7. Conclusions
Although research in this area is still in a stage of infancy, it seems likely that the lysosomal degradation pathway of autophagy plays an evolutionarily conserved role in antiviral immunity. The interferon-inducible, antiviral PKR signaling pathway positively regulates autophagy, and both mammalian and plant autophagy genes restrict viral replication and protect against virus-induced cell death. Given this role of autophagy in innate immunity, it is not surprising that viruses have evolved numerous strategies to inhibit host autophagy. Different viral gene products can either modulate autophagy regulatory signals or directly interact with components of the autophagy execution machinery. Moreover, certain RNA viruses have managed to “co-apt” the autophagy pathway, selectively utilizing certain components of the dynamic membrane rearrangement system to promote their own replication inside the host cytoplasm.
In addition to this newly emerging role of autophagy in innate immunity, autophagy plays an important role in many other fundamental biological processes, including tissue homeostasis, differentiation and development, cell growth control, and the prevention of aging. Accordingly, the inhibition of host autophagy by viral gene products has important implications not only for understanding mechanisms of immune evasion, but also for understanding novel mechanisms of viral pathogenesis. It will be interesting to dissect the role of viral inhibition of autophagy in acute, persistent, and latent viral replication, as well as in the pathogenesis of cancer and other medical diseases.
Keywords: Sindbis Virus, Autophagy Gene, Autophagic Machinery, Sindbis Virus Infection, Atitis Virus
References
- 1.(Ed), D. K. Autophagy (Landes Biosciences, Georgetown, TX, 2003).
- 2.Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell6:463–477 [DOI] [PubMed]
- 3.Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell6:463–477 [DOI] [PubMed]
- 4.Yoshimori, T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Comm313:453–458 [DOI] [PubMed]
- 5.Wang, C. W. & Klionsky, D. J. The molecular mechanism of autophagy. Mol Med9:65–76 [PMC free article] [PubMed]
- 6.Duve, C. d. & Wattiaux, R. Functions of lysosomes. Annu Rev Physiol28:435–492 [DOI] [PubMed]
- 7.Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell5:539–545 [DOI] [PubMed]
- 8.Codogno P., Meijer A. J. In: Autophagy. Klionsky D., editor. Georgetown, TX: Landes Biosciences; 2004. pp. 26–47. [Google Scholar]
- 9.Petiot, A., Pattingre, S., Arico, S., Melez, D. & Codogno, P. Diversity of Signaling Controls of Macroautophagy in Mammalian Cells. Cell Struct Function27:431–441 [DOI] [PubMed]
- 10.Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J20:5971–5981 [DOI] [PMC free article] [PubMed]
- 11.Kim, J., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem277:763–773 [DOI] [PMC free article] [PubMed]
- 12.Noda, T., Suzuki, K. & Ohsumi, Y. Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol12:231–235 [DOI] [PubMed]
- 13.Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microrganisms. Nature Rev in Microbiol2:301–314 [DOI] [PMC free article] [PubMed]
- 14.Kopitz, J., Kisen, G. O., Gordon, P. B., Bohley, P. & Seglen, P. O. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol111:941–953 [DOI] [PMC free article] [PubMed]
- 15.Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science290:1717–1721 [DOI] [PMC free article] [PubMed]
- 16.Elmore, S. P., Qian, T., Grissom, S. F. & Lemasters, J. J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J15:2286–2287 [DOI] [PubMed]
- 17.Williams, B. PKR: a sentinel kinase for cellular stress. Oncogene18:6112–6120 [DOI] [PubMed]
- 18.Talloczy, Z. et al. Regulation of starvation-and virus-induced autophagy by the eIF2a kinase signaling pathway. Proc Natl Acad Sci USA99:190–195 [DOI] [PMC free article] [PubMed]
- 19.Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem275:992–998 [DOI] [PubMed]
- 20.Melendez, A. et al. Autophagy genes are essential for dauer development and lifespan extension in C. elegans. Science301:1387–1391 [DOI] [PubMed]
- 21.Blume-Jensen P., Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–365. doi: 10.1038/35077225. [DOI] [PubMed] [Google Scholar]
- 22.Aoki, M. & Vogt, P. K. Retroviral oncogenes and TOR. Curr Top Microbiol Immunol279:321–338 [DOI] [PubMed]
- 23.Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 gene. J Clin Invest112:1809–1820 [DOI] [PMC free article] [PubMed]
- 24.Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA100:15077–15082 [DOI] [PMC free article] [PubMed]
- 25.Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene23:2891–2906 [DOI] [PubMed]
- 26.Edinger, A. L. & Thompson, C. B. Defective autophagy leads to cancer. Cancer Cell4:422–424 [DOI] [PubMed]
- 27.Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell. Biol.2:211–216 [DOI] [PubMed]
- 28.Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett333:169–174 [DOI] [PubMed]
- 29.Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol150:1507–1513 [DOI] [PMC free article] [PubMed]
- 30.Abeliovich, H., Zhang, C., Dunn, W. A. J., Shokat, K. M. & Klionsky, D. J. Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Cell Biol14:477–49 [DOI] [PMC free article] [PubMed]
- 31.Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for prtoein sorting. Science260:88–91 [DOI] [PubMed]
- 32.Seglen, P. O. & Gordon, P. B. 3-methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA79:1889–1892 [DOI] [PMC free article] [PubMed]
- 33.Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H. & Meijer, A. J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem243:240–246 [DOI] [PubMed]
- 34.Kiel, J. A. K. W. et al. The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p. Yeast15:741–754 [DOI] [PubMed]
- 35.Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol152:519–530 [DOI] [PMC free article] [PubMed]
- 36.Eskelinen, E. L. et al. Inhibition of autophagy in mitotic animal cells. Traffic3:878–893 [DOI] [PubMed]
- 37.Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol72:8586–8596 [DOI] [PMC free article] [PubMed]
- 38.Talloczy, Z. & Levine, B. Unpublished data. (2004).
- 39.Pattingre, S., Liang, X. H. & Levine, B. Unpublished data. (2004).
- 40.Liu, Y., Schiff, M., Talloczy, Z., Levine, B. & Dinesh-Kumar, S. P. Autophagy genes are essential for limiting the spread of programmed cell death associated with plant innate immunity. submitted (2004).
- 41.Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature395:395–398 [DOI] [PubMed]
- 42.Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature408:488–492 [DOI] [PubMed]
- 43.Knight, D. et al. The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem277:5556–5561 [DOI] [PubMed]
- 44.Stangler, T., Mayr, L. M. & Willbold, D. Solution structure of human GAGA(A) receptor-associated protein GABARAP: implications for biological function and its regulation. J Biol Chem277:13363–13366 [DOI] [PubMed]
- 45.Sugawara, K. et al. The cyrstal structure of microtubule-associated protein light chain 3, a mammalian homolgue of Saccharomyces cerevisiae Atg8. Genes Cells9:611–618 [DOI] [PubMed]
- 46.Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol147:435–446 [DOI] [PMC free article] [PubMed]
- 47.Tanida, I. et al. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three humans Atg8 homologues and delipidates LC3-and GABARAP-phospholipid conjugates. J Biol Chem279:36268–36276 [DOI] [PubMed]
- 48.Kirisako, T. et al. The reversible modifcation regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol151:263–276 [DOI] [PMC free article] [PubMed]
- 49.Tanida, I. et al. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Cell Biol10:1367–1379 [DOI] [PMC free article] [PubMed]
- 50.Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J19:5720–5728 [DOI] [PMC free article] [PubMed]
- 51.Prentice, E., Jerome, W. G., Yoshimori, T., Mizushima, N. & Denison, M. R. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem279:10136–10141 [DOI] [PMC free article] [PubMed]
- 52.Noda, T. et al. Apg9/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol148:465–480 [DOI] [PMC free article] [PubMed]
- 53.Reggiori, F., Tucker, K. A., Stromhaug, P. E. & Klionsky, D. J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the preautophagosomal structure. Dev Cell6:79–90 [DOI] [PubMed]
- 54.Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagy marker. submitted (2003). [DOI] [PMC free article] [PubMed]
- 55.Klionsky D. J. Autophagy. Georgetown, Texas: Landes Bioscience; 2004. [Google Scholar]
- 56.Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science In press. (2004). [DOI] [PMC free article] [PubMed]
- 57.deDuve, C. & Wattiaux, R. Functions of lysosomes. Annu Rev Physiol28:435–492 [DOI] [PubMed]
- 58.Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem278:17636–17645 [DOI] [PubMed]
- 59.Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J Biol Chem279:15621–15629 [DOI] [PubMed]
- 60.Hanaoka, H. et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol129:1181–1193 [DOI] [PMC free article] [PubMed]
- 61.Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R. & Vierstra, R. D. The APG8/12-activating enzyme APG7 is required for proper nutrientrecycling and sensescence in Arabidopsis thaliana. J Biol Chem277:33105–33114 [DOI] [PubMed]
- 62.Levine, B. Unpublished data. (2004).
- 63.Dever, T. Translation initiation: adept at adapting. Trends Biochem Sci10:398–340 [DOI] [PubMed]
- 64.Natarajan, K. et al. Trascriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol21:4347–4368 [DOI] [PMC free article] [PubMed]
- 65.Jung, J. (2004).
- 66.Dawson, C. W., Eliopoulos, A. G., Dawson, J. & Young, L. S. BHRF1, a viral homologue of the Bcl-2 oncogene, disturbs epithelial cell differentiation. Oncogene10:69–77 [PubMed]
- 67.Gunn, J. M., Clark, M. G., Knowles, S. E., Hopgood, M. F. & Ballard, F. J. Reduced rates of proteolysis in transformed cells. Nature266:58–60 [DOI] [PubMed]
- 68.Amenta, J. S., Sargus, M. J., Venkatesan, S. & Shinozuka, H. Role of the vacuolar apparatus in augmented protein degradation in cultured fibroblasts. J Cell Physiol94:77–86 [DOI] [PubMed]
- 69.Furuya N., Liang X. H., Levine B. In: Autophagy. Klionsky D. J., editor. Georgetown, Texas: Landes Bioscience; 2004. pp. 244–253. [Google Scholar]
- 70.Huang, S. & Houghton, P. J. Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opin Investig Drugs3:295–304 [PubMed]
- 71.Payne, E., Bowles, M. R., Don, A., Hancock, J. F. & McMillan, N. A. Human papillomavirus type 6b virus-like particles are able to activate the Ras-MAP kinase pathway and induce cell proliferation. J Virol75:4150–4157 [DOI] [PMC free article] [PubMed]
- 72.Scholle, F., Bendt, K. M. & Raab-Traub, N. Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol74:10681–10689 [DOI] [PMC free article] [PubMed]
- 73.Fukuda, M. & Longnecker, R. Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J Virol78:1697–1705 [DOI] [PMC free article] [PubMed]
- 74.Morrison, J. A., Gulley, M. L., Pathmanathan, R. & Raab-Traub, N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngela carcinoma and Hodgin lymphoma. Cancer Res64:5251–5260 [DOI] [PubMed]
- 75.Chung, T. W., Lee, Y. C. & Kim, C. H. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression trhough activation of ERK and PI-3K/Akt pathways: involvement of invasive potential. FASEB J18:1123–1125 [DOI] [PubMed]
- 76.Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol78:1918–1927 [DOI] [PMC free article] [PubMed]
- 77.Street, A., Macdonald, A., Crowder, K. & Harris, M. The hepatitis C virus NS5A protein activates a phosphoinosite 3-kinase-dependent survival signaling cascade. J Biol Chem279:12232–12241 [DOI] [PubMed]
- 78.Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics59:59–65 [DOI] [PubMed]
- 79.Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature402:672–676 [DOI] [PubMed]
- 80.Liang, X. H., Yu, J., Brown, K. & Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is reguired for its autophagy and tumor suppressor function. Canc Res61:3443–3449 [PubMed]
- 81.Qu, X. & Levine, B. Unpublished data (2004).
- 82.Cuervo, A. M. Autophagy and aging—when “all you can eat” is yourself. Sci Aging Knowledge Environ36:pe25 [DOI] [PubMed]
- 83.Bergamini, E., Cavallini, G., Donati, A. & Gori, Z. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensifid pharmacologically. Biomed Pharmacother57:203–208 [DOI] [PubMed]
- 84.Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature408:255–262 [DOI] [PubMed]
- 85.Cossarizza, A., Troiano, L. & Mussini, C. Mitochondria and HIV infection: the first decade. J Biol Regul Homeost Agents16:18–24 [PubMed]
- 86.Moriya, K. et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated carcinogenesis. Cancer Res61:4365–4370 [PubMed]
- 87.Hsieh, Y. H. et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis June 3 (epub ahead of print) (2004). [DOI] [PubMed]
- 88.Teckman, J. H., An, J. K., Blomenkamp, K., Schmidt, B. & Perlmutter, D. Mitochondrial autophagy and injury in the liver in α1-antitrypsin deficiency. Am J Physiol Gastrointestin Liver Physiol286:G851–G8562 [DOI] [PubMed]
- 89.Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet11:1107–1117 [DOI] [PubMed]
- 90.Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models off Huntington disease. Nat Genet36:585–595 [DOI] [PubMed]
- 91.Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol18:7499–7509 [DOI] [PMC free article] [PubMed]
- 92.Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature397:271–274 [DOI] [PubMed]
- 93.Dimcheff, D. E., Askovic, S., Baker, A. H., Johnson-Fowler, C. & Portis, J. L. Endoplasmic reticulum stress is a determinant of retrovirus-induced spongiform neurodegeneration. J Virol77:12617–12629 [DOI] [PMC free article] [PubMed]
- 94.Kim, H. T. et al. Activation of endoplasmic reticulum stress signaling pathway is associated with neuronal degeneratio in MoMuLV-ts1-induced spongiform encephalopathy. Lab Invest84:816–827 [DOI] [PubMed]
- 95.Dimcheff, D. E., Faasse, M. A., McAtee, F. J. & Portis, J. L. Endoplasmic reticulum (ER) stress induced by a neurovirulent mouse retrovirus is associated with prolonged BiP binding and retention of a viral protein in the ER. J Biol Chem279:33782–33790 [DOI] [PubMed]
- 96.Wang, H. C. et al. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol163:2441–2449 [DOI] [PMC free article] [PubMed]
- 97.Jordan, R., Wang, L., Graczyk, T. M., Block, T. M. & Romano, P. R. Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol76:9588–9599 [DOI] [PMC free article] [PubMed]
- 98.Liu, N. et al. Possible involvment of both endoplasmic reticulum-and mitochondria-dependent pathways in MoMuLV-ts1-induced apoptosis in astrocytes. J Neurovirol10:189–198 [DOI] [PubMed]
- 99.Talloczy, Z., Virgin, H. & Levine, B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Submitted (2004). [DOI] [PubMed]
- 100.Gale, M. Jr & Katze, M. G. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther78:29–46 [DOI] [PubMed]
- 101.Tan, S. L. & Katze, M. G. HSV.com: maneuvering the internetworks of viral neuropathogenesis and evasion of the host defense. Proc Natl Acad Sci USA97:5684–5686 [DOI] [PMC free article] [PubMed]
- 102.Chou, J., Kern, E. R., Whitley, R. J. & Roizman, B. Mapping of herpes simplex virus-1 neurovirulence to g134.5, a gene nonessential for growth in culture. Science250:1262–1266 [DOI] [PubMed]
- 103.Leib, D. A., Machalek, M. A., Williams, B. R. G., Silverman, R. H. & Virgin, H. W. Specific phenotypic restoration of an attenuated virus by knockout of a hostresistance gene. Proc. Natl. Acad. Sci. USA97:6097–6101 [DOI] [PMC free article] [PubMed]
- 104.Chou, J., Chen, J. J., Gross, M. & Roizman, B. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5-mutants of herpes simplex virus 1. Proc Natl Acad Sci USA23:10516–10520 [DOI] [PMC free article] [PubMed]
- 105.He, B., Gross, M. & Roizman, B. The γ (1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preculde the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA94:843–848 [DOI] [PMC free article] [PubMed]
- 106.Morgan, C., Rose, H. M., HOlden, M. & Jones, E. P. Electron microscopic observations on the development of herpes simplex virus. J Exp Med110:643–656 [DOI] [PMC free article] [PubMed]
- 107.Virgin, H. & Levine, B. Unpublished data (2004).
- 108.Levine, B., Goldman, J. E., Jiang, H. H., Griffin, D. E. & Hardwick, J. M. Bcl-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci USA93:4810–4815 [DOI] [PMC free article] [PubMed]
- 109.Joe, A., Foo, H., Kleeman, L. & Levine, B. The transmembrane domains of Sindbis virus envelope glycoproteins induce cell death. J Virol72:3935–3943 [DOI] [PMC free article] [PubMed]
- 110.Bursch W., Ellinger A., Gerner C., Schultze-Hermann R. In: Autophagy. Klionsky D. J., editor. Georgetown, Texas: Landes Bioscience; 2004. pp. 290–302. [Google Scholar]
- 111.Bursch, W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ8:569–581 [DOI] [PubMed]
- 112.Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase 8. Science304:1500–1502 [DOI] [PubMed]
- 113.Berry, D. L., Schuldiner, O., York, K. & Baehrecke, E. H. in American Society for Cell Biology 44th Annual Meeting (Washinton, D.C., 2004).
- 114.Dangl, J. L. & Jones, J. D. Plant pathogens and integrated defence responses to infection. Nature411:826–833 [DOI] [PubMed]
- 115.Jones, D. A. & Takemoto, D. Plant innate immunity-direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol16:48–62 [DOI] [PubMed]
- 116.Lam, E. Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol5:305–315 [DOI] [PubMed]
- 117.Erickson, F. L. et al. The helicase domain of the TMV replicase proteins induces the N-mediated defense response in tobacco. Plant J18:67–75 [DOI] [PubMed]
- 118.Whitham, S. et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell78:1101–1115 [DOI] [PubMed]
- 119.Roizman, B. (2004).
- 120.Arico, S. et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem276:35243–35246 [DOI] [PubMed]
- 121.Dales, S., Eggers, H. J., Tamm, I. & Palade, G. E. Electron microscopic study of the formation of poliovirus. Virology26:379–389 [DOI] [PubMed]
- 122.Suhy, D. A., Giddings, T. H. & Kirkegaard, K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol74:8953–8955 [DOI] [PMC free article] [PubMed]
- 123.Rust, R. C. et al. Cellular COOPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J Virol 75:9808–9818 [DOI] [PMC free article] [PubMed]
- 124.Swanson, M. (2004).
- 125.Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene192:245–250 [DOI] [PubMed]
- 126.Kametaka, S., Okano, T., Ohsumi, M. & Ohsumi, Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem273:22284–22291 [DOI] [PubMed]
- 127.Juhasz, G., Csikos, G., Sinka, R., Erdelyi, M. & Sass, M. The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett543:154–158 [DOI] [PubMed]
- 128.Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T. & Kominami, E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hAPG5p. J Biol Chem Feb. 1, 2000; Manscript M200385200 (2002). [DOI] [PubMed]
- 129.Thumm, M. & Kadowaki, T. The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway pathway mutants. Mol Genet Genomics266:657–663 [DOI] [PubMed]
- 130.Hemelaar, J., Lelyveld, V. S., Kessler, B. M. & Ploegh, H. L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem278:51841–51850 [DOI] [PubMed]
- 131.Mizushima, N. et al. Dissection of autophagosome formation using Apg5deficient mouse embryonic stem cells. J Cell Biol152:657–667 [DOI] [PMC free article] [PubMed]
- 132.Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem.273:33889–33892 [DOI] [PubMed]
- 133.Kametaka, S., Matsuura, A., Wada, Y. & Ohsumi, Y. Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene178:139–143 [DOI] [PubMed]
- 134.Tanida, I., Tanida-Miyake, E., Ueno, T. & Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem276:1701–1706 [DOI] [PubMed]
- 135.Yuan, W., Stromhaug, P. E. & Dunn, W. A., Jr. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol. Biol. Cell10:1353–1366 [DOI] [PMC free article] [PubMed]
- 136.Mizushima, N., Yoshimori, T. & Ohsumi, Y. Mouse Apg10 as an Apg12conjugating enzyme: analysis by the conugation-mediated yeast two-hybrid method. FEBS Lett532:450–454 [DOI] [PubMed]
- 137.Shintani, T. et al. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J18:5234–5241 [DOI] [PMC free article] [PubMed]
- 138.Tanida, I. et al. Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs. Biochem Biophys Res Comm292:256–262 [DOI] [PubMed]
- 139.Mizushima, N., Noda, T. & Ohsumi, Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J18:3888–3896 [DOI] [PMC free article] [PubMed]
- 140.Guan, J. et al. Cvt18/Gas12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia Pastoris. Mol Biol Cell12:3821–3838 [DOI] [PMC free article] [PubMed]
