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Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic pathogen with a
broad host range. The extent of MERS-CoV in nature can be traced to its adaptable cell entry steps. The
virus can bind host-cell carbohydrates as well as proteinaceous receptors. Following receptor interaction,
the virus can utilize diverse host proteases for cleavage activation of virus-host cell membrane fusion and
subsequent genome delivery. The fusion and genome delivery steps can be completed at variable times and
places, either at or near cell surfaces or deep within endosomes. Investigators focusing on the CoVs have
developed several methodologies that effectively distinguish these different cell entry pathways. Here we
describe these methods, highlighting virus-cell entry factors, entry inhibitors, and viral determinants that
specify the cell entry routes. While the specific methods described herein were utilized to reveal MERS-CoV
entry pathways, they are equally suited for other CoVs, as well as other protease-dependent viral species.
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1 Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV) is
endemic in bats, and also in dromedary camels, and can be trans-
mitted zoonotically from camels to humans [1–6]. The virus was
discovered in humans in 2012, and since then there has been over
2,000 laboratory-confirmed cases worldwide, with 35% of infected
humans suffering fatal outcomes [7–9]. Although MERS-CoV
zoonotic and human-to-human transmission rates have declined
due to general awareness and improved hospital practices, there are
continued possibilities for epidemics, and there is a need for pre-
ventive vaccines and therapeutic antivirals. Mechanistic insights
into human MERS-CoV entry will promote vaccine and antiviral
drug developments.

MERS-CoV, like all other coronaviruses, exists as enveloped
extracellular particles with protruding spike (S) proteins. Infection
is initiated through viral S protein binding to host cell receptors.
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Subsequent proteolytic cleavage of cell-bound S proteins triggers S
protein-mediated coalescence (fusion) of viral and cell membranes.
The triggering process involves a series of currently obscure S
protein conformational changes, from “pre-fusion” metastable
states to “extended fusion intermediates” to “post-fusion” col-
lapsed states that exist after virus and cell membranes have coa-
lesced and viral mRNA genomes have dispensed into the host cell
cytoplasm [10, 11]. These events depend on cellular proteases, and
as one may expect, the availability of particular proteases immedi-
ately following receptor engagement is a rate-limiting step in CoV
entry.

Cellular proteases accumulate in distinct subcellular locations
on the endocytic CoV entry pathway: serine proteases such as
trypsin and elastase are extracellular; the type II transmembrane
serine proteases (TTSPs) are anchored into plasma membranes; and
the cysteine-type cathepsin proteases are enriched in endosomes
[12, 13]. For several CoV infections, not all of these proteases are
required; however, it is possible that each has distinct potential to
activate fusion such that a productive infection ensues. There is
evidence that particular CoVs have “preferred” in vivo entry routes
(e.g., MERS-CoV and 229E-CoV prefer plasma membrane entry,
while some MHV-CoVs prefer endosome entry [14–19], (see
Fig. 1). Knowledge of these preferred routes, and their relation to
virus-induced disease, is necessary to identify virus variants that
might have high transmissibility and disease potential, and to rec-
ognize the host factors that might be targeted therapeutically such
that infections are suppressed at the cell entry stage.

Here we provide protocols to dissect CoV entry pathways.
These include procedures for pseudovirus production, particle
purification and concentration, as well as specific assays to differen-
tiate CoVentry pathways. While the protocols are set for character-
izing MERS-CoV entry, they can be readily adjusted to evaluate
other CoV and other protease-dependent virus entry events.

2 Materials

2.1 Particle

Production

1. 150 mm Tissue culture dishes.

2. HEK-293T cells.

3. 293T cell media: Dulbecco’s Modified Eagle Media (DMEM)
with L-glut, 4.5 g/l glucose and 100 mM sodium pyruvate,
additional supplements include 10% fetal bovine serum,
10 mM HEPES, 0.1 mM nonessential amino acids,
100 U/ml penicillin G, and 100 μg/ml streptomycin.

4. Transfection media: DMEM with L-glut, 4.5 g/l glucose and
100 mM sodium pyruvate, and 10% fetal bovine serum.
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5. Serum-free media: DMEM with L-glut, 4.5 g/l glucose
and 100 mM sodium pyruvate, additional supplements include
10 mM HEPES, 0.1 mM nonessential amino acids, 100 U/ml
penicillin G, and 100 μg/ml streptomycin.

6. Polyethylenimine (PEI) at 1 mg/ml dissolved in ddH2O.

7. OptiMEM reduced serum medium.

8. Expression plasmids for MERS-CoV-spike.

9. Expression plasmid for HIV core-Fluc (pNL4.3HIVluc).

10. Transducing particle: VSVΔG-Fluc pseudotyped with Junin
virus (JUNV) GP.

2.2 Particle

Purification and

Concentration

1. Centrifuge: Eppendorf 5810 or equivalent.

2. Ultracentrifuge: Beckman Coulter’s or equivalent. SW28
swinging-bucket rotor, buckets, and Ultra-Clear tubes.

3. Falcon 15 and 50 ml conical centrifuge tubes.

4. Sucrose solution: 20% sucrose (w/v) in serum-free media.

2.3 Characterizing

Viral Entry Pathways

1. Falcon 6-well and 96-well cell culture plates.

2. 5x Cell Culture Lysis Reagent (CCLR): 125 mM Tris–HCl
pH 7.8, 10 mM DTT, 10 mM 1,2-diaminocyclohexane-N,N,
N0,N0-tetraacetic acid, 50% glycerol, 5% Triton X-100.

Fig. 1 MERS-CoV enters host either at or near the plasma membrane or in the endosomes. The MERS-CoV
spike (S) proteins (gray) engage human DiPeptidyl Peptidase 4 (hDPP4, purple) via their receptor-binding
domains (green). Receptor engagement exposes protease cleavage sites (blue stars) on S proteins. If cell
surface proteases such as hTMPRSS2 (blue) are present, S proteins are cleaved and viral fusion occurs at or
near the plasma membrane. If hTMPRSS2 or similar cell-surface proteases are not present, then MERS-CoV is
endocytosed, and can be triggered by endosomal proteases such as cathepsin L (brown) to complete viral
entry
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3. Firefly luciferase substrate: 1 mM D-luciferin, 3 mM ATP,
15 mM MgSO4·H2O, 30 mM HEPES [pH 7.8].

4. Protease inhibitor cocktail: 200 μM Camostat, 20 μM propro-
tein convertase inhibitor, 20 μM E64D in serum-free media.

5. Vehicle control: DMSO in serum-free media at equivalent
levels to the protease inhibitor cocktail.

6. CoV fusion antagonists: CoV species-matching HR2 peptides.

7. Expression plasmids for: hTMPRSS2, hCD9, hIFITM3.

3 Methods

Carry out all incubations at 37 �C with 5% CO2 unless otherwise
specified.

3.1 VSV-Based

Pseudovirus

Production (see

Note 1)

1. Plate enough 293Tcells (5� 106) in 20ml into a 15 cm dish to
reach 80% confluency on the next day.

2. On the following day, make transfection mixture by adding
20 μg of MERS-CoV-spike plasmid (see Note 2) and 110 μl
of PEI into 2 ml of OptiMEM. Incubate the mixture in the
dark for 15 min at room temperature.

3. Replace existing media with 20 ml of transfection media
(pre-warmed to 37 �C, see Note 3). Add transfection mixture
dropwise onto the cells. Incubate the cells for 6–8 h (see
Note 4).

4. Replace transfection media with 20 ml of 293T cell media and
incubate overnight.

5. Dilute 100� transducing particle (VSVΔG-Fluc pseudotyped
with Junin virus (JUNV) GP, see Note 5) into 15 ml of
pre-warmed serum-free media, which is then used to replace
existing media on the transfected cells. Incubate cells for 2 h.

6. Remove supernatant, rinse cells with 10 ml of pre-warmed
serum-free media three times, then add back 13 ml of
pre-warmed 293T cell media. Incubate cells overnight.

7. Collect supernatant (first collection) with a 15 ml Falcon tube,
add back 13 ml of pre-warmed 293T cell media, and incubate
cells overnight (see Note 6).

8. Spin supernatant at 300 � g for 10 min at 4 �C.

9. Transfer supernatant into a fresh tube and spin at 3000 � g for
10 min at 4 �C. Discard pellet.

10. Transfer supernatant into a fresh tube and freeze it at �80 �C.

12 Enya Qing et al.



11. On the following day, repeat steps 7–10 (second collection).

12. On the final day, collect supernatant (third collection), discard
cells, repeat steps 8–10.

3.2 HIV-Based

Pseudovirus

Production

1. Plate enough 293Tcells (5� 106) in 20ml into a 15 cm dish to
reach 80% confluency on the next day.

2. On the following day, make transfection mixture by adding
10 μg of MERS-CoV-spike plasmid, 10 μg of HIV core-Fluc-
expressing plasmid, and 110 μl of PEI into 2 ml of OptiMEM.
Incubate the mixture in the dark for 15 min at room
temperature.

3. Replace existing media with 20 ml of transfection media
(pre-warmed to 37 �C). Add transfection mixture dropwise
onto the cells. Incubate the cells for 6–8 h.

4. Replace transfection media with 20 ml of 293T cell media and
incubate overnight.

5. Remove supernatant, and add back 13 ml of pre-warmed 293T
cell media. Incubate cells overnight.

6. Collect supernatant (first collection) with a 15 ml Falcon tube,
add back 13 ml of pre-warmed 293T cell media, and incubate
cells overnight.

7. Spin supernatant at 300 � g for 10 min at 4 �C.

8. Transfer supernatant into a fresh tube and spin at 3000 � g for
10 min at 4 �C. Discard pellet.

9. Transfer supernatant into a fresh tube and freeze it at �80 �C.

10. On the following day, repeat steps 6–9 (second collection).

11. On the final day, collect supernatant (third collection), discard
cells, repeat steps 7–9.

3.3 Particle

Purification and

Concentration

We noted that pseudoviruses lose their transduction capabilities
(up to 90%!) upon exposure to the high g-forces (~100,000 � g)
commonly used in traditional viral concentration methods. There-
fore, we adopted a low-speed viral concentration and purification
protocol that achieves viral concentration without compromising
viral transduction capabilities.

1. Thaw and pool collected pseudovirus-containing supernatants
(see Subheadings 3.1 or 3.2).

2. Transfer 32 ml of the pooled supernatant into a SW28 Ultra-
Clear tube.

3. Use a 3 ml syringe with needle to add a cushion of 3 ml of 20%
sucrose to the bottom of the tube. Eject from syringe slowly to
avoid sucrose mixing with the sample. After the placement of
the cushion, gently add the remaining sample (~3 ml) into the
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tube. If there is still space, add serum-free media to the brim of
the Ultra-Clear tube.

4. Load the Ultra-Clear tube into a SW28 bucket, and spin at
6500 rpm (5591 � g) for 18 h at 4 �C.

5. After the spin, carefully take out the Ultra-Clear tube, and
remove all the supernatant without disturbing the pellet at
the bottom center (may be invisible). Quickly add back
~350 ml of serum-free media, and gently resuspend the pellet
with a 1 ml pipette (see Note 8). Aliquot and store the fully
resuspended sample (now 100� and purified) at �80 �C for
future use.

3.4 Characterizing

CoV Entry Pathways

Subsequent to receptor engagement, CoV spikes require proteo-
lytic cleavage to trigger membrane fusion. Two classes of cellular
proteases have been identified to trigger CoV fusions: Serine pro-
teases that are either secreted or expressed on the plasma membrane
[14, 17], and cysteine proteases that resides in the endosome
[18, 19]. Therefore, the utilization of specific proteases by a given
CoV also dictates its site of entry. We utilize several assays to
differentiate the preferred site of entry for wild-type (WT) and
mutant MERS spikes, the efficacies of entry inhibitors, and the
identification of pro- or antiviral host factors.

3.4.1 Characterizing CoV

Entry Kinetics Using

Protease Inhibitor Cocktails

(see Note 9)

The CoV site of entry is correlated with entry kinetics, with viral
entry at the plasma membrane being “early,” and entry through
endosomes “late,” in relation to the different virus trafficking times
prior to membrane fusion [15–17]. Together with the knowledge
that CoV entry requires proteolysis, we utilize a time-course assay
to characterize CoV entry kinetics, where protease inhibitors are
added at various time points to arrest future entry, allowing read-
outs for infection within short inoculation time windows.

1. Plate sufficient permissive cells into a 96-well plate, 60 μl per
well, to reach 95% confluency on the next day.

2. On the following day, add 40 μl of MERS spike-bearing viral
particles (Subheadings 3.1 or 3.2) onto cells. Incubate the plate
at 4 �C for 1 h to allow viral binding.

3. After 1 h, remove unbound particles by aspirating the superna-
tant (seeNote 10). Add back 50 μl of fresh media. Incubate the
plate at 37 �C.

4. At various time intervals (0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
60 min, and so on, seeNote 11), add 50 μl of protease inhibitor
cocktail to the cells. At time interval of 0 min, also have a
condition where 50 μl of vehicle control (see Note 12) is
added instead. Leave the drugs/vehicle on cells and incubate
at 37 �C overnight (~18 h post viral inoculation).
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5. Remove media, add 50 μl of 1�CCLR (5x CCLR diluted in
ddH2O) to lyse cells. Freeze the plate at�80 �C for 30 min (see
Note 13). Thaw the plate and transfer 20 μl to a white reading
plate to analyze firefly luciferase activity. Normalize enzyme
activity from all conditions to the vehicle control, which is set
to “100%”. Plot data as “% viral entry.”

3.4.2 Characterizing

Entry Routes Using Specific

Protease Inhibitors

The entry assay (Subheading 3.4.1) can sensitively distinguish
viruses with accelerated or delayed kinetics, but it is frequently
time and reagent consuming. The assay can be simplified by an
alternative where titration of a particular inhibitor is applied for a
short period of time.

1. Plate sufficient permissive cells into a 96-well plate, 60 μl per
well, to reach 95% confluency on the next day.

2. On the following day, at �1 h, remove media and add 60 μl of
protease inhibitor or vehicle-containing serum-free media
(1–1000 μM camostat to inhibit plasma membrane protease
TMPRSS2, or 1–1000 μM E64D to inhibit endosomal cathe-
psins). Incubate cells for 1 h at 37 �C.

3. Add 40 μl of MERS spike-bearing viral particles (Subheading
3.1 or 3.2) onto cells. Incubate the plate at 37 �C for 2 h to
allow viral entry.

4. After 2 h, remove unbound particles by aspirating the superna-
tant. Rinse twice with 100 μl PBS. Add back 50 μl of fresh
media. Incubate the plate at 37 �C overnight (~18 h post viral
inoculation).

5. Remove media, add 50 μl of 1�CCLR to lyse cells. Freeze the
plate at�80 �C for 30 min. Thaw the plate and transfer 20 μl to
a white reading plate to analyze firefly luciferase activity. Nor-
malize enzyme activity from all conditions to the vehicle con-
trol, which is set to “100%.” Plot data as “% viral entry.”

3.4.3 Characterizing

Entry Routes Using Spike

Fusion Antagonists

The protocol described in Subheading 3.4.2 is flexible and can be
tailored to evaluate different viral inhibitors. These include fusion
inhibitors. CoV spike proteins facilitate membrane fusion by tran-
siting from “extended fusion intermediates” to “post-fusion” con-
formations. This transition requires interactions between
antiparallel helices termed heptad repeat region 1 (HR1) and
2 (HR2) [20, 21], and can be arrested by exogenous HR2 peptides,
which bind to the fusion intermediates. Typically, HR2 peptides do
not enter endosomes and therefore only arrest viruses that transi-
tion into intermediate conformations extracellularly, i.e., at target
cell plasma membranes. However, lipid-conjugated HR2 peptides
can bind plasma membranes and endocytose, accumulating in
endosomes such that they will arrest intracellular virus-cell mem-
brane fusion. Using a modified Subheading 3.4.2, we tested the
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efficacy of native vs. lipid-conjugated HR2 on blocking CoV endo-
somal entry [22].

1. Plate sufficient permissive cells into a 96-well plate, 60 μl per
well, to reach 95% confluency on the next day.

2. On the following day, at �1 h, remove media and add 60 μl of
native vs. lipid-conjugated HR2 peptides at 0.01–1 μM, or
vehicle control. Incubate cells for 1 h at 37 �C.

3. Add 40 μl of MERS spike-bearing viral particles (Subheadings
3.1 or 3.2) onto cells. Incubate the plate at 37 �C for 1 h to
allow viral entry.

4. After 1 h, remove unbound particles by aspirating the superna-
tant. Rinse twice with 100 μl PBS. Add back 50 μl of fresh
media. Incubate the plate at 37 �C overnight (~18 h post viral
inoculation).

5. Remove media, add 50 μl of 1x CCLR to lyse cells. Freeze the
plate at�80 �C for 30 min. Thaw the plate and transfer 20 μl to
a white reading plate to analyze firefly luciferase activity. Nor-
malize enzyme activity from all conditions to the vehicle con-
trol, which is set to “100%.” Plot data as “% viral entry.”

3.4.4 Identifying Host

Factors Participating in

MERS-CoV Entry

With the ability to differentiate between MERS-CoV entry at the
plasma membrane and within endosomes, we and others have
identified several host factors that affect viral routes of entry
[14, 15, 17, 23, 24]. These include but are not limited to: (1) trans-
membrane protease serine subtype 2 (hTMPRSS2), which facili-
tates MERS-CoV entry at the plasma membrane. (2) tetraspanin
hCD9, which ferries the MERS-CoV receptor hDPP4 into close
proximity with hTMPRSS2 to potentiate MERS-CoV entry at the
plasma membrane. (3) interferon-induced transmembrane protein
3 (hIFITM3), which blocks CoV endosomal entry.

1. Plate sufficient permissive cells into a 6-well plate, 2 ml per
well, to reach 85% confluency on the next day.

2. On the following day, transfect cells with expression plasmids
for vector control, hTMPRSS2, hCD9, or hIFITM3 (see
Note 14):

(a) Make transfection mixture by adding 1 μg of plasmid and
12 μl of PEI into 200 μl of OptiMEM. Incubate the
mixture in the dark for 15 min at room temperature.

(b) Replace existing media with 2 ml of transfection media
(pre-warmed to 37 �C). Add transfection mixture drop-
wise onto the cells. Incubate the cells for 6–8 h.

(c) Replace transfection media with 2 ml of fresh media and
incubate overnight.
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3. On the next day, plate sufficient transfected cells into a 96-well
plate, 60 μl per well, to reach 95% confluency on the next day.

4. Add 40 μl of MERS spike-bearing viral particles (Subheadings
3.1 or 3.2) onto cells. Incubate the plate at 4 �C for 1 h to allow
viral binding.

5. After 1 h, remove unbound particles by aspirating the superna-
tant. Add back 50 μl of fresh media. Incubate the plate at
37 �C.

6. At various time intervals (0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
60 min, and so on), add 50 μl of protease inhibitor cocktail to
the cells. At time interval of 0 min, also have a condition where
50 μl of vehicle control is added instead. Leave the drugs/
vehicle on cells and incubate at 37 �C overnight (~18 h post
viral inoculation).

7. Remove media, add 50 μl of 1�CCLR (5�CCLR diluted in
ddH2O) to lyse cells. Freeze the plate at �80 �C for 30 min.
Thaw the plate and transfer 20 μl to a white reading plate to
analyze firefly luciferase activity. Normalize enzyme activity
from all conditions to the vehicle control, which is set to
“100%.” Plot data as “% viral entry.”

4 Notes

1. The current protocol describes particle production in 15-cm
diameter plates. This protocol can be scaled up or down as long
as the ratio of all components remains constant. However, for
consistency and reproducibility we do not recommend produc-
ing particles in container sizes smaller than 5-cm diameter.

2. When using PEI as a transfection reagent, use 1 μg of DNA per
million cells.

3. 293T cells can detach from the plate, so exert care when repla-
cing media. Always add back media after aspiration as soon as
possible to prevent cell-drying. When adding media, liquid
should land on the side wall of the plate, not directly onto the
cells. Always pre-warm media.

4. The DNA:PEI ratio (1:~6) is optimized specifically for a trans-
fection period of 6–8 h. If transfection is allowed to go over-
night, lower the DNA:PEI ratio to 1:3.

5. JUNVGP-vsvΔG pseudovirus was chosen for its short half-life,
which reduces the amount of inoculum JUNV GP pseudovirus
contaminating the desired CoV-spike- vsvΔG.

6. This protocol maximizes pseudovirus production by taking
three consecutive harvests from the producer cells (24–48,
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48–72, and 72–96 h post-transfection). Each harvest period
brings similar pseudovirus yields.

7. At the indicated spin speed, the k-factor is 4556. Since the
sedimentation coefficients of VSV [25] or HIV [26] pseudo-
virus are around 500, a 9-h spin is sufficient. The actual spin
time is doubled to insure that the pseudoviruses are pelleted
through the more viscous 20% sucrose cushion.

8. When resuspending pellet, set 1 ml pipette to 200 μl and
pipette up and down gently to avoid bubbles. Make sure to
rinse the entire bottom of the tube to maximize collection.

9. The current protocol describes viral entry into cells seeded in
96-well plates. This protocol can be scaled up as long as the
ratio of all components remains constant.

10. After removing media via aspiration, return fresh media to cells
as soon as possible to prevent cell drying. Aspirate and return
media from a maximum of 24 wells at a time.

11. CoV entry kinetics are unique to each virus and host cell
combination. In LET-1 cells, MERS-CoV entry completes in
around 1 h. In HeLa cells, 229E-CoV entry takes 4+ hours to
complete. Pilot experiments with larger time intervals
(30–60 min) are recommended.

12. The vehicle control for protease inhibitors is DMSO, which is
cytotoxic at high concentrations. Pilot experiments are recom-
mended to identify nontoxic DMSO concentrations.

13. Samples can be kept at �80 �C for up to a month before
reading Fluc. To further prevent signal loss, protease inhibitor
cocktail can be added to 1x CCLR before use.

14. For cell types that are killed by PEI:DNA transfection, lipid-
based transfection vectors such as lipofectamine can be used
instead. For cell types that are resistant to transfection, retro- or
lenti-viral-based or adenovirus-based transduction systems can
be used to introduce genes of interest [15].
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