule Δ17O values are within 

−3‰ and −1‰ (63%). In terms of the overall distribution of chondrule Δ17O values, Acfer 

094 occupies an intermediate position between CV and CR chondrites as indicated by the 

cumulative distribution pattern (Fig. 13b). The chondrule Δ17O values form a bimodal 

distribution with 56% of chondrules (all type I) possessing Δ17O values < −4‰.

The spread of Δ17O values among type I chondrules can be attributed in large-part to the 

covariation of chondrule Δ17O values and Mg#’s driven by different degrees of dust 

enrichment or ice enhancement (e.g., Connolly and Huss 2010; Tenner et al. 2015; Schrader 

et al. 2013, 2014; Hertwig et al. 2018). Although weakly developed, this covariation is also 

apparent for chondrules with low Δ17O (< −4‰) and high Mg#’s in the NWA 8613 and 

Kaba CV chondrites (Fig. 12) and would hint to an increase in the amount of 16O-poor water 

ice in the precursor assemblage at constant and low (<200×) dust enrichments (Tenner et al. 

2015; Hertwig et al. 2018).

4.4. Chondrules lying above the PCM and on the TF line

The NWA 8613-1 thin section contains one chondrule (N15, BO) with oxygen isotope ratios 

that plot on the TF line (Δ17O ~ 0‰) and above the PCM line. Chondrules of similar 

isotopic composition are known from Yamato-82094 (Tenner et al. 2017), from CR 
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chondrites (Schrader et al. 2013), and from Acfer 094 (Ushikubo et al. 2012). 

Ferromagnesian minerals in this minor 16O-poor subpopulation of chondrules are 

moderately FeO-rich and chondrules occupy an intermediate position (between type I and 

type II compositions) in the Mg# distribution of their respective chondrites.

Mean isotope ratios of most chondrules of carbonaceous chondrites plot close to the PCM 

line which is a strong indication that the precursor reservoirs are also located along a slope-1 

line (e.g., Tenner et al. 2015). In contrast, the 16O-poor chondrule subpopulation lie above 

this trend and, therefore, are likely genetically distinct from the bulk of other chondrules, 

i.e., at least one different precursor reservoir contributed to their formation (Clayton et al. 

1983; Tenner et al. 2015). Tenner et al. (2017) proposed that the formation of 16O-poor 

chondrules with Δ17O ~ 0‰ (and above PCM line) observed in two CR chondrites possibly 

involved ordinary chondrite-like precursor material.

5. Conclusions

NWA 8613 is a newly described, unshocked CVred chondrite of low petrologic subtype 

(3.1-3.2) that experienced mild thermal metamorphism as indicated by, for instance, a 

limited amount of nepheline formation in chondrule mesostasis and moderate secondary 

FeO-zoning in olivine phenocrysts (Sato et al. 2016). The chondrules of NWA 8613 show 

porphyritic and barred textures and, as is typical for CV chondrites, are largely FeO-poor; 

only a single type II chondrule is present in the thin section.

The SIMS oxygen three-isotope analyses of chondrule olivine and pyroxene in NWA 8613 

confirms findings of previous studies on different carbonaceous chondrites, including: (1) 

that individual mineral analyses plot on or close to the PCM line; and (2) that most 

chondrules are isotopically homogeneous in terms of the Δ17O values of chondrule olivine 

and pyroxenes. More specifically, each analyzed chondrule yielded at least four analytically 

indistinguishable oxygen isotope measurements, although approximately one third of these 

chondrules also contain 16O-rich or -poor isotopic relict olivine grains; forsteritic cores in 

the type II chondrule N16 are 16O-rich, dusty olivine in a porphyritic chondrule (N13) is 
16O-poor relative to chondrule means.

Plagioclase in the chondrules of NWA 8613 and Kaba is 16O-poor relative to chondrule 

phenocrysts, indicating isotopic disequilibrium caused by aqueous alteration of plagioclase. 

Most plagioclase data from Kaba plot along a mass-dependent trend close to the TF line and 

are less variable than corresponding data from NWA 8613. In other words, observations are 

consistent with a higher degree of aqueous alteration of the Kaba chondrite.

The distribution of chondrule Δ17O values in NWA 8613 and Kaba are almost identical but 

potentially different from that in Allende. Oxygen three-isotope analyses of chondrules in 

these three CV chondrites demonstrate, however, that Δ17O values are predominately 

constrained to a narrow range between −6‰ and −4‰. The Mg#’s of pyroxenes (98.2 - 

99.2) and mean Δ17O values (−6.66‰ - −3.55‰) of type I chondrules from NWA 8613 

served as inputs for the oxygen isotope mass balance model of Tenner et al. (2015) that was 

slightly modified to account for possible differences in the oxygen isotope composition of 
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anhydrous silicate dust in the CR and CV chondrule-forming regions. Estimated dust 

enrichment and ice enhancement factors are low for type I chondrules (50× to 150× CI dust 

relative to Solar abundances, 0.2× to 0.6× nominal ice abundance in dust of CI composition). 

Findings agree with estimated values for chondrules in the Kaba CV chondrite, adding 

evidence in favor of a relatively dry and only moderately high dust-enriched disk in the CV 

chondrule-forming region.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
BSE imagery showing the range of chondrule textures encountered in thin section of NWA 

8613. (a) N1: large POP chondrule encased by shell of coarse-grained low-Ca pyroxene 

laths. (b) N2: BO chondrule partially encased by a low-Ca pyroxene shell. The embedded 

BSE-bright sphere comprises various opaque phases (c) N14 (POP): kamacite/taenite and 

Fe-sulfides located in between PO interior and low-Ca pyroxene shell as well as in the 

chondrule center. (d) N15: BO chondrule in which relatively Fe-rich olivine (Mg# ~ 90) 

occurs alongside intermediate and high-Ca pyroxene. (e) N6: POP chondrule with spherical 

olivine-rich interior enclosed in low-Ca pyroxene- and olivine-rich shell. (f) N22 (POP): 

amoeboid-shaped chondrule rich in opaque phases. The small enclaves of mesostasis are 

composed of high-Ca pyroxene and anorthite. (g) N25: POP chondrule with coarse grained 

and euhedral low-Ca pyroxenes. (h) N12 (POP): center of chondrule is composed of 
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granular olivine encased by partial shell of low-Ca pyroxene. Scale bar in all panels: 500 

μm. Ol: olivine, Lpx: low-Ca pyroxene, Hpx: high-Ca pyroxene, IntPx: intermediate 

pyroxene, An: anorthitic plagioclase, Ne: nepheline, Tae: taenite, Kam: kamacite, Tro: 

troilite.
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Fig. 2. 
BSE imagery showing three typical mesostasis textures. Chondrule mesostasis can comprise 

(a) subhedral to euhedral high-Ca pyroxene crystals (± intermediate pyroxenes) embedded in 

plagioclase containing high-Ca pyroxene dendrites, and (b) intermediate and high-Ca 

pyroxenes as well as anorthitic plagioclase. (c) Anorthitic plagioclase sometimes contains 

small nepheline lamellae. Scale bar in a) and b): 100 μm, c): 10 μm. Ol: olivine, Lpx: low-Ca 

pyroxene, Hpx: high-Ca pyroxene, IntPx: intermediate pyroxene, An: anorthitic plagioclase, 

Ne: nepheline.
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Fig. 3. 
Plots showing compositional trends among the minor elements hosted by the same olivine 

and pyroxene phenocrysts in chondrules of NWA 8613 for which oxygen three-isotope ratios 

were determined in this study (type I only). Chondrule olivine of higher Fo content tends to 

be: (a) richer in CaO and (b) higher CaO contents in turn correlate with elevated Al2O3 

concentrations. (c) Measured Cr2O3 in olivine loosely correlates with Fo content. (d) Mean 

MnO contents are below or close to the mean detection limit for high-Mg# chondrules. Data 

points represent chondrule means and error bars show full range of measured values. Dashed 

lines indicate mean detection limits (3σ).
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Fig. 4. 
Ternary compositional diagram showing molar proportions of Ca, Na, and Si in two different 

sets of plagioclase EPMA measurements. Plagioclase showing >1 μm wide nepheline 

lamellae (open symbols; analyzed using 10 μm electron beam) is shifted towards nepheline 

(Ne) endmember composition, whereas plagioclase without visible nepheline plots close to 

the anorthite (An)- albite (Ab) join. Analyses of the last dataset were used for correcting 

instrumental bias of plagioclase SIMS analyses (see Data S4).
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Fig. 5. 
Mean Mg# of pyroxenes vs. mean Mg# of olivine of individual chondrules. With the 

exception of chondrule N15, mean chondrule Mg#’s of pyroxenes are consistently higher 

than 98 while those of olivine show a range of mostly lower values (Mg#: 93 - 99).
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Fig. 6. 
Oxygen three-isotope ratios of olivine and pyroxene (n=262) measured in chondrules of 

NWA 8613. Most analyses plot along the PCM line (Ushikubo et al. 2012), close to the 

CCAM line (Clayton et al. 1977); notable exceptions are olivine and pyroxene analyses of 

chondrule N15 which plot on the TF (terrestrial fractionation) line and two olivine analyses 

from the type II chondrule N16 that are fractionated towards higher δ18O values. Y&R: 

Young & Russel line (Young and Russell 1998).
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Fig. 7. 
Oxygen three-isotope ratios of plagioclase analyzed in chondrules of NWA 8613 and Kaba. 

Analyses of plagioclase in Kaba follow a mass-dependent trend characterized by a Δ17OK 

value of −0.9‰. Plagioclase in NWA 8613 is more variable; average Δ17ON value = −2.0 ‰. 

Most of the spread along the δ18O axis is introduced by plagioclase data from only two 

chondrules (* K1; ** N3).
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Fig. 8: 
Oxygen three-isotope diagrams displaying olivine and pyroxene analyses of individual 

chondrules. Error bars represent the external reproducibility (2SD) of SIMS measurements 

as defined by analyses of a bracketing standard. (a-d) Chondrules are internally 

homogeneous in terms of the Δ17O values of analyzed minerals and the relevant 

homogeneity criteria (see Section 2.4.). (e-g) High-Ca and intermediate pyroxenes are 

indistinguishable from low-Ca pyroxene and olivine in respect to Δ17O. (h-l) Isotopic relict 

olivine is 16O-rich or 16O-poor relative to analyses that define the mean chondrule isotope 

ratios. Two olivine analyses in the type II chondrule N16 are fractionated in the direction of 

higher δ18O values. See Fig. 6 for references for the PCM, CCAM, Y&R, and TF lines.
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Fig. 9. 
BSE images of a selection of chondrules containing isotopic relict olivine. (a) SIMS analysis 

of olivine inclusions in chondrule N9 yielded 16O-rich compositions relative to those of 

enclosing low-Ca pyroxene laths and another olivine grains. (b) Chondrule N13 contains 
16O-poor dusty olivine relicts that are distinct from olivine and pyroxene of the chondrule 

rim. (c) Forsteritic cores are 16O-rich in comparison with fayalitic olivine in the type II PO 

chondrule fragment. Legend symbols as in Fig. 8. (*) Location of SIMS measurements with 

no corresponding EPMA analyses. Scale bar is 200 μm for (a) and (b), 150 μm for (c).
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Fig. 10. 
Summary plot showing Δ17O values of individual olivine and pyroxene analyses, grouped by 

chondrule and ordered according to increasing chondrule means (stars). In 21 of the 31 

chondrules, no isotopic relict olivine was observed. All chondrules contain at least 4 

pyroxene/olivine analyses that are isotopically (Δ17O) homogeneous considering a threshold 

of ±0.45‰ from the mean. Mean chondrule Δ17O values range from approximately −7‰ to 

0‰.
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Fig. 11. 
Oxygen isotope ratios of individual plagioclase analyses and mean chondrule oxygen 

isotope ratios of NWA 8613 and Kaba (only those chondrule means with plagioclase 

analyses are shown). (a) Mean chondrule isotope ratios follow a mass-independent trend 

(PCM line) whereas plagioclase analyses line up (sub)parallel to the TF line; dashed lines 

parallel to TF line symbolize sample means (see Fig. 7). Extension of the linear trend 

through plagioclase of chondrule N3 (NWA 8613) intersects the PCM line near the mean 

value of this chondrule. (b) Δ17O values of plagioclase are independent of corresponding 

mean chondrule Δ17O values. Plagioclase analyses of NWA 8613 are less homogeneous than 

those of Kaba. [1] mean chondrule Δ17O values of Kaba are from Hertwig et al. (2018).
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Fig. 12. 
Mean chondrule Δ17O values plotted against mean Mg#’s of type I chondrules in NWA 8613 

(only Mg#’s of pyroxenes) and Kaba ([1], Hertwig et al. 2018). Note that Mg#’s of 

chondrule olivine and pyroxenes in Kaba are indistinguishable for each chondrule. 

Superimposed are curves of constant dust enrichment and ice enhancement calculated with 

model of Tenner et al. (2015), assuming the Δ17O value of anhydrous silicate dust to be 

−8‰ and that of water ice to be +2‰ (Hertwig et al. 2018). Δ17O values and Mg#’s reflect 

relatively dry (~ 0.2×−0.6× nominal ice in CI dust) conditions during chondrule formation 

for both CV chondrites and low (50-150× CI dust relative to Solar abundances) dust 

enrichments.
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Fig. 13. 
Histogram of mean chondrule Δ17O values of NWA 8613 and cumulative distribution plot of 

Δ17O values of various carbonaceous chondrites. (a) 27 of 31 or 87% of all chondrules in 

NWA 8613 have mean Δ17O values in between −7‰ and −4‰. (5 of 31 or 16% of 

chondrules possess Δ17O values between −7‰ and −6‰). b) Distribution of mean Δ17O 

values in CV ([1], Hertwig et al. 2018; [2], Rudraswami et al. 2011) and other carbonaceous 

chondrites ([3], Tenner et al. 2015; [4], Ushikubo et al. 2012) compared to that in NWA 

8613. The distributions of chondrule Δ17O values in Kaba and NWA 8613 are nearly 

identical.
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Table 1.

Oxygen isotope ratios and chemical composition (mol.% anorthite endmember) of plagioclase in NWA 8613 

and Kaba. Mean Δ17O values of plagioclase per chondrite are calculated based on chondrule means.

Ch# Analysis An δ17O 2SD
a δ18O 2SD

a Δ17O 2SD
a Δ17O 2SD

b An

mean mean

Kaba 1052-1

K1 K1: 19.pl 91 6.41 0.48 14.69 0.30 −1.23 0.50 −1.25 0.70 83

K1: 21.pl 78 1.77 0.48 6.51 0.30 −1.62 0.50

K1: 22.pl 81 5.25 0.48 11.86 0.30 −0.92 0.50

K3 K3: 23.pl 91 6.35 0.48 14.18 0.30 −1.02 0.50 −1.02

K5 K5: 24.pl 95 6.71 0.48 14.40 0.30 −0.78 0.50 −0.80 0.10 94

K5: 25.pl 95 6.84 0.48 14.63 0.30 −0.76 0.50

K5: 26.pl 91 6.64 0.48 14.42 0.30 −0.85 0.50

K8+9 K8+9: 28.pl 94 6.77 0.48 14.43 0.30 −0.73 0.50 −0.86 0.36 95

K8+9: 30.pl 96 6.13 0.48 13.70 0.30 −0.99 0.50

K10 K10: 31.pl 96 5.84 0.48 13.41 0.30 −1.14 0.50 −1.09 0.35 93

K10: 32.pl 92 5.40 0.48 12.78 0.30 −1.24 0.50

K10: 33.pl 92 6.87 0.48 14.94 0.30 −0.90 0.50

K21 K21: 34.pl 83 7.25 0.48 15.03 0.30 −0.56 0.50 −0.56

K24 K24: 35.pl 87 6.97 0.48 15.07 0.30 −0.86 0.50 −1.03 0.47 86

K24: 36.pl 85 5.21 0.48 12.31 0.30 −1.20 0.50

sample mean: −0.94 0.45

NWA 8613

N3 N3: 41.pl 83 −0.95 0.57 5.07 0.26 −3.58 0.64 −2.79 1.73 84

N3: 42.pl 83 1.72 0.57 9.41 0.26 −3.17 0.64

N3: 43.pl 84 0.32 0.57 6.03 0.26 −2.81 0.64

N3: 44.pl 84 4.53 0.57 11.74 0.26 −1.57 0.64

N4 N4: 45.pl 78 4.13 0.57 11.82 0.26 −2.02 0.64 −1.92 0.62 78

N4: 46.pl 77 5.18 0.57 13.00 0.26 −1.58 0.64

N4: 47.pl 79 3.89 0.57 11.66 0.26 −2.18 0.64

N11 N11: 48.pl 79 6.03 0.57 14.03 0.26 −1.26 0.64 −1.29 0.07 82

N11: 49.pl 84 6.01 0.57 14.08 0.26 −1.31 0.64

N17 N17: 50.pl 77 5.58 0.57 13.83 0.26 −1.62 0.64 −1.62

N21 N21: 51.pl 84 2.13 0.57 8.73 0.26 −2.41 0.64 −2.43 0.04 85

N21: 52.pl 86 1.26 0.57 7.13 0.26 −2.44 0.64

sample mean: −2.01 1.21

a
analytical uncertainty

b
variability
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Table 2.

Mean oxygen three-isotope ratios and Mg#’s of chondrules in NWA 8613.

Ch# Type Olivine
a

Pyroxenes
a

Mg#
c δ17O δ18O Δ17O

Relict
b Host LowCa IntPx HPx Mean Mean Unc.

d Mean Unc. 
d Mean Unc. 

d

N1 I POP 3 4 4 2 3 98.2 −4.30 0.25 −1.04 0.34 −3.76 0.17

N2 I BO - 4 3 - 1 99.0 −8.27 0.23 −5.47 0.33 −5.43 0.17

N3 I POP - 4 3 2 - 98.9 −6.61 0.22 −3.35 0.33 −4.87 0.14

N4 I POP 6 1 3 1 - 98.9 −7.30 0.20 −4.33 0.38 −5.05 0.10

N5 I PO - 4 2 - - 99.0 −8.19 0.27 −5.47 0.36 −5.35 0.20

N6 I POP - 6 2 - - 98.7 −8.34 0.27 −5.95 0.49 −5.25 0.14

N7 I POP 3 1 4 - - 98.8 −8.02 0.25 −5.41 0.33 −5.21 0.22

N8 I POP 1 2 4 - - 98.8 −6.49 0.31 −3.74 0.44 −4.54 0.27

N9 I PP 2 1 5 - - 99.0 −7.93 0.23 −5.41 0.33 −5.12 0.17

N10 I PO - 4 5 - - 98.7 −7.62 0.28 −4.69 0.39 −5.18 0.18

N11 I POP - 1 4 1 - 98.7 −7.80 0.42 −4.78 0.55 −5.32 0.24

N12 I POP 1 2 3 - 1 98.7 −6.09 0.21 −2.79 0.39 −4.64 0.16

N13 I PO 3 3 - 1 - 99.0 −5.06 0.62 −2.90 0.80 −3.55 0.25

N14 I POP - 4 3 - - 99.1 −7.89 0.26 −4.71 0.35 −5.44 0.16

N15 I BO - 3 - 5 2 91.0 1.68 0.23 3.42 0.32 −0.09 0.16

N16 II PO 4 4 - - - 61.6 −1.14 0.24 2.20 0.50 −2.28 0.15

N17 I POP 2 3 4 - - 98.8 −6.19 0.35 −3.20 0.46 −4.52 0.18

N18 I POP - 4 4 - - 98.9 −6.45 0.23 −3.54 0.36 −4.60 0.15

N19 I POP - 4 4 - - 99.1 −9.06 0.28 −6.13 0.35 −5.87 0.20

N20 I PO - 4 4 - - 99.0 −10.53 0.25 −7.50 0.35 −6.63 0.14

N21 I POP - 4 3 1 - 98.9 −7.94 0.23 −4.63 0.33 −5.53 0.14

N22 I POP - 4 2 2 - 99.0 −8.11 0.23 −4.50 0.39 −5.78 0.14

N23 I POP - 4 2 2 - 98.7 −6.44 0.21 −3.25 0.41 −4.75 0.17

N24 I POP - 5 3 - - 99.1 −9.87 0.25 −6.67 0.31 −6.40 0.18

N25 I POP - 4 5 - - 99.2 −9.00 0.21 −5.57 0.32 −6.10 0.15

N26 I PP - 2 6 - - 98.8 −8.78 0.23 −5.82 0.36 −5.76 0.19

N27 I POP 2 2 3 - - 99.0 −10.53 0.26 −7.45 0.33 −6.66 0.19

N28 I POP - 5 1 - - 98.9 −9.45 0.21 −6.41 0.32 −6.11 0.14

N29 I POP - 4 3 - - 98.8 −7.40 0.30 −4.38 0.41 −5.12 0.20

N30 I POP - 4 - 2 - 98.5 −5.93 0.25 −2.60 0.34 −4.58 0.17

N31 I POP - 4 4 - - 98.9 −7.77 0.39 −4.64 0.51 −5.35 0.20

a
Number of analyses

b
relict olivine not included in chondrule means

c
Mg#’s of pyroxenes, except for chondrule N16

d
for calculation of uncertainty see Section 2.5
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