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Abstract

Disease recurrence causes significant mortality in B-progenitor acute lymphoblastic leukemia (B-

ALL). Genomic analysis of matched diagnosis and relapse samples show relapse often arising 

from minor diagnosis subclones. However, why therapy eradicates some subclones while others 

survive and progress to relapse remains obscure. Elucidation of mechanisms underlying these 

differing fates requires functional analysis of isolated subclones. Here, large-scale limiting dilution 

xenografting of diagnosis and relapse samples, combined with targeted sequencing, identified and 

isolated minor diagnosis subclones that initiate evolutionary trajectory toward relapse (termed 

diagnosis Relapse Initiating clones, dRI). Compared to other diagnosis subclones, dRI were drug 

tolerant with distinct engraftment and metabolic properties. Transciptionally, dRI displayed 

enrichment for chromatin remodelling, mitochondrial metabolism, proteostasis programs and an 

increase in stemness pathways. The isolation and characterization of dRI subclones reveals new 

avenues for eradicating dRI cells by targeting their distinct metabolic and transcriptional pathways 

before further evolution renders them fully therapy resistant.
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INTRODUCTION

Despite significant advancements in the treatment of acute lymphoblastic leukemia (ALL), 

the disease recurs in 15–20% of pediatric and 40–75% of adult patients, with the prognosis 

for patients who relapse being dismal(1–3). Analysis of paired diagnosis and relapse ALL 

samples with increasingly broader and deeper genomic sequencing methods has shown that 

classical Darwinian branching evolution of genomically distinct subclones is a hallmark of 

disease recurrence(4,5). At both diagnosis and relapse, a single neoplasm may contain 

multiple genetic subclones related to each other through complex evolutionary 

trajectories(4–6). While relapse may evolve from the predominant clone at diagnosis, in the 

majority of patients relapse arises from pre-existing minor subclones within the diagnosis 

sample or from a rare ancestral clone(4–6). Although the population-level genetic analyses 

upon which these conclusions are based rely on computational inference of their 

evolutionary relationships from analysis of bulk leukemic cells, resolution of leukemic 

subclones at clonal levels, either through isolation of subclones in xenografts or from single 

cell analysis, have largely substantiated these predictions(7,8). Functional studies to explain 

therapy failure have mainly been undertaken by comparing diagnosis cells with those from 

relapse and identifying drug resistance mechanisms present in relapse and absent at 

diagnosis. However, the properties of the relapse sample have been shaped by exposure to 

chemotherapy causing further evolution and mutagenesis. Thus two critical questions 

remain: what are the unique properties and mechanisms that contribute to the relapse-fate of 
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a particular diagnosis subclone prior to full evolution to drug resistant relapse disease; and 

when does drug tolerance arise? Drug tolerance may arise stochastically through genetic or 

epigenetic mecahnisms prior to exposure to therapy, and be selected for by both cell 

autonomous and non-cell autonomous processes(9–12). Alternatively, therapy may induce 

genomic aberrations that are then selected for during disease progression, particularly if such 

alterations reduce leukemic cell fitness(13) during disease establishment and prior to the 

administration of therapy(14,15). Without isolation of the subclones that contribute to 

disease progression from diagnosis samples, it is not possible to answer these questions and 

uncover the cellular and molecular properties that explain their differing subclonal fates and 

drug tolerance.

Many therapy resistance mechanisms have been implicated in B-ALL including acquisition 

of stemness programs(16), dormancy, the protective role of the niche and the acquisition of 

resistance driver mutations(13,17–20). However, the ability to evade drug treatment is only 

one prerequisite of relapse; surviving cells must also possess significant clonal regenerative 

capacity in order to regrow or reproduce disease. For many human cancers, only rare 

fractions of malignant cells are capable of significant clonal propagation as detected by 

xenograft-based cancer or leukemia-initiating cell (L-IC) assays(9). Indeed, methods to 

propagate primary human leukemia samples were first undertaken in B-ALL with patient-

derived xenografts (PDXs) recapitulating many features of the patient’s disease(21,22). 

Subsequent studies used a limiting dilution approach to generate xenografts, thereby 

tracking the growth properties and genetic identity of single L-ICs(8). Thus, depending on 

the cell dose transplanted, rare subclones with poorer competitive repopulation properties, 

compared to more aggressive or numerous L-IC within the sample, could be identified. By 

genetic analysis of such xenografts, evidence was found for the existence of ancestral and/or 

minor subclones proving that branching evolution and clonal diversity occur at the level of 

L-IC, however these studies did not test for relapse-fated subclones(7,8). Conceptually, L-

ICs with the capacity for clonal propagation should serve as the units of selection during 

disease progression since only mutations accumulating in clonal propagating cells are 

relevant for further disease evolution. Thus the relationship between disease progression and 

properties of stemness is an active area of investigation(9,23). The pairing of xenografting 

assays with genomic studies provides a unique opportunity to enrich for the reservoirs of 

relapse. However, a direct test of this concept through paired diagnosis and relapse 

xenografting in B-ALL has been limited(22,24,25). Paired studies in AML and T-ALL have 

demonstrated that xenografts can capture distinct subclones present within the diagnosis 

samples of relapsing patients; some genetically more closely related to the predominant 

diagnosis subclone and others to a corresponding relapse sample(26–29). These results 

suggest that the latent relapse-initating subclones possess competitive growth advantages 

when assessed by xenografting, but remain suppressed by the predominant clone in the 

patient making them difficult to study.

Here, we undertook a combined functional and genomic analysis of 14 genetically distinct 

paired diagnosis and relapse B-progenitor ALL patient samples to isolate latent subclones 

within the diagnosis sample that initiate relapse. Isolation of subclones enabled functional 

analysis of their growth and drug response properties as well as molecular analysis of their 

transcriptomic profiles.
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RESULTS

Isolation of relapse-initiating subclones in B-ALL

Whole exome sequencing (WES) and single nucleotide polymorphism (SNP) microarray 

analysis of 6 adult and 8 pediatric B-ALL patients of varying genetic subtypes were 

undertaken to identify somatic single nucleotide variants (SNV), insertion-deletion 

mutations (indels) and DNA copy number alterations (CNA). The patients encompassed a 

range of cytogenetic subtypes and varied in the length of their disease remission (range 5.88 

– 94.8 months) (Supplementary Table S1). Diagnosis samples had a median of 24 somatic 

SNV/ indels (range 7–100) and 13.5 CNA (range 1–51), whereas relapse samples contained 

a median of 39.5 SNV/indels (range 22–405) and 16.5 CNA (range 2–58) (Supplementary 

Table S1). Leukemic variants were confirmed by targeted sequencing using a custom capture 

array of the variants identified by WES (Fig. 1a). Targeted sequencing and WES data were 

merged resulting in a coverage of ~350x. Computational analysis of the variant allele 

frequencies (VAFs) of leukemic variants comparing diagnosis and relapse samples predicted 

that the origin of relapse arose from a minor subclone present at diagnosis in 10 patients 

(patients 1,3–7,9 and 12–14) (Fig. 1b and Supplementary Table S1) and through further 

evolution of the major diagnostic subclone in 4 patients (patients 2,8,10 and 11) 

(Supplementary Table S1). Broadly, these findings of evolutionary origins are representative 

of the much larger analysis of 92 paired samples that reports the mutational landscape and 

patterns of clonal evolution of relapsed childhood ALL as described in Waanders et al.(30).

To gain insight into the genetic diversity at the level of leukemia initiating-cells (L-IC) and 

uncover rare and/or outcompeted clones, purified leukemic blasts from primary diagnosis 

and relapse samples were transplanted intrafemorally in a limiting dilution assay into 872 

NOD.CB17-PrkdcscidIl2rgtm1Wjl/Szj (NSG) mice to generate primary patient derived 

xenografts (termed PDX). The frequency of L-IC varied widely between samples with L-IC 

ranges corresponding to those previously described(31,32), however paired analysis between 

diagnosis and relapse samples did not show a consistent trend in L-IC enrichment at either 

time point (Supplementary Table S2).This collection of PDXs (n=402, average 28 per 

patient (range 11–58), 13 per sample (range 0–27)) was used to further study the clonal 

landscape present in the patient samples. To determine if PDXs captured the clonal diversity 

and disease evolution present in the patient samples, human cells were isolated from the 

bone marrow (BM), spleen (SPL) and central nervous system (CNS) of engrafted mice and 

subjected to targeted sequencing using the custom capture array designed for the patient 

samples (Fig. 1a). PDXs with sufficient human engraftment for genotyping (>10% human 

chimerism, 372 PDX total, average 26 PDX per patient) were analyzed. Individual PDXs 

from the same patient sample were often found to vary in their clonal composition in terms 

of the presence and frequency of variants suggesting that the L-IC initiating the grafts 

derived from genetically diverse subclones often capturing the totality of the clonal diversity 

present in the diagnosis patient sample (Fig. 1c).

Leukemic variants were classified on the basis of the VAF of the variants in the bulk patient 

diagnosis and relapse samples from which the PDX were generated: preserved variants 

(VAF > 30% in both diagnosis and relapse samples, or preserved between samples); 
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diagnosis-specific variants (present at diagnosis and absent at relapse); latent variants 

(present at diagnosis with VAF < 30% and increasing at relapse); relapse-specific variants 

(absent at diagnosis and present at relapse) (Supplementary Table S3). The limit of detection 

of our combined sequencing was a VAF of 1%. This analysis revealed three patterns of 

engraftment in PDX derived from diagnosis samples (termed dPDXs). In 10 of 13 engrafting 

diagnosis samples (76.9%, patients 1–7,9,12 and 14), latent variants were enriched in 

dPDXs (>10% increase in VAF in dPDX) as compared to the diagnosis patient sample 

demonstrating the regenerative potential of clones marked by these variants (Fig. 2a and 

Supplementary Fig. S1a–b). In 4 of 13 patients (patients 5,6,11 and 13), dPDXs were 

generated where leukemia cells bore relapse-specific variants establishing their existence 

within the diagnosis sample, despite being at levels below the detectable limit of the 

sequencing (Fig. 2b). Lastly, in one patient (patient 8), whose relapse was predicted to 

evolve from the major diagnosis clone based on analysis of the bulk patient samples, only 

diagnosis clones engrafted in dPDXs (Supplementary Fig. S1c). This patient carried an 

ETV6-RUNX1 translocation and had the longest remission, relapsing eight years after the 

initial ALL diagnosis. Our approach of generating PDXs with differing cell doses was 

instrumental in showing the existence of subclones at diagnosis that bear latent (patient 2) or 

relapse specific variants indicative of ancestral clones (patient 11) in two patients in which 

genetic analysis of bulk diagnosis and relapse samples had predicted evolution from the 

major diagnosis clone (Fig. 2b and Supplementary Table S3). Only one diagnosis patient 

sample (patient 10), a sample predicted to arise from evolution of the major diagnostic 

clone, did not engraft at the highest transplanted cell dose (250,000 cells). Therefore, 

xenografting added considerable new insight into the subclonal repertoire of L-ICs in these 

patients, and their evolutionary fates and patterns.

Genetic analysis of xenografts provides insight into the dynamics of subclone evolution

To gain insight into the evolutionary relationships and processes underlying the divergence 

of subclones, we undertook two approaches: population phylogenetic analysis to examine 

the genetic similarity between xenografts and patient samples; and generation of mutational 

trees to reconstruct the clonal hierarchies. We began by using a population genetics approach 

where phylogenetic analysis was performed for the patient samples and the clones isolated 

from their PDXs to depict the evolutionary relationships between xenografts and the patient 

samples (Fig. 3a–b and Supplementary Fig. S1d–g). These analyses demonstrate the ability 

of PDXs to capture diagnosis subclones more closely related to the diagnosis patient sample, 

as well as subclones present in the diagnosis patient sample that are on the trajectory to 

relapse. We term these partially evolved subclones that go on to cause relapse – diagnosis 

relapse-initiating (dRI) clones. dRI were identified in all engrafting diagnosis patient 

samples except for the patient with the longest time of remission (patient 8). Thus, our 

xenografting approach enabled the capture and isolation of subclones, including those on the 

evolutionary trajectory of relapse, for further functional analysis and to aid in the 

determination of mutational acquisition.

For our second approach, we used the extensive mutational information garnered from the 

372 PDXs to supplement the patient analysis. For each patient, computational analysis using 

PairTree (Wintersinger et al. in preparation) was undertaken to group leukemic variants with 
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similar VAFs across numerous PDX and bulk samples to define genetically unique 

mutational populations. We then constructed mutational trees to describe the evolutionary 

history of each leukemia and the order of mutational acquisition (Fig. 4; Supplementary Fig. 

S2a–c; Supplementary Fig. S3a–c; Supplementary Fig. S4a–e; Supplementary Fig. 5a–c; 

Supplementary Table S3). In 7 of 14 patients, the PDXs helped seperate the mutational 

aquistion into multiple distinct populations that could not be resolved using the sequencing 

data of the primary patient samples alone. For instance, in patient 1, analysis of the 

xenografts revealed the existence of four distinct subclonal populations (populations 

10,12,14 and 15) at relapse that, when only the patient samples were considered, had been 

predicted to be only a single subclone (population G) (Fig. 4a–d). This analysis further 

enabled comparisons of the state of the evolutionary trajectory of the subclones captured 

within each individual PDXs (denoted by a numbered PDX referring to a specific mouse) to 

the patient samples from which they were derived; such as dPDX7 in patient 1 whose clonal 

composition is more closely related to the relapse than the diagnosis sample (Fig. 4c–d). 

Additionally, the PDXs aided in subdividing single mutational populations into more than a 

single linearly related population or branch in 11 of 14 patients. For example, population G 

in patient 9 was expanded into two separate populations (populations 8 and 9) when PDXs 

were included (Fig. 4e–f; Supplementary Fig. S2a–c; Supplementary Fig. S3a–c; 

Supplementary Fig. S4a–e; Supplementary Fig. S5a–c).

Genetically diverse subclones have differing xenograft repopulation kinetics

The mutational analysis of the xenografts performed using PairTree helped illuminate the 

competitive differences in xenograft repopulation kinetics of specific subclones. We 

compared the predominant diagnosis mutational populations in the patient sample to the 

mutational populations that engrafted in the xenografts. In all but four patient samples the 

dPDX captured the diversity of clones present in the diagnosis samples (Fig. 4; 

Supplementary Fig. S2a–c; Supplementary Fig. S3a–c; Supplementary Fig. S4a–e; 

Supplementary Fig. S5a–c). In two of these four patients (patients 7 and 11) minor 

diagnosis-specific mutational populations including a population harbouring missense 

NRAS mutations in patient 7 did not engraft in the dPDX mice (Supplementary Fig. S4a; 

Supplementary Table S3). In the other two patients (patients 9 and 12) all the dPDX were 

initiated from a minor population in the diagnosis sample ancestral to the relapse (Fig. 4; 

Supplementary Fig. S4c; Supplementary Fig. S5a). These data show the enhanced 

competitive repopulation properties of these dRI clones. In patient 9, all dPDX were 

initiated from mutational population 5 that corresponded to only 22% of the diagnosis 

leukemic cells (initially described as population E in the patient sample alone mutational 

tree) in comparison to the mutational population 2 lineage that represented 71% of the 

diagnosis leukemic cells (initially described in population B) (Fig. 4e–f). In the dPDX, 

population 5 displayed a strong selective advantage representing at least 93% of the 

leukemic cells, outcompeting the population 2 lineage (encompassing populations 2–4) and 

recapitulating the evolutionary dynamics of the patient relapse, where 98% of the leukemic 

cells came from the population 5 lineage (Fig. 4f). In contrast, in 5 patients (patients 1,4,6,7 

and 11) the relapse-fated mutational population represented only a small percentage of the 

engrafting cells in most dPDX and only rose to predominance in rare mice. For example, in 

patient 11, relapse-fated mutational population 3, initially described in population C, only 
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corresponded to 1% of leukemic cells at diagnosis and remained at similarly low levels in 

most dPDX. However, in two dPDX transplanted with a low, near limiting cell dose (10,000 

cells), population 3 rose to 92% and 74% of leukemic cells distinguishing it from population 

4 and highlighting the importance of the limiting dilution approach to capture rare subclones 

by isolating them away from other subclones with higher competitive capacity (Fig. 4g–h; 

Supplementary Fig. S4e). Population 3 was defined by a single variant in the 3’UTR of 

AHNAK, a gene whose expression has previously been implicated in disease relapse in T-

ALL(33). Thus, the xenografting strategy permitted integration of functional and genomic 

information providing insight into the distinct competitive growth properties of functionally 

defined L-IC subclones. Taken together, the phylogenetic analysis and mutational 

evolutionary trees provide strong evidence that relapse-fated subclones were already present 

in the diagnosis sample confirming prior studies of several human acute leukemic diseases 

and in silico predictions(4,5,27,28).

Genetically diverse subclones have differing immunophenotypic and migratory properties

To further examine whether genetically distinct subclones also possessed variation in their 

immunophenotype or functional properties that might explain why some are fated to 

contribute to relapse and others are not, we examined their differentiation, growth, and 

migration properties. We first interrogated the differential properties of the diagnosis clones 

isolated from patient 9 in which the presence of latent variants including the known relapse 

driver CREBBP(20), was segregated between clones. Differences in immunophenotype were 

observed for dRI-PDX enriched for these latent variants which were present at low VAFs in 

the diagnosis patient sample (1–11%) (Fig. 5a–b). The dRI-PDX exhibited a CD45negCD34+ 

immunophenotype reflective of the relapse sample whereas others contained both a 

CD45negCD34+ and a CD45dim CD34+ population as observed in the diagnosis patient 

sample (Fig. 5a). Relapse PDX (termed rPDX), like the relapse sample itself were CD45neg 

(Fig. 5a). dPDX that were engrafted primarily with CD45dim or both immunophenotypic 

populations had a genotype that was more closely related to the diagnosis sample (Fig. 5b). 

The differences noted in immunophenotype appeared to reflect the rise of the relapse fated 

clone and aided in identifying different subclones present within a single xenograft. To 

validate that the difference in immunophenotype segregated the predominant diagnosis clone 

from the minor subclone that seeded the relapse, we isolated the two immunophenotypic 

poplulations by flow sorting cells from 6 dPDX and subjected the populations to targeted 

sequencing using the custom capture array designed for the patient samples. This analysis 

confirmed the enrichment of the dRI clone in the CD45neg population, whereas latent 

variants were absent or very rare (<6%) in the CD45dimCD34+ population (Fig. 5b). Of note, 

change in CD45 expression between diagnosis and relapse timepoints were identified in 5 of 

our patient samples. PDX from patient 9 showed markedly reduced leukemic dissemination 

from the injected femur to other hematopoietic sites (Supplementary Fig. S6a).

The ability to use differences in immunophenotype to segregate clones enabled us to select 

evolutionarily related dRI subclones for RNA-sequencing (RNA-seq) analysis from patient 

9. We compared the expression profiles of two dRI clones, an ancestral and a daughter clone 

(clones 1 and 2 respectively), to a representative relapse clone (clone 3). The dRI clone most 

genetically similar to the relapse, bearing latent leukemic variants including 3 variants in 
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CREBBP (2 missense and 1 silent) as well as variants in TCS2, NRAP, PLXNA4 and 

PRINS (dRI-PDX clone 2) had an expression profile very closely related to representative 

relapse clones with only 24 differentially expressed genes (Fig. 5c–d; Supplementary Table 

S4). In comparison, the ancestral clone not harbouring CREBBP (dRI-PDX clone 

1CREBBP_WT) showed 479 differentially expressed genes compared to relapse clones 

suggesting that the majority of transcriptional changes that are seen at relapse had already 

occured in dRI-PDX clone 2 at diagnosis prior to exposure to chemotherapy (Supplementary 

Table S4). Broadly, the changes in gene expression of dRI-PDX clone 2 in relation to dRI-

PDX clone 1CREBBP_WT centered on dysregulation of histone variants and inflammation-

related genes as well as downregulation of genes involved in morphogenesis (TGFβ 
signaling, GATA3), the TCR and BCR pathways (CD19, CD79A, CD4, etc) and antigen 

processing and presentation pathway, while heat-shock response (HSR) and unfolded protein 

respone (UPR) pathways were enriched (Supplemental Table S4). Thus the early acquisition 

of additional leukemic variants in this relapse-fated subclone, including the CREBBP 

mutations, caused significant changes in gene expression. Interestingly, tyrosine kinases 

such as EPHB2, LTK and ERBB2 were upregulated after acquistion of CREBBP variants in 

both dRI-PDX clone 2 and the relapse clone suggesting possible vulnerabilities to tyrosine 

kinase inhibitors. Despite this striking change, the dRI subclone remained dormant within 

the patient for many years as this patient displayed a long remission (4 years).

PDX from the majority of samples showed extensive migration of leukemic cells to other 

hematopoietic sites and other tissues including the SPL, CNS and peripheral blood 

(Supplementary Fig. S6b–c). Since patients with B-ALL may present with leukemic 

dissemination to the CNS and testes where they can provide a sanctuary for relapse, we 

investigated whether there were differences in the dissemination of subclonal populations to 

each site. Targeted sequencing analysis showed that there was genetic discordance between 

CNS and bone marrow in 40% (44 of 111) of xenografts and between SPL and BM in 17.8 

% (28 of 157) of xenografts (Supplementary Table S5). In one patient (patient 7), our 

analysis of the genetic discordance revaled the presence of a dRI clone engrafting in the 

CNS (VAFs > 39%) of a a xenograft transplanted with a high cell dose (250,000 cells), in 

which the clone was a minor clone barely detectable in the BM (VAFs of < 3%) and 

outcompeted by a more predominate diagnosis clone. (Supplementary Fig. S6b). The 

identification of the dRI subclone in the CNS of dPDX is consistent with the ability of 

relapse-fated cells to disseminate and cause disease recurrence in the CNS of B-ALL 

patients. We also noted the occurrence of a difference in peripheral blood dissemination of 

dRI in an additional patient (patient 4), with delayed mobilization of the dRI-PDX subclone 

as compared to the representative diagnosis clone (Fig. 5e). Collectively, the combined 

functional and genotyping studies show that individual subclones possess distinct 

immunophenotypic, competitive repopulation, proliferative, and migration properties and 

that dRI subclones can already possess distinct biological properties at diagnosis, before 

exposure to chemotherapeutic agents.

dRI subclones display differential response to chemotherapeutic agents

To directly test the functional properties of dRI subclones with their ability to survive and 

contribute to relapse, we compared the drug sensitivities of individual subclones for 5 of the 
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genetically distinct patients. Multiple secondary PDX were generated from dPDX with 

known dRI clones (dRI-PDX), predominant diagnosis clones (dPDX), or representative 

relapse clones (rPDX). Treatment of B-ALL patients includes combination chemotherapy 

with supportive care, however, it is not possible to replicate human therapy precisely in 

xenografts. Our interest was to determine if there was any variation in the responsiveness of 

different subclones to individual drugs used in these chemotherapeutic protocols. Following 

engraftment, PDX received single agent treatments of dexamethasone, vincristine, L-

asparaginase or saline for 4 weeks (Fig. 6a–b and Supplementary Fig. S7a–f). Differences in 

therapeutic responses to one or more drugs between dRI and representative diagnosis clones 

were observed for four patient samples. In three patient samples, (patient 1, 6, 7), dPDX 

harbouring a dRI clone (dRI-PDX) were compared to dPDX repopulated with the major 

diagnosis clone and demonstrated reduced sensitivity to 2 or 3 of the 3 chemotherapy agents 

tested (Fig. 6a–b and Supplementary Fig. S7a–d). Reduced sensitivity to a single 

chemotherapeutic agent was also observed in one additional patient (patient 4; 

dexamethasone, significant in injected femur and trend in BM and SPL) (Supplementary 

Fig. S7e). By contrast, there was no difference in the therapeutic sensitivity of two dRI-PDX 

from patient 11 defined by the presence of the AHNAK 3’UTR varaint. This patient has a 

strong driver KMT2A (MLL) translocation and the presence of the single relapse specific 

variant does not appear to confer sufficient evolution of the leukemia to alter the therapeutic 

sensitivity in this context (Supplementary Fig. S7f). Purification of human cells from the 

secondary PDXs post therapy and targeted sequencing confirmed their genotype and did not 

reveal the selection of any further relapse-specific variants (Supplementary Fig. S8a–c). The 

observed differences in drug response could not be accounted for by any consistent changes 

in L-IC frequency (Supplementary Table S6).

Unexpectedly in two of five patient samples used for drug testing, we found that the dRI 

subclones exhibited immunophenotypic plasticity as compared to the predominant diagnosis 

clone when exposed to drugs. In the secondary recipients of dRI-PDX of patient 1 and dRI-

PDX of patient 7, both patients harbouring DUX4 translocations at diagnosis, there was the 

emergence of a distinct CD33+CD19dim/neg population upon dexamethasone treatment but 

not in saline controls or upon treatment with the other two drugs (Fig. 6c) (Supplementary 

Fig. S9a–b). This population was very rare or not observed in the primary recipients. The 

CD33+CD19dim/neg cells resembled myeloid cells with respect to their cell surface marker 

expression, size and granularity (Supplementary Fig. S9c). An immunophenotypic shift 

towards the myeloid lineage especially with steroid challenge has previously been reported 

in ERG/DUX4 patients but our finding of a subclone specific switch is of interest(34). The 

emergence of CD33+CD19dim/neg cells was not due to the outgrowth of a different subclone 

as these cells were genetically identical to their CD19+ counterpart (Supplementary Fig. 

S9d–e). We speculate that this propensity for immunophenotypic plasticity might be linked 

to chromatin remodelling and the ability to evade therapy as other studies have shown(35–

38). Overall, our data provide strong evidence that prior to exposure to chemotherapy, dRI 

subclones already possess distinct pre-existing functional properties including differential 

sensitivity to standard chemotherapy agents.
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Transcriptional analysis of dRIs reveal metabolic rewiring and enrichment of a stem cell 
state in progression to relapse

To gain mechanistic insight into the molecular pathways present in dRIs, RNA-seq analysis 

was performed on cells from dRI-PDX, dPDX, or rPDX of four patients (Patients 1,4,6,7; 

n=14 dPDX, 15 dRI-PDX and 13 rPDX) (Supplementary Table S7). This analysis confirmed 

the placement of dRIs as intermediates between diagnosis and relapse, sharing 

transcriptional programs with both timepoints (Supplementary Fig. S10a). Given the distinct 

B-ALL subtypes/cytogenetics of the patient samples analyzed, as expected only few (n= 23) 

differentially expressed genes reached significance when comparing dPDX vs dRI-PDX 

across all samples (Supplementary Table S7). Suprisingly, one of the genes upregulated in 

the dRI-PDX is asparaginase (ASPG), a catalytic enzyme that hydrolyzes asparagine to 

aspartic acid, albeit non-robustly in human cells. The human ASPG protein can display 

cytotoxic activity in human leukemic cell lines(39) suggesting that the dRI-PDX cells may 

have altered their response to cytotoxic stress or metabolic requirements thereby explaining 

why some of the dRI clones are less sensitive to L-asparaginase treatment than dPDX 

clones.

As pathway enrichment analysis is more sensitive than differential gene expression for 

finding differences between populations we undertook this approach to uncover significantly 

differentially enriched pathways that were shared amongst all patients. Gene set enrichment 

analysis (GSEA) comparing the pathways present in dRI-PDX vs dPDX revealed that most 

pathways significantly enriched in dRI-PDX (FDR q-value ≤ 0.05) were also present or 

further enriched in the comparision of rPDX to dPDX; these are termed dRI-PDX/rPDX 

common pathways (Fig. 7a–b; Supplementary Fig. S10b–d; Supplementary Table S7). 

Network analysis revealed that these pathways were centered on a metabolic signature 

composed of genes involved in cellular and mitochondral metabolism including amino acid 

metabolism, TCA cycle, oxidative phosphorylation, mitochondrial translation and transport, 

and lipid metabolism (Fig. 7a–b; Supplementary Fig. S10b–d). In concordance with a 

previous study on ALL relapse(25), the central regulator of growth and metabolism, mTOR, 

was enriched in dRI and relapse clones (Supplementary Fig. S10b; Supplementary Table 

S7). Pathways identified as uniquely enriched in rPDX vs dPDX (rPDX-unique), included a 

large network of highly interconnected nodes involved in cell cycle regulation such as cell 

cycle checkpoints, DNA replication, DNA repair and microtubule organization (Fig. 7a; 

Supplementary Table S7).

To validate the metabolic signature observed in dRIs, that was often further enhanced at 

relapse, we performed flow cytometry and immunostaining analysis in the PDX from five 

patient samples (Fig. 7c–d; Supplementary Fig. S10e–f). This analysis confirmed the 

convergence of similarities in metabolic rewiring of dRI-PDX/rPDX in comparison to dPDX 

in all 5 B-ALL patients. This functional validation showed that there was an increase in total 

mitochondrial mass, with individual mitochondria having similar mitochondria membrane 

potential in most of the patients analyzed. However, despite this increase in absolute 

mitochondria abundance, the levels of reactive oxygen species (ROS) were unexpectedly 

found to be lower in dRI-PDX and rPDX cells as compared to dPDX cells. The reduced 

ROS levels is suggestive of the presence of increased antioxidant defense upon progression 
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toward relapse. This interpretation was concordant with our gene expression data that 

showed an enrichment of ROS-defense and peroxisomal activity genes (ie. catalase), which 

degrade toxic hydrogen peroxide and metabolize drugs, in the dRI-PDX and rPDX samples 

(Fig. 7a,c; Supplementary Fig. S10b,d–f; Supplementary Table S7). Significant enrichment 

for chromatin remodelling and cell stress response (such as the unfolded protein response 

(UPR)) were also identified as dRI-PDX/rPDX common pathways (Fig. 7a; Supplementary 

Fig. S10b–d). The chromatin remodelling pathways including expression of histone variants 

and isoforms were likely instrumental in the plasticity observed in the progression to relapse 

including the immunophenotypic plasticity we observed in dRI-PDX of patient 1,7 and 9 

(Fig. 4a, Fig 5c), while the expression of the cell stress response pathways identified could 

contribute to enhanced survival of dRI subclones. To independently validate the results 

obtained from the PDX identified pathways, we directly evaluated bulk diagnosis and 

relapse patient samples. We found enrichment (FDR q-value ≤ 0.05) of pathways involved in 

metabolism, mitochondria regulation and cell cycle at relapse (Fig. 7e; Supplementary 

Fig.S10g; Supplementary Table S7). Furthermore, we found significant enrichment of a 

signature present at minimal residual disease (MRD)(17) in dRI-PDX and rPDX compared 

to dPDX lending further support for the relevance of the dRI-PDX/rPDX pathways for 

understanding the mechanisms of relapse disease initiation and their presence prior to 

chemotherapeutic challenge (Supplementary Fig. S10h). Collectively, our transcriptional 

analysis has for the first time uncovered the utilization of chromatin remodeling, stress 

responses and metabolic pathways in dRI subclones whose activity could serve to protect 

them during chemotherapy treatment and contribute to their ability to further progress to 

relapse disease. As such these newly identified pathways represent rich areas to investigate 

for new therapeutic strategies to target dRI specifically.

To investigate whether the broader cellular state of the dRIs contributes to their functional 

differences, we performed gene set variation analysis (GSVA) comparing the transcriptomic 

profile of representative clones to normal hematopoietic cell populations isolated from 

human umbilical cord blood using 2 independent datasets, one from our own newly 

generated data and the other previously published(40)(Supplementary Fig. S11a; 

Supplementary Table S7). dRI-PDX and rPDX exhibited a transcriptome profile 

significantly enriched for hematopoietic stem cell (HSC) genes and a slight reduction in B 

cell genes as compared to dPDX (Fig. 7f; Supplementary Fig. S11b–c). Depletion of B cell 

genes and enrichment of HSC genes at relapse were also observed in the bulk patient 

samples from our cohort (Fig. 7f). Furthermore, the leading-edge genes of common 

pathways enriched in both dRI-PDX and rPDX are upregulated in HSCs as compared to 

lymphoid cells (Supplementary Fig. S11d). The enrichment of mitochondrial metabolism 

and stemness at relapse were also validated in the larger Waanders et al. cohort of paired 

diagnosis-relapse patient B-ALL samples(30) encompassing several genetic subtypes 

(Supplementary Fig. S11e,f). These findings are in line with previous studies in the normal 

and leukemia stem cell fields(24,41,42) where several metabolic and stress response 

pathways such as those identified here (mitochondria metabolism, UPR, antioxidant 

defense) have been described to be crucial to the maintenance of stem cell homeostasis and 

function. Additionally, enrichment of stemness signatures are also a hallmark of high-risk B-

ALL(43). Thus, our findings report a link for the acquisition of HSC stemness properties in 
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combination with metabolic rewiring in dRI as part of progression to relapse in lymphoid B-

ALL leukemia (Fig. 7g).

DISCUSSION

Our study provides new insight into the leukemogenic process of human B-ALL through a 

deep analysis of the functional and molecular properties of genetically diverse diagnosis 

subclones isolated through xenografting from pediatric and adult B-ALL patients. By 

combining xenografting with sequencing, broad clonal structures were unambiguously 

demonstrated and additional subclones are uncovered. We identify relapse-fated dRI 

subclones, prior to chemotherapeutic exposure, with the capacity for clonal propagation and 

leukemia initiation in B-ALL that are both genetically and transcriptionally related to the 

relapse. Our data extends prior B-ALL studies that relied on genetic analysis and 

computational methods of bulk leukemia samples without functional studies, and that could 

only infer the presence and survival of minor subclones that were ancestral to the relapse 

driving clone and could not speak to the functional properties of these cells at diagnosis(4,5). 

As shown in Waanders et al.(30), while our xenografting approach substantiates the 

predicted lineage relationships of the traditional genetic analysis of bulk tissues it also 

extends our understanding of leukemia evolution by revealing a richer diversity of branching 

evolution and additional subclones. Our functional studies of subclones analysed either 

alone or in the context of competitive repopulation demonstrate that dRI subclones can be 

found to display increased clonal repopulation kinetics, immunophenotypic plasticity and 

differences in leukemic dissemination such as dissemination to the CNS, a known disease 

sanctuary site in patients. Importantly, dRI showed an intrinsic difference in tolerance to 

standard induction chemotherapeutic agents. Moreover, dRI subclones were typically very 

minor latent subclones in the diagnostic sample suggesting that they are restrained within the 

patient in comparison to the predominant subclone perhaps due to dormancy, timing, 

subclonal cross-talk or slow cycling, although this was not directly measured in our studies. 

Our study resolved the theoretical question as to whether functional properties of relapse 

clones are present prior to chemotherapeutic challenge or are induced by chemotherapy. 

While some mutations not present at diagnosis are recurrently acquired after chemotherapy 

(e.g. USH2A, NT5C2), our study documents the pre-existence of dRI subclones with 

intrinsic tolerance to clinical drugs. This data provides direct evidence that the Luria-

Delbrück principle occurs in human leukemia(44). We speculate that the dRI subclones arise 

stochastically and these partially evolved subclones then become selected for by 

chemotherapy. Gene expression and pathway analysis showed that even at this early stage 

where relapse fate arises, there was considerable metabolic rewiring within dRI subclones 

that was often further enhanced in relapse clones. Recurrent pathways were identified across 

a spectrum of different B-ALL patients with distinct genetic drivers suggestive of convergent 

evolution. Broadly, we found that adult and pediatric dRI had similar properties in terms of 

their functional xenografting properties, therapy response, transcriptional pathways and 

metabolic rewiring also supporting the concept of convergent evolution. Pathways regulating 

mitochondrial dynamics and proteostasis are particularly relevant since they are linked to 

survival under stress, processes that may underpin the ability of dRI cells to adapt and 

survive chemotherapy. Futher evolution and mutagenesis of such subclones during the 
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treatment and/or remission phases ultimately results in disease recurrence. Expression of the 

dRI-PDX/rPDX common pathways converged on a HSC signature, shared by both dRI and 

relapse cells, analogous to recent studies we have undertaken from purified acute myeloid 

leukemia (AML) leukemia stem cell populations(23,45). The finding of stemness signatures 

already present in dRI subclones, together with the identified metabolic changes provides 

the molecular basis to explain why dRI subclones may both survive therapy and posses the 

regenerative capacity to intiate relapse disease after a period of dormancy. Future studies that 

explore the transcriptome of dRI subclones from across an even wider spectrum of B-ALL 

patient samples would give insight into how the timing of acquisition of these molecular 

pathways leads to relapse.

The ability to isolate and characterize dRI subclones provides an important first step in 

understanding the basis for therapy resistance and clonal propagation. Such subclones 

isolated in this way are not simply an in silico depiction, rather they can be viably preserved 

cells or serially propagated xenografts for future studies. Whole genome sequence, 

methylation and chromatin accessibility studies could be undertaken to build upon our 

transcriptomic analysis; thereby exploring more deeply the mechanisms that drive their 

functional properties. The signatures developed from isolated dRI clones could yield 

biomarkers to improve the classification of patients who are at increased risk of relapse and 

to better monitor residual disease. The immunophenotypic plasticity we linked to different 

genetic subclones points to the need to understand the breadth of cell surface phenotypes 

present to ensure that all leukemic subclones are properly tracked during flow cytometry 

based residual disease monitoring. Finally, further investagtion of the dRI transcriptomic 

profile and metabolic rewiring may be used to uncover the vulnerabilities of dRI subclones 

resulting in new therapeutic targets. Improved eradication of dRIs during early treatment 

phases before the subclones evolve would prevent progression to more aggressive, therapy 

resistant disease. Prior studies from us and others have shown that xenografting of a wide 

spectrum of primary patient samples provides a powerful tool to evaluate novel therapeutics 

and develop biomarkers(22,24,46,47). Our study suggests that extending the xenograft-based 

drug development paradigm by including genetic analysis to uncover subclonal responses to 

drug treatment will open up avenues to evaluate whether relapse fated clones are effectively 

targeted.

METHODS

Patient Samples

Patient samples were obtained at diagnosis and relapse from six adult and eight pediatric B-

ALL patients according to pre-established guidelines approved by the Research Ethics 

Board of the University Health Network and the St. Jude Institutional Review Board 

respectively and were conducted in accordance with recognized ethical guidelines. Adult 

samples were collected at the Princess Margaret Cancer Centre and pediatric samples were 

collected at St. Jude Children’s Research Hospital. Written informed consent was obtained 

from all patients or patient families. All samples were frozen viably and stored long term at 

−150 °C. Samples were selected retrospectively based on sample and paired sample 

availability.
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Patient Derived Xenograft Generation and Limiting Dilution Analysis

Twenty-nine clinical samples obtained from the 14 patients were stained with the following 

antibodies: anti-CD19 PE (BD, clone 4G7), anti-CD3 FITC (BD, clone SK7) or anti-CD3 

APC (BC clone UCHT11), anti-CD45 APC (BD, clone 2D1) or anti-CD45 FITC (BD, clone 

2D1) and anti-CD34 APC-Cy7 (clone 581). Each sample was sorted on a FACSAria III (BD 

Biosciences) for leukemic blasts (CD19+CD45dim/-) and T cells (CD3+, CD45hi). 

NOD.CB17-PrkdcscidIl2rgtm1Wjl/Szj (NSG) mice were bred according to protocols 

established and approved by the Animal Care Committee at the University Health Network. 

Eight-to-twelve-week-old mice were sublethally irradiated at 225cGy 24h before transplant. 

Only female mice were used in these studies. Intrafemoral injections of 10–250 000 sorted 

leukemic blasts were performed as previously described(48). Mice were sacrificed 20–30 

weeks post-transplant or at the onset of disease symptoms. Human cell engraftment in the 

injected femur, bone marrow (non-injected bones, left tibia, right tibia, left femur), spleen 

and central nervous system were accessed using human specific antibodies for CD45 (PE-

Cy7, BD, clone HI30; v500, BD, clone HI30), CD44 (PE, BD clone 515; FITC, BD clone 

L178), CD3 (APC, BD, clone UCHT1), CD19 (PE-Cy5, Beckman Coulter, clone J3–119), 

CD33 (PE-Cy7, BD, clone P67–6; APC, BD, P67–6) and CD34 (APC-Cy7, BD, clone 581) 

analyzed on an LSRII (BD Biosciences). Mice were considered to be engrafted when >0.1% 

of cells in the injected femur were positive for one or more human B-ALL specific cell 

surface markers (CD45, CD44, CD19, CD34). The confidence intervals for the frequency of 

leukemia-initiating cells was calculated using ELDA software(49).

Whole exome sequencing (WES)

DNA from the adult samples was extracted from sorted leukemic blasts (CD19+CD45dim/-, 

purity >90%) and sorted T cells (CD3+CD45hi, purity >90%) using the Gentra Puregene 

Cell Kit (Qiaqen). T cells from patients 2, 3 and 5 were whole genome amplified (REPLI-g 

Mini Kit, Qiagen) due to limited material. DNA from the pediatric samples with >90% 

leukemic blasts was extracted from diagnosis, remission and relapse samples using phenol-

chloroform. Exomes were captured using the TruSeq Exome Library Prep kit (67Mb, 1μg 

DNA input) or the Nextera Rapid Capture Expanded Exome (62Mb, 50ng DNA input; 

Illumina, San Diego, CA, USA). Paired-end sequencing was performed with the HiSeq 2500 

genome sequencer (Illumina). The data was mapped to human reference genome hg19 and 

variant calling was performed using the Bambino variant detector as previously 

described(50). Briefly, leukemia and germline files were combined by the program and 

aligned against the reference genome. Putative sequence variants including SNV and indels 

were detected by running the variation detection module of Bambino. The output contained 

detailed read counts for each variant with columns for tumour/normal status, allele and 

strand. Variants were not filtered for coverage prior to combination with targeted-sequencing 

results.

Copy Number Analysis

Patient copy number aberrations were determined using SNP6.0 microarrays according to 

manufacturer’s instructions (Affymetrix, Santa Clara, CA, USA). Data was analyzed as 

previously described(51) using optimal reference normalization(52) and circular 
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binary(53,54) segmentation with Genotyping Console (Affymetrix) and dCHIP (build Apr 

2010)(55). Detection of loss of heterozygosity (LOH) and allelic ratios were performed 

using Nexus 7.5.2 software (BioDiscovery Inc, Hawthorne, CA, USA). All segments were 

manually curated.

Recovery of Human Cells and DNA Isolation from Xenografts

Cells from the injected femur (IF), bone marrow (BM) and spleen (SPL) were frozen viably 

after sacrifice. The IF and BM of mice engrafted with > 10% human cells were combined. 

These cells as well as cells from diagnosis PDX spleens were depleted of mouse cells by 

using the Miltenyi Mouse Cell Depletion Kit (Miltenyi Biotech) (samples with >20% 

engraftment) or by cell sorting with human CD45 and human CD19 and or CD34 cell 

surface antibodies to a purity of >90% as determined by post-processing flow cytometry. 

CNS cells from mice with greater than 60% engraftment were used directly for DNA 

isolations. DNA was isolated using the QIAamp DNA Blood Mini or Micro Kit (Qiagen).

Targeted Sequencing

All somatic SNVs and indels identified by WES were validated in the patient samples using 

NimbleGen SeqCap Target Enrichment according to manufacturer’s instructions (Roche, 

NimbleGen). Library preparation was completed using 250–500ng of DNA using the 

NEXTflex DNA-SEQ Library Prep Kit (BiooScientific) with NEXTflex-96 DNA Barcodes 

(BiooScientific). Sequencing was performed on a HiSeq 2500 genome sequencer to a mean 

coverage >350x for patient samples and >200x for PDXs.

Targeted-sequencing data analysis

Final patient variant calls used the combined results of WES and capture validation. Variants 

were filtered out if the variant allele frequency (VAF) in the germline was greater than 10% 

or if there was a dbSNP frequency of greater than 1%. Variants were classified based on the 

VAFs in the bulk patient diagnosis and relapse samples as: preserved variants (VAF > 30% 

in both diagnosis and relapse samples, or preserved between samples); diagnosis-specific 

variants (present at diagnosis (> 1%) and absent at relapse (< 1%)); latent variants (present 

at diagnosis with VAF < 30% and increasing at relapse); relapse-specific variants (absent at 

diagnosis (<1%) and present at relapse (>1%)). For xenograft analysis, varaints with less 

than 5x coverage or unconvered in numerous xenografts were removed. Results were 

analyzed by visualization in heatmaps (ie. Figure 1C). Phylogenetic analysis showing 

genetic relationships of patient samples and xenografts were estimated using Minkowski’s 

distance calculated from the VAFs and represented visually using a nearest neighbour 

joining algorithm. Genetic concordance between different tissues of the same xenograft were 

determined by visual assessment by three independent and blinded individuals. Discordance 

was only called when all three investigators were in agreement.

Generation of Mutational Trees from Patient Samples and Xenografts

Two independent computational analyses were performed—first for patient-only tissue 

samples, and then patient samples augmented with xenografts (BM and SPL)—using an 

early version of the PairTree algorithm (Wintersinger et al., in preparation). PairTree uses 

Dobson et al. Page 15

Cancer Discov. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variant read counts to estimate the posterior probability distribution over four possible 

ancestral relationships between every variant pair (A, B). The four ancestral relationships are 

as follows: variant A and variant B occurred in the same cells, such that no cell possessed 

one variant but not the other; variant A is ancestral to variant B, such that some cells have A 
but not B; variant B is ancestral to variant A, such that some cells have B but not A; or 

neither is the ancestor of the other, such that A and B are on different branches of the 

evolutionary tree.

To permit temporal ordering of mutations, the infinite sites assumption was made, such that 

variant A could never be the ancestor of variant B if A’s cancer cell frequency (CCF) was 

lower than B’s in any sample, after their CCFs were estimated from each mutation’s variant 

allele frequency (VAF). To simplify the estimation of CCF from VAF, variants were 

discarded if they lay in CNA-affected regions determined by SNP6.0 analysis, of the patient 

samples, or if their VAFs were suggestive of an uncalled CNA regions. X-chromosome 

variants in male patients had their VAFs halved when estimating CCF to correct for their 

haploid nature. Distinct mutational populations were defined by semi-automatically 

clustering variants, with variants clustered together when their mutual “A and B occurred in 

the same cell” probabilities were high.

For each cluster, a representative “supervariant” was created. To compute a precise estimate 

of supervariant CCF, we summed the read counts of all variants within the supervariant’s 

cluster, then computed the pairwise ancestral relationship probabilities between 

supervariants. These probabilities guided expert-driven tree construction, in which trees 

were built according to how well their implied pairwise relationships between clusters 

matched the computed pairwise probabilities. Confirmation that these expert-driven trees 

yielded data likelihoods as good as or better than fully automated tree reconstructions 

produced by a more mature version of the PairTree algorithm (Wintersinger et al., in 

preparation) was performed. The tree-constrained lineage frequencies of each population in 

each sample were then computed using PairTree. The variants included in the populations 

defined by the patient-only analysis were then compared to the variants included in the 

populations defined for the patient and xenograft combined analysis to reveal the overlap, 

differences and additional clonality described with inclusion of the xenograft samples.

RNA-Sequencing

For PDX: Cell pellets for PDX RNA extraction were frozen in 1mL of TRIzol (Invitrogen) 

and kept at −80 °C. Total RNA was purified by phenol/chloroform and integrity and 

concentration were verified on a Bioanalyzer pico chip (Agilent Technologies). cDNA 

conversion was performed using SMART-Seq® v4 Ultra Low Input RNA Kit for 

Sequencing (Takara) (1ng total RNA input) and libraries were prepared using Nextera XT 

DNA Library Preparation Kit (Illumina) (1ng input of cDNA). Equimolar quantities of 

libraries were pooled and sequenced 4 cDNA libraries per lane on a High Throughput Run 

Mode Flowcell with v4 sequencing chemistry on the Illumina HiSeq 2500 following 

manufacturer’s protocol generating paired-end reads of 126-bp in length to reach depth of 65 

million reads per sample.
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For patient samples: RNA was extracted from sorted leukemic blasts (CD19+CD45dim/-, 

purity >90%) using RNeasy Micro Kit (Qiagen) for adult patient samples. From these 

samples approximately 10ng of total RNA was processed using the SMART™ cDNA 

synthesis protocol including SMARTScribe Reverse Transcriptase (Clontech) as per 

manufactures instructions. The amplified cDNA was subject to automated Illumina paired-

end library construction using the NEBNext paired-end DNA sample Prep Kit (NEB) and 

libraries were sequenced on HiSeq2000 (Illumina) to an average of approximately 161 

million Chastity-passed paired reads of 75bp in length per sample. For pediatric samples 

RNA was extracted from patient samples with >90% leukemic blasts using TRIzol (Life 

Technologies) and quality and quantity assessed by Qubit (ThermoFisher) and RNA6000 

Chip (Agilent). 1ug of RNA was used for library preparation with TruSeq RNA Library Prep 

Kit v2 (Illumina) and 2× 100bp paired-end sequencing was performed on a HiSeq 2500 

(Illumina). Patient RNA-seq samples were aligned against the human genome (hg19) using 

STAR v2.3 with default parameters. All PDX samples were aligned with STAR v2.5.2b(56) 

against the human genome build version GRCh38 and the ensembl v90 gtf file. Default 

parameters were used except for; chimeric segments were screened with a minimum size 12, 

junction overlap 12 and segment reads gap maximum 3; splice junction overlap 10, aligned 

mates gap maximum 100000, aligned intron maximum 100000 and 

alignSJstitchMismatchNmax 5 −1 5 5. For both patient samples and PDX, transcript counts 

were obtained using HTSeq v0.7.2(57). Data was library size normalized using RLE, 

followed by a variance stabilizing transformation using DESeq2 v1.22.1(58). PCA plots 

were generated on a per sample basis using the top 1000 variable genes. For downstream 

visualization, differential expression and pathway analysis, the mean expression of each 

sample clone condition was utilized. On a per patient level, differentially expressed genes 

were identified. Genes with adjusted p-value of < 0.05 and absolute log2 fold change of > 1 

were considered significant. All visualizations were generated using R v3.5.1 and the 

pheatmap v1.0.10 and lattice v0.20–38 packages and ggplot2 v3.1.0 packages.

Pathway enrichment analysis and visualization

Pathway enrichment analysis and visualization was performed as described previously(59). 

Briefly, a score to rank genes from top up-regulated to down-regulated was calculated using 

the formula -sign(logFC) * -log10(pvalue). The rank file from each comparison was used in 

GSEA analysis (http://software.broadinstitute.org/gsea/index.jsp) using 2000 permutations 

and default parameters against a pathway database containing Msigdb c2 and c3, NCI, IOB, 

NetPath, HumanCyc, GO BP, Reactome and Panther (http://baderlab.org/GeneSets, version 

June 2018). GSEA progressively examines genes from the top to the bottom of the ranked 

list, increasing the enrichment score if a gene is part of the pathway and decreasing the score 

otherwise. These running sum values are weighted, so that enrichment in the very top- (and 

bottom-) ranking genes is amplified, whereas enrichment in genes with more moderate ranks 

are not amplified. The ES score is calculated as the maximum value of the running sum and 

normalized relative to pathway size, resulting in a normalized enrichment score (NES) that 

reflects the enrichment of the pathway in the list. Positive and negative NES values represent 

enrichment at the top and bottom of the list, respectively. A permutation-based p-value is 

computed and corrected for multiple testing to produce a permutation-based FDR q-value 

that ranges from zero (highly significant) to one (not significant). EnrichmentMap version 
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3.1.0 in Cytoscape 3.7.0 was used to visualize enriched gene-sets at FDR q-value<=0.05 for 

each comparison with a Jaccard coefficient set to 0.375. The Enrichment Map software takes 

as input a text file containing pathway enrichment analysis results (from GSEA) and another 

text file containing the pathway gene sets used in the original enrichment analysis (http://

baderlab.org/GeneSets, version June 2018). An enrichment map is a network representing 

overlaps among enriched pathways with pathways represented as circles (nodes) that are 

connected with lines (edges) to other pathways with overlapping genes. The network layout 

and clustering algorithm Autoannotate app in Cytoscape was used to automatically display 

and group similar pathways as major biological themes. Pathways differentially enriched in 

dPDX vs dRI-PDX and/or dPDX vs rPDX clones were classified as: dRI-PDX-unique 
(pathways significantly enriched (FDR q-value<=0.05) in dRI-PDX in comparison to 

dPDX), dRI-PDX/rPDX common (pathways significantly enriched (FDR q-value<=0.05) 

in both dRI-PDX and rPDX in comparison to dPDX) or rPDX-unique (pathways 

significantly enriched (FDR q-value<=0.05) in rPDX in comparison to dPDX).

Isolation of HSC and B cells from human cord blood samples

Human cord blood samples were obtained with informed consent from Trillium and Credit 

Valley Hospital according to procedures approved by the University Health Network 

Research Ethics Board. Mononuclear cells were obtained by centrifugation on Lymphoprep 

medium (Stem Cell Technologies) followed by red blood cell lysis using ammonium 

chloride (Stem Cell Technologies). Human CD34+ and CD34- CB cells were separated 

using CD34 Microbeads kit (Miltenyi Biotech) according to manufacturer’s protocol and 

stored at −150°C. Cells were stained with antibodies (all from BD, unless stated otherwise): 

FITC–anti-CD45RA (1:50, 555488), PE–anti-CD90 (1:50, 555596), PECy5–anti-CD49f 

(1:50, 551129), V450–anti-CD7 (1:33.3, 642916), PECy7–anti-CD38 (1:100, 335790), 

APC–anti-CD10 (1:50, 340923), APCCy7–anti-CD34 (1:200, custom made by BD) and 

sorted on FACS Aria III (Becton Dickinson), consistently yielding >95% purity. HSC were 

sorted based on the following markers: CD34+ CD38- CD45RA- CD90+ CD49f+ from 

CD34+ CB cells as previously described(60). B cells were sorted as CD34- 

CD38+CD19+CD33-CD3-CD56-.

Gene set variation analysis (GSVA)

Read counts from 5 B cell and 3 HSC sorted populations from normal human umilical cord 

blood were normalized using the trimmed of M values using the edgeR_3.24.3 R package 

and gene differential expression was calculated using the quasi likelihood ratio method and 

include cord blood batch correction in the experimental design. The top 1000 genes enriched 

in B cells (B cell genes) and the top 1000 genes enriched in HSC (HSC genes) were selected 

to be used as the reference signature. Two mixed profiles were used: dPDX, dRI-PDX and 

rPDX clones and 14 bulk diagnosis and relapse patient samples. The mixes profiles read 

counts were variance stabilized and library size normalized using DESeq_1.34.1). The 

gsva() function from the R GSVA_1.30.0 package was employed using a gaussian kernel to 

estimate enrichment of reference signatures in each sample of the mixed profile dataset. 

GSVA score for each patient and each category were plotted on a boxplot and a stripchart. 

Gsva score were summed for each mixed profile category and standardized from 0 to 1. 

1000 permutations with a random gene list of size 1000 were performed on the mixed 
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profile and percentages calculated to indicate how many times the observed score was higher 

than the random scores. These results were confirmed using the HSC and B cell expression 

profiles from Novershtern et al., Cell 2011(40) (Supplementary Table S7).

Transcriptomic Validation Experiments

Staining for mitochondria content, ROS, mitochondrial membrane potential and 

mitochondrial superoxide levels was performed by incubating thawed PDX cells at 37°C 

with: 1mM of MitoTrackerGreen (M7514) (dilution 1:10000); 5 μM CellROX deep red 

(C10422) (dilution 1:500); 1 μM TMRE (T668) (dilution 1:1000) or 5mM MitoSOX Red 

(M36008) (dilution 1:1000) following manufacturer’s instructions (ThermoFisher) and 

directly analyzed on a BD LSRII cytometer. Mean fluorescence intensity (MFI) for each 

sample and dye is represented as ratio to dPDX for each patient. Immunostaining analysis 

for TOMM20, MRPS18B and SOD1 were performed on PDX cells. Briefly, cells were spun 

onto Poly-L-Lysine (Sigma)-coated slides (Ibidi, 200 xg, 10 min), fixed with 4% 

paraformaldehyde (Sigma) and permeabilized with 0.5% Triton (Sigma) before blocking 

(PBS, 10% FBS, 5% BSA). Slides were incubated with primary antibodies (TOMM20: 

ab56783, dilution 1/200; SOD1: ab8866, dilution 1/100 and MRPS18B: ab191891, dilution 

1/200) in blocking solution O/N at 4°C. Secondary anti-mouse AF568, anti-rabbit AF488 

and anti-sheep AF647 (Invitrogen, 1:400) antibodies were added (PBS, 0.025% Tween, 

Sigma, 1.5 h, RT). After washing, nuclei were stained with 1 μg/mL DAPI (Invitrogen) and 

slides were mounted (Fluoromount G, Invitrogen). Images were captured by a Zeiss 

LSM700 Confocal (oil, 63x/1.4NA, Zen 2012) and analyzed with ImageJ/Fiji. The 

Integrated Density (IntDen= Area* Mean Fluorescence Intensity) for 40–50 cells from each 

clone was analyzed. The mean for each clone was normalized and calculated as a ratio to the 

dPDX for each patient separately.

Secondary Transplantations for Drug Assays and Limiting Dilution Assays

Human purified cells from the primary recipients were thawed and transplanted into eight-

to-twelve-week-old female NSG mice sublethally irradiated as described for the primary 

recipients. The number of mice used for secondary transplantation experiements/drugs were 

determined by cell and mouse avalibility and feasibility. Intrafemoral injections of 26000 

−100 000 leukemic blasts were performed for drug assays and a range of 10 – 100 000 

leukemic blasts were injected for secondary limiting dilution assays. After 4 weeks mice 

were bled from the saphenous vein and human chimerism was evaluated by flow cytometry. 

Once human engraftment in the peripheral blood reached between 1–10%, or after 10–14 

weeks for those samples in which leukemic blasts did not mobilize to the peripheral blood, 

mice were randomized and single agent treatments were started. Dexamethasone (15mg/kg), 

L-asparginase (1000kU/kg) and saline were given daily by intraperitoneal injection 5 days a 

week. Vincristine (0.5mg/kg) was given once a week by intraperitoneal injection. All four 

arms of the drug treatment were performed for 4 weeks and mice were sacrificed the 

following day (vincristine/dexamethasone/saline) or one week after the last treatment 

(vincristine). Analysis of the secondary limiting dilution assay was performed 16 weeks 

post-transplant. Human cell engraftment in the injected femur, bone marrow and spleen were 

assessed using human specific antibodies for CD45 (FITC, BD, clone 2D1; v500, BD, clone 

HI30), CD19 (BD, PE, clone 4G7), CD33 (PE-Cy7,BD, clone P67–6), CD3 (APC, BD, 
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clone UCHT1), CD10 (Qdot605, BD, clone HI10A), CD38 (BV421, BioLegend, clone 

HIT2) and CD34 (APC-Cy7, BD, clone 581). Mice were considered to be engrafted when 

>0.1% of cells in the injected femur were positive for one or more human B-ALL specific 

cell surface markers (CD45, CD44, CD19, CD34). Respose to treatment was analyzed as a 

ratio of human engraftment of drug vs saline treated mice to eliminate interclonal 

differences in engraftment levels. Ratio of human engraftment in each individual drug 

treated PDX to the average engraftment level of all saline controls was calculated. Lineage 

stains were performed on xenografts expressing CD33 (APC, BD clone P67–6) and CD19 

(PE, BD, clone 4G7) including CD14 (PE-Cy7, Beckman Coulter, clone 52), CD15 (v450, 

BD, clone MMA), CD10 (Qdot605, BioLegend, clone HIT2) and CD34 (APC-Cy7, BD, 

clone 581). The confidence intervals for the frequency of leukemia-initiating cells was 

calculated using ELDA software(49). Statistical analysis was performed using PRISM 6 

(GraphPad Software).

Fluorescence-activated Cell Sorting from Xenografts

Leukemic cells from primary xenografts were sorted for immunophenotypic populations on 

a FACSARIAIII (BD Biosciences). Cells from the IF and BM were pooled and stained with 

CD19, CD34, CD45, CD10 and CD33 and collected at a sort purity of >99%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFCIANCE

Isolation and characterization of subclones from diagnosis samples of B-ALL patients 

who relapsed, showed that relapse-fated subclones had increased drug tolerance and 

distinct metabolic and survival transcriptional programs compared to other diagnosis 

subclones. This study provides strategies to identify and target clinically relevant 

subclones before further evolution towards relapse.
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Figure 1: PDXs capture clonal diversity present in paired diagnosis and relapse B-ALL samples
a. Experimental schematic. PDXs were generated for 6 adult and 8 pediatric B-ALL patient 

samples at diagnosis and relapse by intrafemoral transplantation of sorted leukemic blasts 

into 30 irradiated NSG mice in a limiting dilution assay. Mice were sacrificed 20–30 weeks 

post transplant and their engraftment was assessed by flow cytometry. Patient samples were 

also subjected to genomic analysis including whole exome sequencing (WES). Variants 

identified from the WES of patient samples at either time point were used to create custom 

capture baits for targeted sequencing at a deeper depth in the patient samples and their 

corresponding PDX. PDXs representing varying clones were identified. b. Schematic 

representation of the results obtanined by mutational clustering of variants based on the 

variant allele frequencies (VAF) at diagnosis (x-axis) and relapse (y-axis) of patient 1 in 2D 

VAF plots showing evolution from a minor subclone as depicted. Each dot represents a 

variant. Shared variants are shown in grey clusters (clusters a and c). Diagnosis and relapse 
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specific variants are shown in the blue cluster (cluster b) and red clusters (clusters d and e) 

respectively. c. Heatmap of the variant allele frequencies of leukemic variants at diagnosis, 

relapse and in their corresponding PDXs for patient 1. Variant classes are labeled with their 

class and a letter corresponding to the clusters illustrated in b.
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Figure 2: PDXs enrich for latent diagnosis clones
a. and b. Heatmaps of VAF of the SNV and indel leukemic variants identified by whole 

exome and targeted sequencing in diagnosis/relapse patient samples and PDX respectively. 

Variants are clustered as preserved (present in diagnosis and relapse patient samples), 

diagnosis specific (present in diagnosis patient sample and absent in relapse patient sample), 

latent (present in diagnosis patient sample with VAF < 0.3 and expanding in relapse sample), 

and relapse specific (present in relapse patient sample and absent in diagnosis patient 

sample). PDX are ordered in decreasing numbers of transplanted cell doses. a. 

Representative heatmap for the selection of latent variants in diagnosis PDX as observed in 

patient 9. b. Representative heatmap of patient 11 describing the identification of a relapse 

specific variant undetectable in the patient diagnosis sample but present in diagnosis PDX.
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Figure 3: PDXs identify relapse-fated clones in diagnosis patient samples
a. and b. Phylogenetic analysis showing relationship of patient 9 (a) and patient 11 (b) 

patient samples and xenografts, based on VAF of leukemic variants. The distance between 

symbols on the tree were estimated by a nearest neighbour joining method and represent the 

degrees of relation between them (Minkowski’s distance). Circles represent patient samples 

and triangles represent PDX; blue represents diagnosis and red represents relapse. Diagnosis 

clones on the trajectory to relapse were termed diagnosis relapse initiating clones or dRI and 

are indicated by a box with a hatched border.
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Figure 4: Generation of mutational trees from the combined genomic data of xenografts and 
bulk diagnosis and relapse patient samples
Mutational trees of variants clustered to form populations using the PairTree algorithm. 

Nodes in mutational trees are divided in half, with the intensity of blue in the left half 

indicating the frequency of the population’s variants at diagnosis, and the intensity of red in 

the right half showing the frequency of the population’s variants at relapse. Colour intensity 

shows subclonal prevalence as noted in the legend of a. and applicable to all other trees 

except c. a. Mutational tree of patient 1 derived by analysis of the patient samples (diagnosis 

and relapse) alone. Mutational populations identified from bulk patient samples alone are 

denoted by a square node labeled with with an alphabetical letter. b. Combined mutational 

tree derived from the variant analysis of both patient 1 patient samples and all their 

generated xenografts. Mutational populations derived from combined patient and xenograft 

analysis are represented by cicrcular nodes labeled with numerals. The mutational 

populations identified using the patient samples alone in a., are overlaid on the tree as boxes 
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labeled with their corresponding alphabetical letter. This identifies instances where single 

populations in a correspond to multiple populations when xenografts are included (ie. 

mutational population G). c. Combined mutational tree of patient 1 shaded to indicate the 

prevalence of variants in dPDX 7 (instead of diagnosis and relapse) demonstrating that this 

PDX is composed primarily of variants of the relapse lineage. d. Presence of identified 

mutational populations in patient samples and representative xenografts. Mutational 

populations (Pop.) are displayed on the y-axis and individual patient samples or xenografts 

are displayed on the x-axis. The height of the population bar represents the prevalence of the 

lineage in the patient sample (Pt.) or xenograft. e. Mutational tree, similar to a, derived from 

patient samples alone of patient 9. f. Combined mutational tree, similar to b, derived jointly 

from patient 9 patient samples and xenografts. Subclonal prevalences of populations 2–5 are 

shown, indicating the absence of diagnosis populations 2–4 and presence of population 5 

(the first node in the relapse lineage branch) in all dPDX. g. Mutational tree, similar to a, of 

patient 11 derived from patient samples alone. h. Combined mutational tree, similar to b, of 

patient 11 derived from patient samples and xenografts. The prevalence of mutational 

population 3 is displayed, highlighting its absence in the diagnosis patient and its detection 

in only two dPDX.
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Figure 5: Competitive dRI-PDX clones identified in diagnosis PDX
a.Flow cytometry analysis of patient samples and representative dPDX and rPDX of patient 

9 display the presence of two different immunophenotypic populations: a CD45dimCD34+ 

and a CD45negCD34+. b.Targeted sequencing of the dPDX revealed variability in the VAF 

of latent variants that corresponded with the shift in immunophenotypic populations. Cell 

sorting for immunophenotypic populations followed by targeted sequencing revealed the 

isolation of the latent variants in the CD45negCD34+ population. c. RNA-sequencing 

analysis of differentially expressed genes (adjusted p-value of < 0.05 and absolute log2 fold 

change of > 1) between the two dPDX (dRI-PDX clone 2; dRI-PDX clone 1CREBBP_WT) vs 

rPDX for Patient 9. Relative expression was generated from variance stabilized normalized 

counts. d. Enrichment map of gene sets differentially enriched in patient 9 dRI-PDX clone 

1CREBBP_WT vs dRI-PDX clone 2 (FDR q value ≤ 0.05) and dRI-PDX clone 1CREBBP_WT vs 

rPDX clone 3 (FDR q value ≤ 0.05). Node size is proportional to the number of genes 
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included in each gene set (minimum 10 genes/gene set). Grey and Red edges indicate gene 

overlap. Green node: enrichment in dRI-PDX clone 1CREBBP_WT (positive NES). Purple 

node: enrichment in dRI-PDX clone 2 and/or rPDX clone 3 (negative NES). Autoannotate 

app in Cytoscape was used to automatically annotate clusters (black squares). NES: 

normalized enrichment score; DDR: DNA Damage Response; TCR: T-Cell Receptor; UPR: 

Unfolded Protein Response; cGMP: cyclic Guanosine Monophosphate; DCC: Deleted in 

Colorectal Cancer gene; NO: Nitric Oxide; CSK: C-terminal Src Kinase; CFTR: Cystic 

Fibrosis Transmembrane Conductance Regulator; SPRY: Sprouty gene. e. Human purified 

cells from primary dPDX and dRI-PDX from patient 4 were transplanted into secondary 

NSG recipients. Mice were monitored for peripheral blood human chimerism until mean 

blood levels reached greater than 10% revealing different kinetics of chimerism between 

dPDX 7 and dRI-PDX 11. Symbols represent the mean chimerism value of dPDX 7 (n= 20 

mice) and dRI-PDX 11 (n= 16 mice) and bars represent standard deviation.
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Figure 6: dRI subclones display decreased sensitivity to commonly used chemotherapeutic drugs
a. Phylogenetic analysis showing clonal relationships in patient 7 based on VAF of leukemic 

variants shows clear evidence of the isolation of a relapse-fated, dRI, clone in dPDX 20. The 

distance between symbols on the tree were estimated by a nearest neighbour joining method 

and represent the degrees of relation between them (Minkowski’s distance). Circles 

represent patient samples and triangles represent PDX; blue represents diagnosis and red 

represents relapse. dRI-PDX 20 is indicated by a hatched border box. Purified human cells 

from primary dPDX 7, dRI-PDX 20 and rPDX 5 (representative relapse genetics) xenografts 

were injected into secondary NSG mice and allowed to engraft. Mice were randomized into 

4 groups (with 4–5 mice per group) and treated with either saline, dexamethasone, L-

asparagine or vincristine. After 4 weeks of treatment mice were sacrificed and engraftment 

in the IF, BM and SPL were analyzed by flow cytometry. Ratio of human chimerism in the 

BM of drug treated mice in comparison to saline controls is shown. b..Ratio of human 
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chimerism in the BM of drug treated mice in comparison to saline controls of dPDX, dRI-

PDX and rPDX of patient 1. c. Representative flow plots of the CD19 and CD33 

immunophenotype of dPDX and dRI-PDX dexamethasone treated mice from patient 1. 

Lines represent mean and standard deviation. Only significance between dPDX and dRI-

PDX are shown. **p < 0.01, *** p < 0.001, **** p < 0.0001, unpaired two-sided t-tests.
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Figure 7: dRI subclones share a common metabolic and stem cell profile
a. Plot showing the normalized enrichment score (NES) for the top differentially enriched 

gene sets (FDR q value ≤ 0.05) of dRI-PDX unique, dRI-PDX/rPDX common and rPDX 

unique groups from GSEA analysis of the following comparisons: dPDX vs dRI-PDX and 

dPDX vs rPDX. b. Heatmaps showing the expression of leading-edge genes (subset of genes 

found in the ranking at or just before the maximal enrichment score in GSEA analysis) for 

selected gene sets enriched in dRI-PDX and rPDX from enrichment map in (a). Relative 

expression was generated from variance stabilized normalized counts c. dPDX, dRI-PDX 

and rPDX from Patient 1, Patient 4 and Patient 7 were stained with MitoTracker and 

CellROX dyes and analyzed by flow cytometry. Mean fluorescence intensity (MFI) for each 

sample and dye is represented as ratio to dPDX for each patient (Patient 1: dPDX n=5, dRI-

PDX n=5, rPDX=4; ; Patient 4: dPDX n=5, dRI-PDX n=4, rPDX=4; Patient 7: dPDX n=5, 

dRI-PDX n=5, rPDX=5). d. Immunostaining analysis for TOMM20, MRPS18B and SOD1 
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in dPDX, dRI-PDX and rPDX cells from Patient 1, 3 and 7. The Integrated Density 

(IntDen= Area* Mean Fluorescence Intensity) for 40–50 cells from each clone was analyzed 

using Fiji. The mean for each clone was normalized and calculated as a ratio to the dPDX 

for each patient separately. Representative images for Patient 7 are shown. (Patient 1: dPDX 

n=1, dRI-PDX n=2, rPDX=1; Patient 7: dPDX n=2, dRI-PDX n=2, rPDX=1; Patient 3: 

dPDX n=2, dRI-PDX n=2, rPDX=1). e. GSEA enrichment plots from the following 

comparisons (1) dPDX vs dRI-PDX (n=4 pts), (2) dPDX vs rPDX (n=4 pts) and (3) 

diagnosis vs relapse patient samples from our cohort, were generated for mitochondrial 

translation and OXPHOS gene sets. f. Barplot of the aggregated GSVA scores for B cell 

genes and HSC genes in each sample. GSVA scores for samples in each category were 

summed and scaled from 0 to 1. The numbers above the bars represent how many times the 

observed score was higher than random scores obtained in 1000 permutations using a list of 

1000 random genes. g. Schematic diagram of dRI with altered metabolic and stem cell 

programs pre-exisiting in diagnosis patient samples that survive chemotherapy and seed the 

relapse disease. *p<0.05, **p < 0.01, ***p<0.001, unpaired two-sided t-test.
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