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Abstract Although the basic reproduction number, Ry, is useful for understanding
the transmissibility of a disease and designing various intervention strategies, the
classic threshold quantity theoretically assumes that the epidemic first occurs in a
fully susceptible population, and hence, Ry is essentially a mathematically defined
quantity. In many instances, it is of practical importance to evaluate time-dependent
variations in the transmission potential of infectious diseases. Explanation of the
time course of an epidemic can be partly achieved by estimating the effective repro-
duction number, R(?), defined as the actual average number of secondary cases per
primary case at calendar time ¢ (for # > 0). R(¢) shows time-dependent variation due
to the decline in susceptible individuals (intrinsic factors) and the implementation
of control measures (extrinsic factors). If R(¢) < 1, it suggests that the epidemic
is in decline and may be regarded as being under control at time t (vice versa, if
R(t) > 1). This chapter describes the primer of mathematics and statistics of R(t)
and discusses other similar markers of transmissibility as a function of time.

1 Introduction

The basic reproduction number, Ry (pronounced as R nought), is a key quantity
used to estimate transmissibility of infectious diseases. Theoretically, Ry is defined
as the average number of secondary cases generated by a single primary case dur-
ing its entire period of infectiousness in a fully susceptible population [14]. The
reproduction number, R, is directly related to the type and intensity of interventions
necessary to control an epidemic since the objective of public health efforts is to
achieve R < 1 as soon as possible. One of the best known utilities of Ry is in
determining the critical coverage of immunization required to eradicate a disease
in a randomly mixing population. When an effective vaccine is available against
the disease in question, it is of interest to estimate the critical proportion of the
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population that needs to be vaccinated (i.e. vaccination coverage) in order to attain
R < 13,4, 33]. Considering the so-called control relation, 1 — RLO, the protection
conferred to the population by achieving a critical vaccination coverage, herd immu-
nity, yields the threshold condition for the eradication of a disease [18, 28]. As it is
extensively discussed elsewhere [13, 14], the mathematical definition of Ry is given
by using the next generation matrix where Ry is in the simplest case calculated as
the dominant eigenvalue (see Chapter 1). In addition to the threshold phenomena,
R\ has been classically used to suggest the severity of an epidemic, because the
proportion of those experiencing infection at the end of an epidemic (i.e. final size)
depends only on Ry [23]. The basic statistical methods to estimate R, from observed
epidemiological datasets have been reviewed by Klaus Dietz elsewhere [15].

Although Ry may be useful for understanding the transmissibility of a disease
and designing various intervention strategies, the classic threshold quantity theoret-
ically assumes that the epidemic first occurs in a fully susceptible population, and
hence, Ry is essentially a mathematically defined quantity. In addition to Ry, it is
of practical importance to evaluate time-dependent variations in the transmission
potential. Explanation of the time course of an epidemic can be partly achieved
by estimating the effective reproduction number, R(¢), defined as the actual aver-
age number of secondary cases per primary case at calendar time ¢ (for ¢t > 0)
[6-10, 22, 29, 30, 35]. R(t) shows time-dependent variation due to the decline in
susceptible individuals (intrinsic factors) and the implementation of control mea-
sures (extrinsic factors). If R(#) < 1, it suggests that the epidemic is in decline
and may be regarded as being under control at time t (vice versa, if R(¢) > 1). Even
when effective interventions against a specific disease are limited, it is plausible that
the contact frequency leading to infection varies as a function of time owing to the
recognition of epidemics and/or dissemination of the relevant information through
mass media. In this chapter, we show how R(7) is mathematically defined and how
it can be estimated from the observed epidemiological datasets. In addition, other
similar time-dependent threshold quantities, which have been proposed in a few
practical settings, are discussed.

2 Renewal Equation Offers the Conceptual
Understanding of R(¢)

2.1 Infection-Age Structured Model

To understand the theoretical concept of R(z), we first consider an infection-age
structured epidemic model. Hereafter, infection-age stands for the time elapsed
since infection. Whereas the simple modified version (or widely known form) of the
Kermack-McKendrick model is governed by ODEs (e.g. SIR and SEIR models),
the very initial model employed the infection-age structured assumption from in
1927 [24]. Nevertheless, the mathematical importance of the original model was
recognized only after the 1970s [12, 27]. We denote the numbers of susceptible and
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recovered individuals by S(z) and U(¢) (Note: to avoid any confusions between the
effective reproduction number and the recovered individuals, we denote the recov-
ered individuals by U (¢) hereafter). Further, let i(z, t) be the density of infectious
individuals at calendar time ¢ and infection-age t. The infection-age structured SIR
model is given by

ds@)
= —A(t)S(t)
0 J . _ ; 1
(5 + E) i(t,7) = —y(v)i(t, 1) ey

i(t,0) = A@)S(@)

dl;t(t) = /000 y(r)i(t, t)drt

where A(t) is referred to as the force of infection (foi) at calendar time ¢ (i.e.
foi is defined as the rate at which susceptible individuals get infected) which is
given by:

AD) = f " @i, vy de ©
0

and B(t) and y(7) are the rates of secondary transmissions per single infectious
case and recovery at infection-age t, respectively. It should be noted that the above
model has not taken into account the background host demography (i.e. birth and
death). In a closed population, the total population size N is thus given by

N = S(t)—i—/ooi(t,r)dr +U@) 3)
0

which is independent of calendar time ¢. The system (1) can be reasonably integrated
along the characteristic line

it,t1)=1I()jt—1) “)
fort — 7 > 0 (and FI(;(?Z) jo(t —t) for t —t > 0) where
Jj(@) =i, 0) (5)
and
I(v) = exp (— f ' y(o)dc) ©6)
0

and jo(tr) informs the infection-age distribution of initially infected individuals at
the beginning of an epidemic. Accordingly, the number of new infections at calendar
time 7, j(t), is referred to as the incidence of infection. It is not difficult to derive
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12
S(t) = S(O)—/ Jj(o)do (7
0
from (1). Thus, the subequation of i(¢, 0) in system (1) is rewritten as
t
J@) = A1) [S(O)—/ j(o)d(f] 3
0

Taking into account the initial condition in (4), Equation (8) is rewritten as

j = [S<0> - t j(o)da} [G(r) + [ "y - r)dr} ©)

where
V(@) = BOT (D) (10)
G(z)-/ Blo+1) (F(+))o(o)do an

Considering the initial invasion phase (i.e. exponential growth phase of an epi-
demic), we get a linearized equation

J(®) = S(0)G() + S(O)[0 Y(0)j —1)dr 12)

The Equation (12) represents Lotka’s integral equation, where the basic reproduc-
tion number, Ry, is given by

Ry = S(0) foo Y(r)dt (13)
0

Thus, the epidemic will grow if Ry > 1 and decline to extinction if Ry < 1.
Assuming that the infection-age distribution is stable, we get a simplified renewal
equation

j(t)Z/o A(D)j(t —T)dt (14)

where A(7) is the product of ¥(7) and S(0), indicating the rate of secondary trans-
missions caused by a single primary case at calendar time O and infection-age t.
Assuming that we observe an exponential growth of incidence during the initial
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phase (i.e. j(t) = kexp(rt) where k and r are, respectively, a constant (k > 0) and
the intrinsic growth rate), the following relationship is obtained:

Jj(@®) = jt = 1)exp(rr) 15)

Replacing j(t — 7) in the right hand side of (14) by (15), we get

) = /0 A@)j() exp(—rr)dr (16)

Removing j(¢) from both sides of (16), we get the Euler-Lotka characteristic
equation:

1= /oo e TA(T), dt (17)
0

Further, we consider a probability density of the generation time (i.e. the time from
infection of a primary case to the infection of a secondary case by the primary case
[34]), denoted by w(7):

A@)  A®@)

w(r) = = . 18
(®) Jo7 A(x)dx Ry (15)
Using (18), the Equation (17) is replaced by
1 o0
™ = / exp(—rt)w(r), dt (19)
0 0

The Equations (15), (16), (17), (18), (19) are what Wallinga and Lipsitch have dis-
cussed, revisiting the classical theory of Lotka [16, 36], which reasonably suggests
the relationship between the generation-time distribution and Ry. Accordingly, the
estimator of Ry using the intrinsic growth rate is given by:

X 1
Ro= 1= (20)
where M (—r) is the moment generating function of the generation-time distribution
w(t), given the intrinsic growth rate r [36]. Equation (20) significantly improved
the issue of estimating Ry using the intrinsic growth rate alone, because (20) permits
validating estimates of R\ by various different distributional assumptions for w(7).
The importance of realistic assumptions for the distributions of latent and infectious
periods has been emphasized in recent studies [25, 26, 32, 37, 39] and indeed, this
point is addressed by (20) to gain robust estimate of Ry. It should be noted that the
convolution of latent and infectious periods yields w(t). Since the assumed lengths
of generation time most likely yielded different estimates of Ry, for example, for
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Spanish influenza by different studies [30], Equation (20) highlights a critical need
to clarify the generation time distribution using observed data.

2.2 Deriving the Estimator of the Effective Reproduction Number

To further derive an estimator of R(f), we consider the non-linear phase of an
epidemic. Derivation of R, given by (20) assumes an exponential growth which
is applicable only during the very initial phase of an epidemic (or, when the
transmission is stationary over time), and thus, it is of practical importance to
widen the applicability of the above-described renewal equations in order to appro-
priately interpret the time-course of an epidemic. We explicitly account for the
depletion of susceptible individuals, as we deal with an estimation issue with time-
inhomogeneous assumptions. Adopting the mass action principle of Kermack and
McKendrick, we get:

Jj@) = S(t)/ Y(r)jt —1)de
0
=/w A, T)j(t — T)dT 1)
0

where A(t, T) is interpreted as the reproductive power at calendar time 7 and
infection-age t at which an infected individual generates secondary cases. We refer
to the Equation (21) as a non-autonomous renewal equation, where the number
of new infections at calendar time ¢ is proportional to the number of infectious
individuals (as assumed in the renewal equation in the initial phase).

Using Equation (21), the effective reproduction number, R(¢) (i.e. the instanta-
neous reproduction number at calendar time ¢) is defined as:

R(t) = /OO A(t, 7)dt (22)
0

where A(¢, T) is, in practical terms, decomposed as
A(t,7) = S@B(T)I (1) (23)

Following (23), we can immediately see that R(¢) with an autonomous assumption
(i.e. where contact and recovery rates do not vary with time) is given by:

_s0
R(t) = 50) Ry 24)

which is shown in [14]. In practical terms, Equation (24) reflects the temporal
decline in the epidemic due to depletion of susceptible individuals. This corresponds
to the classic assumption of the Kermack and McKendrick model.
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However, as we discussed in the beginning of this chapter, we postulate that
human contact behaviors (and other extrinsic factors) modifies the dynamics as
a function of epidemic time, assuming that the decline in incidence does reflect
not only depletion of susceptibles but also various extrinsic dynamics (e.g. iso-
lation and contact tracing). Thus, instead of the assumption in (21), we assume
time-inhomogeneous ¥/ (¢, 7); i.e.

j) = S(t)/0 Y, 0)jt —1)dr

= /'00 Alt,1)j(t —1)dr (25)
0

to describe A(z, 7).

Even so, it is convenient to assume separation of variables for A(#, 7) to derive
simple estimator of R(¢) (implicitly assuming that the relative infectiousness to
infection-age is independent of calendar time) [20]. Under this assumption, A(z, T)
is rewritten as the product of two functions ¢, (¢) and ¢»(7):

AL, 7) = ¢1(1)¢a(7) (26)

Arbitrarily assuming a normalized density for ¢,(7), i.e.,

/Oo $r(v)dr =1 Q@7
0

then, it is easy to find that

R() = /00 A(t,t)dt = ¢1(1) (28)
0

suggesting that the function ¢ (¢) is equivalent to the (instantaneous) effective repro-
duction number R(¢). Another function ¢,(7) represents the density of infection
events as a function of infection-age 7. Accordingly, we can immediately see that
¢»(7) is exactly the same as w(t), the generation-time distribution. That is, the above
arguments suggest that A(#, t) (i.e. the rate at which an infectious individual at
calendar time ¢ and infection-age 7 produces secondary cases) is decomposed as:

A(t, 1) = R(tH)w(t) (29)
Inserting (29) into (25) yields an estimator of R(¢) [20]:

Jj@)

R(t) =
@ IS Jt —Dw(r)dt

(30)
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Another type of the effective reproduction number as a function of time considers
the number of secondary cases per single primary case as a function of calendar time
when the primary case experienced infection. Due to this reason, the reproduction
number is referred to as the cohort reproduction number, R.(¢), defined as

o0
R.(t) = / At + 1, 1)dt 3D
0
If the separable assumption (28) is the case, Equation (31) is rewritten as
o.¢]
R.(t) = / R(t + w(r)dr (32)
0

which is interpreted as a smoothed function of the instantaneous reproduction num-
ber [20, 21]. The above Equation (32) is exactly what was proposed in applications
to SARS [35] and foot and mouth disease [17]. Preceding these definitions in infec-
tious disease epidemiology [20], both R(¢) and R.(¢) have been explicitly defined
as the period and cohort total fertility rates, respectively, in mathematical demog-
raphy [1]. The difference between R(#) and R.(¢) is highlighted when a specific
event at calendar time ¢ occurs (e.g. a public health intervention starts at calen-
dar time t). Then, R(¢) abruptly varies (e.g. declines) with calendar time #, but
R.(t) smoothly varies, because R.(#) smooth out the timing (i.e. infection-age)
of secondary transmissions among a cohort who experienced infection at calendar
time ¢.

Discretizing (30) and (32) to apply them to the daily incidence data (i.e. using
Ji incident cases infected between time #; and time ¢, and descretized generation
time distribution w; ),

p Ji
R(t) = = (33)
Z_j:() Ji—jw;j
can be used as the estimator of R(#), and
,]H—m w]
Re(t) = E (34)
Zk 0 Jitm—kWk

as the estimator of R.(t). However, it should be noted that the study in SARS
implicitly assumed that onset data c(¢) at calendar time ¢ reflects the above discussed
infection event j(¢) [35]. That is, supposing that we observed c; onset cases reported
between t; and #;.1, R.(t) was calculated as

(35)
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where s; is the discretized serial interval which is defined as the time from onset of
a primary case to onset of the secondary cases [19]. The method permits reasonable
transformation of an epidemic curve (i.e. temporal distribution of case onset) to the
estimates of time-inhomogeneous cohort reproduction number R.(7). Employing the
relative likelihood of case k infected by case / using the density function of serial
interval s(7); i.e.,

s(tx — 110)
Py = (36)
D st — 1]6)
the expected value and variance of R.(#;) are given by the following
1 —
ER() =~ > Y Py (37)
" l:ty=t k=1
1
Var(R.(1;)) = 2 Z Pl = pan) — Z Pk Pk,m)
I k=1 \lin=t 1,mity=t,, =t

where 7, is the total number of reported case onsets at calendar time ¢ [11].

Using the above described methods (or similar concepts with similar assump-
tions), we can transform epidemic curves into the effective reproduction number
and assess the impact of control measures on an epidemic. However, whereas the
Equations (33) and (35) are similar in theory, we need to explicitly account for the
difference between onset and infection event. In fact, when there are many asymp-
tomatic infections and asymptomatic secondary transmissions, serial interval is not
equivalent to the generation time, and thus, directly adopting the above methods
would be inappropriate.

3 Applying Theory to the Data

3.1 A Simple Example

Here we consider a simplified example of pandemic influenza from 1918 to 1919
in Prussia, Germany [30]. Medical officers in Prussia recorded the daily number of
influenza deaths from 29 September 1918 to 1 February 1919 (Fig. 1) [31]; a total of
8911 deaths were reported. Throughout the pandemic period in Germany, the largest
number of deaths was seen in this fall wave. Prussia represents the northern part of
present Germany and at the time of the pandemic it was part of the Weimer Repub-
lic as a free state following World War I. The death data were collected from 28
different local districts surrounding the town of Arnsberg, which, at the time of the
epidemic, had a population of approximately 2.5 million individuals (the mortality
rate in this period being 0.36%). Although case fatality for the entire observation
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Fig. 1 Epidemic curve of 200

pandemic influenza in

Prussia, Germany, from

1918 to 1919. Reported daily 200
number of influenza deaths
(solid line) and the
back-calculated temporal
distribution of onset cases 100
(dashed line). Daily counts of
onset cases were obtained
using the time delay
distribution from onset to
death (Fig. 2). Data source:
Ref [31]

Cases

9-Sep
23-Sep
7-Oct
21-Oct
4-Nov
18-Nov
2-Dec
16-Dec
30-Dec
13-Jan
27-Jan

area was not documented, the numbers of cases and deaths during part of the fall
wave were recorded for 25 districts. Among a total of 61,824 cases, 1609 deaths
were observed, yielding a case fatality estimate of 2.60% (95% CI: 2.48, 2.73).
For simplicity, the inflow and outflow of individuals migrating between Prussia and
other areas were ignored in the following analysis.

The daily incidence (i.e. daily case onset) was back-calculated using the daily
number of influenza deaths (Fig. 1) and the time delay distribution from onset to
death (Fig. 2). Given f (1), the frequency of death t days after onset, the relationship
between the reported daily number of deaths, D(¢), and daily incidence, C(t), at
calendar time ¢ is given by:

D) = P/ Ct—o)f(r)dre (38)
0

where p is the case fatality ratio, which is independent of time. Although the case
fatality, p, was not taken into account in Fig. 1, the following model reasonably
cancels out the effect of p assuming that the conditional probability of death given
infection is independent of time.

Fig. 2 Distribution of the
time delay from onset to
death during the influenza
epidemic in Prussia,
Germany, from 1918 to
1919. Time from disease
onset (i.e. fever) to death is
given for 6233 influenza
deaths. A simple 5-day
moving average was applied
to the original data. Data

Frequency

1 8 15 22 29

source: Ref [31] Time from onset to death (days)
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The effective reproduction number can be estimated using estimators (33) and
(34), but, unfortunately, detailed information on the distribution of the generation
time, w(t), has yet to be clarified for pandemic influenza, and historical records
often offer only the approximate mean length. Thus, the analyses conducted here
simplify the model using various mean lengths of the generation time assumed in
previous studies. Supposing that we observed C; cases in generation i, the expected
number of cases in generation i 4+ 1, E(C; ) occurring a mean generation time after
onset of C; is given by:

E(Cip1) = GiR; (39)

where R; is the effective (cohort) reproduction number in generation i. That is, cases
in each generation, C, C,, Cs, ..., C,are givenby CoRy, C1R;, C2R;, ..., C,
R,_; and also by CoRy, CoRoRy, CoRoRIR>, ..., Cy ]_[Z;(l) Ry, respectively. By
incorporating variations in the number of secondary transmissions generated by
each case into the same generation (referred to as the offspring distribution), the
model can be formalized using a discrete-time branching process [5]. The Poisson
process is conventionally assumed to model the offspring distribution, representing
stochasticity (i.e. randomness) in the transmission process. This assumption indi-
cates that the conditional distribution of the number of cases in generation i + 1
given C; is given by:

CH—I | C,’ ~ POiSSOH[C,’R,‘] (40)

For observation of cases from generation 0 to N, the likelihood of estimating R; is
given by:

N—1
L = constant x [ [(C;R))“/* exp(~C; R;) (41)
j=0

Since the Poisson distribution represents a one parameter power series distribution,
the expected values and uncertainty bounds of R; can be obtained for each gen-
eration. The 95% CI were derived from the profile likelihood. Since the length of
the generation time in previous studies ranged from 0.9 to 6 days, three different
fixed-length generation times (i.e. 1, 3 and 5 days) are assumed for Equation (41)
with respect to the observed data. Although application of the delta function for the
generation time suffers some overlapping of cases in successive generations, this
exercise ignored this and, rather, focused on the time variation in transmissibility
using this simple assumption. That is, assuming that the generation-time distribution
of length 7, w(t), is given by the following delta function with the mean length 1, 3
or 5 days,

w(t)=o00, fort=1, 30r5 42)
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and w(t) = 0 otherwise, and for each assumption of the mean length, the daily
number of cases was grouped by the determined generation time length. Whereas
the choice of generation time therefore affects estimates of R;, it does not affect
the ability to predict the temporal distribution of cases. It should be noted that this
simple model assumes a homogeneous pattern of spread.

Figure 3 shows time variations in the estimated effective reproduction numbers
obtained assuming three different generation times (i.e. 1, 3 and 5 days) compared
with the corresponding epidemic curve. Epidemic date O represents 9 September
1918 when the back-calculated onset of cases initially yielded a value the near-
est integer of which was 1. Since the precision of the estimate is influenced by
the observed number of cases, wide 95% confidence intervals were observed for
estimates using a short generation time. However, these time variations in R(f)

300 -
$200 +
2 1
T 1
Q100
Qi - P i L L
6 0 20 40 60 80 100 120 140
1% e Upper 95% CI generation time = 1 day
49~ Expected :
o 1 e Lower 95% CI
2 PR TP P PN
6 0 20 40 60 80 100 120 140
E ‘ generation time =3days
44
m -
2 } -
0 b e
0 20 40 60 80 100 120 140
6 I generation time = 5 days
4 4
x 1
2 +4-
0 b

0 20 40 60 80 100 120 140
Time {days)

Fig. 3 Epidemic curve and the corresponding effective reproduction numbers (R) with vari-
able generation times. Time variation in the effective reproduction number (the number of
secondary infections generated per case by generation) assuming three different generation times
is shown. The generation time was assumed to be 1 (second from the top), 3 (lower middle) and 5
days (bottom). Days are counted from September 9, 1918, onwards
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exhibited similar qualitative patterns: (i) although the R(z) was highest at the begin-
ning of the epidemic, the estimates fell below 1 when the epidemic curve came
close to the peak (i.e. Days 45-50). For example, the estimated R(¢) at Day 50 was
0.92 (95% CI: 0.79, 1.06), 0.82 (0.75, 0.89) and 0.72 (0.67, 0.78), respectively, for a
generation time of 1, 3 and 5 days. This period corresponds to the time when public
health measures were instituted, e.g. obligatory case reporting, encouragement of
mask wearing, and closing of public buildings such as churches and theaters [31].
(i1) Thereafter, R(t) stayed slightly below unity, reflecting a slow decline in the num-
ber of onset cases. (iii) Shortly before the end of the epidemic (i.e. Days 90-120),
R(?) increased again above 1. (iv) Finally, the expected values of R(¢) fell below
1 very close to the end of the epidemic. In this stage, estimates assuming a short
generation time exhibited wide uncertainty bounds, reflecting stochasticity due to
the small number of cases.

Figure 4 compares the expected values of R(¢) assuming each of the generation
times employed. Although the possibility of individual heterogeneity (e.g. potential
superspreaders in the early stage) cannot be excluded, R(¢) at calendar time ¢t = 0
is theoretically equivalent to Ry. Assuming generation times of 1, 3 and 5 days, Ry
was estimated to be 1.58 (95% CI: 0.03, 10.32), 2.52 (0.75, 5.85) and 3.41 (1.91,
5.57), respectively. It is remarkable, therefore, to see that R(¢) largely depends on
the assumed length of the generation time. That is, the longer the generation time,
the higher the R(#). It should also be noted that the relationship between R(z) and the
generation time is reversed when the epidemic is under control (i.e. when R(t) < 1
in the later stage of the epidemic). The finding is analytically interpretable from
Equation (20) which suggests that the absolute number of the reproduction number

generation time
1 day

Reproduction number
(]

0 20 40 60 80 100 120 140

Time (days)
Fig. 4 Comparison of the effective reproduction number assuming different generation
times. Expected values of the effective reproduction number with a generation time of 1 (grey),
3 (dashed black) and 5 days (solid black). The horizontal solid line represents the threshold value,

R = 1, below which the epidemic will decline to extinction. Days are counted from September 9,
1918, onwards
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is informed by the growth rate of an epidemic as well as the shape and scale of the
generation time distribution [32, 36].

3.2 What to do with the Coarsely Reported Data?

Although we usually seek for precisely reported data (e.g. daily counts of cases) to
estimate the reproduction number as a function of time, it is impractical in many
instances to report observations every day (or to be more precise). If the datasets are
reported in a very coarse interval, we have to consider alternative simple algorithms
to deal with interval censoring. There are two approaches.

The first is the geometric approximation. As above, we consider that the expected
number of cases in generations 0, 1, 2, ..., i follows a simple geometric series, but
with a constant reproduction number, Ry, in a single reporting interval k:

a, aRy, aR>, ..., aRy! (43)

where a denotes the number of index cases in the first generation of reporting inter-
val k. As a special case, suppose that the reporting interval, Az, is exactly a multiple
of the mean generation time (i.e. At = ng where g and n are the mean generation
time and an integer, respectively). In that case, the numbers of cases in k-th and
(k + 1)-th reports, J; and Jy 1, are

Jk =a+aRk+aRk2~|—...+aRk”_l (44)

n—1

=a Z R;! (45)

=
and

Jer1 = aR" + aR" Ry + aR" Riet® + ...+ aR" Ry ™! (46)

n—1

= aR" ) Rirt! (47)
i=0

where R; and Ry are the effective reproduction numbers in reporting intervals k
and k + 1, respectively. Thus, given an observation of J; cases in interval k, the
expected number of cases in the next interval k + 1, E(Ji+ | Ji), is given by

(1 — R)(1 — Ryt R Ji
E(J, Jy) = 48

It should be noted that » is the number of generations included in each reporting
interval.
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When the geometric approximation is not feasible (e.g. when the reporting
interval is not exactly the multiple of the mean generation time), the exponen-
tial approximation should replace the geometric approach. Let r; and r;y; be the
constant growth rates of cases in reporting intervals k and k + 1, the conditional
expectation (48) is replaced by

Jire e At)e At)—1
EJenr | J) = i eXp(ri Ar) exp(ree1Atl) 49)
Tka1 exp(rkAt)— 1

where At is the length of reporting interval. Using the maximum likelihood method,
the growth rates r; are estimated for each reporting interval k. Subsequently, R; in
each reporting interval & is estimated as

_ 1
)

Ry (50)

which is analogous to Equation (20).

In this way, even when the reporting interval is coarse (e.g. exceeding the mean
generation time), we can still get approximate estimates of R; which is assumed
constant during the single reporting interval. Nevertheless, the linear approximation
diminishes precision, and thus, it should be remembered that the observation in
more precise reporting interval always gives better insights into the time-course of
an epidemic.

4 Incidence-to-Prevalence Ratio
and the Actual Reproduction Number

As discussed in the last section, it is frequently the case that the generation time for
a specific disease has yet to be estimated, and we do not have the relevant data. Pre-
viously, another simple method was proposed; namely, the incidence-to-prevalence
ratio has been employed in interpreting the time course of an epidemic [2, 38]. In
particular, the method has been employed to understand the time course of the HIV
epidemic. Although it is true that the problem of long generation times for HIV
would complicate the interpretation of the simple method (and thus, the instanta-
neous and cohort reproduction numbers may always provide better information),
here we explicitly consider theoretical backgrounds of this simple method.
As we did in the previous sections, we consider the renewal equation:

J) = @) /O B0t 7y dr

= s(;)/o B()I(1)j(t —1)dr (5D
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which employs Kermack and McKendrick type assumption. Following Amundsen
et al. [2], here we mathematically define the actual reproduction number, R, ().
Since the prevalence at calendar time ¢, I(z), is given by

I(t) = /ooi(t, 1) dt (52)
0

the incidence-to-prevalence ratio, /PR(t), of White et al. [38] at calendar time ¢ is

_i0
IPR(t) = 0
8@ [y B, T)dT
- fOOO i(t’ T) dT
- S(t)/°° B(x)c(t, T)dt (53)
0
where
¢t 1) = D (54)

fo it vydr

which informs the infection-age distribution (or what we call age-profile) of infec-
tious individuals. The actual reproduction number, R,(?), is defined as

R.(t) = IPR(t)D (55)

where
D= /w I'(t)dt (56)
0

which informs the average infectious period.

Of course, Equation (55) poses a problem for applying this simple method to
HIV epidemiology. If the transmission rate S(t) was independent of infection-age
(and was constant b), IPR(t) would be merely bS(¢) and thus

R(t) = bS(t)D = R, (1) (57)

Nevertheless, diseases with long generation time usually exhibits strong dependency
of infectiousness on infection-age, indicating that the method might not be as useful
as the cohort and instantaneous reproduction numbers. Instead, if it is the case that
we have both prevalence and incidence in hand for a disease with acute course of
illness, R, (¢) still stands as a useful measure of transmissibility as a function of time.
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5 Conclusion

In this chapter, we discussed the mathematical and statistical properties of the effec-
tive reproduction number as a function of time. We have shown that the renewal
theory gives us rich analytical insights into the definition and computation of vari-
ous time-dependent threshold quantities. The instantaneous and cohort reproduction
numbers are explicit measures of the transmissibility, where the former informs the
actual number of secondary transmissions at calendar time ¢, while the latter gives
the average number of secondary transmissions among cohort (i.e. infecteds) who
were born at calendar time ¢. These exactly correspond to the period and cohort total
fertility rates, respectively, in mathematical demography. The difference between
the two is highlighted when a specific event at calendar time ¢ occurs (e.g. a pub-
lic health intervention starts at calendar time ¢). Then, R(¢) abruptly varies with
calendar time 7, while R.(t) smoothly varies. For a disease with long generation
time, analysis of both quantities might be called for. We have also provided ana-
Iytically explicit interpretations of the incidence-to-prevalence ratio and the actual
reproduction number. Although it appears that the ratio and the actual reproduction
number may not be useful for a disease with long generation time (e.g. HIV/AIDS),
these might be extremely useful for a disease with acute course of illness, especially
when we have both prevalence and incidence in hand. Applications of the above
discussed concepts are seen in other chapters in this volume, and we hope you’ll
enjoy our statistical approaches to various infectious diseases.
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