Abstract
With advances in biotechnology, genomics, and combinatorial chemistry, a wide variety of new, more potent and specific therapeutics are being created. Because of common problems such as low solubility, high potency, and/or poor stability of many of these new drugs, the means of drug delivery can impact efficacy and potential for commercialization as much as the nature of the drug itself. Thus, there is a corresponding need for safer and more effective methods and devices for drug delivery. Indeed, drug delivery systems—designed to provide a therapeutic agent in the needed amount, at the right time, to the proper location in the body, in a manner that optimizes efficacy, increases compliance and minimizes side effects—were responsible for $47 billion in sales in 2002, and the drug delivery market is expected to grow to $67 billion by 2006.
Keywords: Drug Release, Shell Thickness, Drug Release Rate, PLGA Microsphere, Polymer Microsphere
References
- [1].Al-Azzam W.P., Emil A., Griebenow K. Co-lyophilization of bovine serum albumin (BSA) with poly(ethylene glycol) improves efficiency of BSA encapsulation and stability in polyester microspheres by a solid-in-oil-in-oil technique. Biotechnol. Lett. 2002;24(16):1367–1374. doi: 10.1023/A:1019881505734. [DOI] [Google Scholar]
- [2].Alonso M.J., Gupta R.K., Min C., Siber G.R., Langer R. Biodegradable microspheres as controlledrelease tetanus toxoid delivery systems. Vaccine. 1994;12(4):299–306. doi: 10.1016/0264-410X(94)90092-2. [DOI] [PubMed] [Google Scholar]
- [3].Amsden B. The Production of Uniformly Sized Polymer Microspheres. Pharm. Res. 1999;16(7):1140–1143. doi: 10.1023/A:1011968707321. [DOI] [PubMed] [Google Scholar]
- [4].Amsden B. The production of uniformly sized polymer microspheres. Pharm. Res. 1999;16:1140–1143. doi: 10.1023/A:1011968707321. [DOI] [PubMed] [Google Scholar]
- [5].Amsden B.G., Goosen M. An examination of the factors affecting the size, distribution, and release characteristics of polymer microbeads made using electrostatics. J. Control. Rel. 1997;43:183–196. doi: 10.1016/S0168-3659(96)01483-6. [DOI] [Google Scholar]
- [6].Ando S., Putnam D., Pack D.W., Langer R. PLGAMicrospheres Containing PlasmidDNA: Preservation of Supercoiled DNA via Cryopreparation and Carbohydrate Stabilization. J. Pharmaceut. Sci. 1998;88(1):126–130. doi: 10.1021/js9801687. [DOI] [PubMed] [Google Scholar]
- [7].Baras B.B., Gillard M.A., Gillard J. Parameters influencing the antigen release from spray-dried poly(DLlactide) microparticles. Internat. J. Pharmaceut. 2002;200(1):133–145. doi: 10.1016/S0378-5173(00)00363-X. [DOI] [PubMed] [Google Scholar]
- [8].Barouch D.H., Santra S., Schmitz J.E., Kuroda M.J., Fu T.-M., Wagner W., Bilska M., Craiu A., Zheng X.X., Krivulkaothers G.R. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science. 2000;290:486–492. doi: 10.1126/science.290.5491.486. [DOI] [PubMed] [Google Scholar]
- [9].Barrow E.L.W., Winchester G.A., Staas J.K., Quenelle D.C., Barrow W.W. Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis-infected macrophages. Antimicrob. Agents Chemothera. 1998;42:2682–2689. doi: 10.1128/aac.42.10.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Batycky R.P., Hanes J., Langer R., Edwards D.A. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci. 1997;86:1464–1477. doi: 10.1021/js9604117. [DOI] [PubMed] [Google Scholar]
- [11].Beboit M.A., Baras B., Gillard J. Preparation and characterization of protein-loaded poly(ε-caprolactone) microparticles for oral vaccine delivery. Int. J. Pharm. 1999;184:73–84. doi: 10.1016/S0378-5173(99)00109-X. [DOI] [PubMed] [Google Scholar]
- [12].Berkland C. Methods of controlling size distribution of polymeric drug delivery particles. [M.S.] Urbana, IL: University of Illinois; 2001. [Google Scholar]
- [13].C. Berkland, A. Cox, K.K. Kim, and D.W. Pack. Three-month, zero-order piroxicam release from monodispersed double-walled microspheres of controlled shell thickness. J. Biomed. Mat. Res., 2004a (in press). [DOI] [PubMed]
- [14].Berkland C., Kim K., Pack D.W. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control. Rel. 2001;73:59–74. doi: 10.1016/S0168-3659(01)00289-9. [DOI] [PubMed] [Google Scholar]
- [15].Berkland C., Kim K., Pack D.W. PLG microsphere size controls drug release rate through several competing factors. Pharm. Res. 2003;20:1055–1062. doi: 10.1023/A:1024466407849. [DOI] [PubMed] [Google Scholar]
- [16].Berkland C., Kim K., Pack D.W. Precision Polymer Microparticles for Controlled Release Drug Delivery. ACS Symposium Series. 2004;879:197–213. doi: 10.1021/bk-2004-0879.ch014. [DOI] [Google Scholar]
- [17].Berkland C., King M., Cox A., Kim K., Pack D.W. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Rel. 2002;82:137–147. doi: 10.1016/S0168-3659(02)00136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Berkland C., Kipper M.J., Narasimhan B., Kim K., Pack D.W. Microsphere size, precipitation kinetics, and drug distribution control drug release from biodegradable polyanhydride microspheres. J. Control. Rel. 2004;94:129–141. doi: 10.1016/j.jconrel.2003.09.011. [DOI] [PubMed] [Google Scholar]
- [19].Berkland C., Pack D.W., Kim K. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(D,L-lactide-co-glycolide) Biomaterials. 2004;25:5649–5658. doi: 10.1016/j.biomaterials.2004.01.018. [DOI] [PubMed] [Google Scholar]
- [20].Berkland C., Pollauf E., Pack D.W., Kim K. Uniform double-walled polymer microcapsules of controllable shell thickness. J. Control. Rel. 2004;96:101–111. doi: 10.1016/j.jconrel.2004.01.018. [DOI] [PubMed] [Google Scholar]
- [21].Bezemer J.M., Radersma R., Grijpma D.W., Dijkstra P.J., van Blitterswijk C.A., Feijen J. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 2. Modulation of release rate. J. Control. Rel. 2000;67:249–260. doi: 10.1016/S0168-3659(00)00212-1. [DOI] [PubMed] [Google Scholar]
- [22].Bezemer J.M., Radersma R., Grijpma D.W., Dijkstra P.J., van Blitterswijk A.A., Feijen J. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 2. Modulation of release rate. J. Control. Rel. 2000;67:249–260. doi: 10.1016/S0168-3659(00)00212-1. [DOI] [PubMed] [Google Scholar]
- [23].Bibby D.C., Davies N.M., Tucker I.G. Poly(acrylic acid) microspheres containing beta-cyclodextrin: loading and in vitro release of two dyes. Int. J. Pharm. 1999;187:243–250. doi: 10.1016/S0378-5173(99)00190-8. [DOI] [PubMed] [Google Scholar]
- [24].Bittner B., Witt C., Mader K., Kissel T. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. J. Control. Rel. 1999;60(2–3):297–309. doi: 10.1016/S0168-3659(99)00085-1. [DOI] [PubMed] [Google Scholar]
- [25].Blanco D., Alonso M.J. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres. Effect of the protein and polymer properties and of the co-encapsulation of surfactants. Euro. J. Pharm. Biopharm. 1998;45(3):285–294. doi: 10.1016/S0939-6411(98)00011-3. [DOI] [PubMed] [Google Scholar]
- [26].Bonadio J., Goldstein S.A., Levy R.J. Gene therapy for tissue repair and regeneration. Adv. Drug Del. Rev. 1998;33:53–69. doi: 10.1016/S0169-409X(98)00020-9. [DOI] [PubMed] [Google Scholar]
- [27].Bozdag S., Calis S., Kas H.S., Ercan M.T., Peksoy I., Kincal A.A. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium. J. Microencap. 2001;18(4):443–456. doi: 10.1080/02652040010018641. [DOI] [PubMed] [Google Scholar]
- [28].Budker V., Zhang G., Knechtle S., Wolff J.A. Naked DNA delivered intraportally expresses efficiently in hepatocytes. Gene Ther. 1996;3:593–598. [PubMed] [Google Scholar]
- [29].Burkersroda F.V., Schedl L., Gopferich A. Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion. Biomaterials. 2002;23:4221–4231. doi: 10.1016/S0142-9612(02)00170-9. [DOI] [PubMed] [Google Scholar]
- [30].Butler S.M., Tracy M.A., Tilton R.D. Adsorption of serum albumin to thin films of poly(lactide-coglycolide) J. Control. Rel. 1999;58:335–347. doi: 10.1016/S0168-3659(98)00173-4. [DOI] [PubMed] [Google Scholar]
- [31].Calvo P., Remuñan-Lópex C., Vila-Jato J.L., Alonso M.J. Chitosan and chitosan/ethylene oxidepropylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 1997;14:1431–1436. doi: 10.1023/A:1012128907225. [DOI] [PubMed] [Google Scholar]
- [32].Caruso F. Nanoengineering of particle surfaces. Adv. Mater. 2001;13(1):11–22. doi: 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N. [DOI] [Google Scholar]
- [33].Castellanos I.J., Carrasquillo K.G., Lopez J.D., Alvarez M., Griebenow K. Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique. J. Pharm. Pharmacol. 2001;53:167–178. doi: 10.1211/0022357011775361. [DOI] [PubMed] [Google Scholar]
- [34].Castellanos I.J.C., Gloydian K., Ruben C., Ruben Encapsulation-induced aggregation and loss in activity of g-chymotrypsin and their prevention. J. Control. Rel. 2002;81(3):307–319. doi: 10.1016/S0168-3659(02)00073-1. [DOI] [PubMed] [Google Scholar]
- [35].Castellanos I.J.C., Gloydian K., Ruben C., Ruben Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J. Control. Rel. 2003;88(1):135–145. doi: 10.1016/S0168-3659(02)00488-1. [DOI] [PubMed] [Google Scholar]
- [36].Chang A., Gupta R.K. Stabilization of tetanus toxoid in poly(D,L-lactic-co-glycolic acid) microspheres for the controlled release of antigen. J. Pharm. Sci. 1996;85:129–132. doi: 10.1021/js950365v. [DOI] [PubMed] [Google Scholar]
- [37].Cheng Y., Illum L., Davis S.S. A poly(dl-lactide-co-glycolide) microsphere depot system for delivery of haloperidol. J. Control. Rel. 1998;55:203–212. doi: 10.1016/S0168-3659(98)00056-X. [DOI] [PubMed] [Google Scholar]
- [38].Choi Y., Kim S.Y., Kim S.H., Lee K.-S., Kim C., Byun Y. Long-term delivery of all-trans-retinoic acid using biodegradable PLLA/PEG-PLLA blended microspheres. Internat. J. Pharm. 2001;215(1–2):67–81. doi: 10.1016/S0378-5173(00)00676-1. [DOI] [PubMed] [Google Scholar]
- [39].Y.B. Choy, C. Berkland, H. Choi, D.W. Pack, and K. Kim. Fabrication and characterization of Uniform ethyl Cellulose Microspheres for use as Advanced Drug Delivery Vehicles, 30th Annual Meeting & Exposition of the Controlled Release Society, 2003.
- [40].Y.B. Choy, H. Choi, and K. Kim. A Novel Method of Fabricating Uniform Chitosan Microspheres of Precisely Controlled Size and Size Distribution, 31th Annual Meeting & Exposition of the Controlled Release Society, 2004.
- [41].Y.B. Choy, H. Choi, and K. Kim. Novel Fabrication Method for Uniform Gelatin Microspheres of Precisely Controlled Size and Size Distribution, 31th Annual Meeting&Exposition of the Controlled Release Society, 2004.
- [42].Y.B. Choy, H. Choi, and K. Kim, A novel method of fabricating uniform hydrogel microspheres of precise size and size distribution, manuscript in preparation (2004).
- [43].Chu L.Y., Xie R., Zhu J.H., Chen W.M., Yamaguchi T., Nakao S.I. Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules. J. Colloid Interface Sci. 2003;265:187–196. doi: 10.1016/S0021-9797(03)00350-3. [DOI] [PubMed] [Google Scholar]
- [44].Cleland J.L. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnol. Progress. 1998;14(1):102–107. doi: 10.1021/bp970128t. [DOI] [PubMed] [Google Scholar]
- [45].Cleland J.L. Single-administration vaccines: controlled-release technology to mimic repeated immunizations. Trends Biotechnol. 1999;17(1):25–29. doi: 10.1016/S0167-7799(98)01272-4. [DOI] [PubMed] [Google Scholar]
- [46].Cleland J.L., Duenas E.T., Park A., Daugherty A., Kahn J., Kowalski J., Cuthbertson A. Development of poly-(D,L-lactide-co-glycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Rel. 2001;72(1–3):13–24. doi: 10.1016/S0168-3659(01)00258-9. [DOI] [PubMed] [Google Scholar]
- [47].Cleland J.L., Lim A., Daugherty A., Barron L., Desjardin N., Duenas E.T., Eastman D.J., Vennari J.C., Wrin T., Bermanothers P. Development of a single-shot subunit vaccine for HIV-1 with programmable in vivo autoboost and long-lasting neutralizing response. J. Pharm. Sci. 1998;87(12):1489–1495. doi: 10.1021/js980263f. [DOI] [PubMed] [Google Scholar]
- [48].Cohen H., Levy R.J., Gao J., Fishbein I., Kousaev V., Sosnowski S., Slomkowski S., Golomb G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 2000;7:1896–1905. doi: 10.1038/sj.gt.3301318. [DOI] [PubMed] [Google Scholar]
- [49].Cohen S., Yoshioka T., Lucarelli M., Hwang L.H., Langer R. Controlled delivery systems for proteins based on poly(Lactic/Glycolic Acid) microspheres. Pharma. Res. 1991;8(6):713–720. doi: 10.1023/A:1015841715384. [DOI] [PubMed] [Google Scholar]
- [50].Crotts G., Park T.G. Preparation of porous and nonporous biodegradable polymeric hollowmicrospheres. J. Controlled. Rel. 1995;35:91–105. doi: 10.1016/0168-3659(95)00010-6. [DOI] [Google Scholar]
- [51].Diwan M., Park T.G. Pegylation enhances protein stability during encapsulation in PLGA microspheres. J. Controlled Rel. 2001;73(2–3):233–244. doi: 10.1016/S0168-3659(01)00292-9. [DOI] [PubMed] [Google Scholar]
- [52].Donnelly J.J., Ulmer J.B., Shiver J.W., Liu M.A. DNA vaccines. Annu. Rev. Immunol. 1997;15:617–648. doi: 10.1146/annurev.immunol.15.1.617. [DOI] [PubMed] [Google Scholar]
- [53].Dwarki V.J., Belloni P., Nijjar T., Smith J., Couto L., Rabier M., Clift S., Berns A., Cohen L.K. Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice. PNAS. 1995;92:1023–1027. doi: 10.1073/pnas.92.4.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Fang J., Zhu Y.-Y., Smiley E., Bonadio J., Rouleau J.P., Goldstein S.A., McCauley L.K., Davidson B.L., Roessler B.J. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl. Acad. Sci. 1996;93:5753–5758. doi: 10.1073/pnas.93.12.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Felgner P.L., Ringold G.M. Cationic liposome-mediated transfection. Nature. 1989;337:387. doi: 10.1038/337387a0. [DOI] [PubMed] [Google Scholar]
- [56].Foster C.A., Kim K., Turnbull R.J., Hendricks C.D. Apparatus for producing uniform solid spheres of hydrogen. Rev. Sci. Instrum. 1977;48:625–631. doi: 10.1063/1.1135095. [DOI] [Google Scholar]
- [57].Frangione-Beebe M., Rose R.T., Kaumaya P.T., Schwendeman S.P. Microencapsulation of a synthetic peptide epitope for HTLV-1 in biodegradable poly(D,L-lactide-co-glycolide) microspheres using a novel encapsulation technique. J. Microencapsul. 2001;18:663–677. doi: 10.1080/02652040110055216. [DOI] [PubMed] [Google Scholar]
- [58].Freitas S., Merkle H.P., Gander B. Ultrasonic atomisation into reduced pressure atmosphere-envisaging aseptic spray-drying for microencapsulation. J. Control. Rel. 2004;95:185–195. doi: 10.1016/j.jconrel.2003.11.005. [DOI] [PubMed] [Google Scholar]
- [59].Friedlander A.M., Welkos S.L., Ivins B.E. Anthrax Vaccines. Curr. Topics Microbiol. Immunol. 2002;271:33–60. doi: 10.1007/978-3-662-05767-4_3. [DOI] [PubMed] [Google Scholar]
- [60].Fu K., Griebenow K., Hsieh L., Klibanov A.M., Langer R. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J. Control. Rel. 1999;58(3):357–366. doi: 10.1016/S0168-3659(98)00192-8. [DOI] [PubMed] [Google Scholar]
- [61].Fu K., Harrell R., Zinski K., Um C., Jaklenec A., Frazier J., Lotan N., Burke P., Klibanov A.M., Langer R. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J. Pharm. Sci. 2003;92:1582–1591. doi: 10.1002/jps.10414. [DOI] [PubMed] [Google Scholar]
- [62].Fu K., Klibanov A.M., Langer R. Protein stability in controlled-release systems. Nat. Biotechnol. 2000;18:24–25. doi: 10.1038/71875. [DOI] [PubMed] [Google Scholar]
- [63].Fu K., Pack D.W., Klibanov A.M., Langer R. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 2000;17(1):100–106. doi: 10.1023/A:1007582911958. [DOI] [PubMed] [Google Scholar]
- [64].Gilliard R.P., Kim K., Turnball R.J. Spherical hydrogen pellet generator for magnetic confinement fusion research. Rev. Sci. Instrum. 1981;52:183–190. doi: 10.1063/1.1136570. [DOI] [Google Scholar]
- [65].Göpferich A., Alonso M.J., Langer R. Development and characterization of microencapsulated microspheres. Pharm. Res. 1994;11:1568–1574. doi: 10.1023/A:1018901619230. [DOI] [PubMed] [Google Scholar]
- [66].Gopferich A., Langer R. Modeling of Polymer Erosion. Macromolecules. 1993;26(16):4105–4112. doi: 10.1021/ma00068a006. [DOI] [Google Scholar]
- [67].Guiziou B., Armstrong D.J., Elliot P.N.C., Ford J.L., Rostron C. Investigation of in-vitro release characteristics of NSAID-loaded polylactic acid microspheres. J. Microencapsul. 1996;13(6):701–708. doi: 10.3109/02652049609026053. [DOI] [PubMed] [Google Scholar]
- [68].Guttman J.L., Hendricks C.D., Kim K., Turnbull R.J. An investigation of the effects of system parameters on the production of hollow hydrogen droplets. J. Appl. Phys. 1979;50(6):4139–42. doi: 10.1063/1.326494. [DOI] [Google Scholar]
- [69].Hanes J., Chiba M., Langer R. Synthesis and characterization of degradable anhydride-co-imide terpolymers containing trimellitylimido-L-typrosine: novel polymers for drug delivery. Macromolecules. 1996;29:5279–5287. doi: 10.1021/ma960393f. [DOI] [Google Scholar]
- [70].Hanes J., Chiba M., Langer R. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials. 1998;19:163–172. doi: 10.1016/S0142-9612(97)00221-4. [DOI] [PubMed] [Google Scholar]
- [71].Hartigan-O’Connor D., Chamberlain J.S. Progress toward gene therapy of Duchenne muscular dystrophy. Seminars Neurol. 1999;19(3):323–3332. doi: 10.1055/s-2008-1040848. [DOI] [PubMed] [Google Scholar]
- [72].He P., Davis S.S., Illum L. Chitosan microspheres prepared by spray drying. Int. J. Pharma. 1999;187:53–65. doi: 10.1016/S0378-5173(99)00125-8. [DOI] [PubMed] [Google Scholar]
- [73].Hedley M.L., Curley J., Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Medicine. 1998;4:365–368. doi: 10.1038/nm0398-365. [DOI] [PubMed] [Google Scholar]
- [74].Higaki M., Azechi Y., Takase T., Igarashi R., Nagahara S., Sano A., Fujioka K., Nakagawa N., Aizawa C., Mizushima Y. Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid. Vaccine. 2001;19(23–24):3091–3096. doi: 10.1016/S0264-410X(01)00039-1. [DOI] [PubMed] [Google Scholar]
- [75].Hirosue S., Muller B.G., Mulligan R.C., Langer R. Plasmid DNA encapsulation and release from solvent diffusion nanospheres. J. Control. Rel. 2001;70(1–2):231–242. doi: 10.1016/S0168-3659(00)00353-9. [DOI] [PubMed] [Google Scholar]
- [76].Jabbal-Gill I., Lin W., Jenkins P., Watts P., Jimenez M., Illum L., Davis S.S., Wood J.M., Major D., Minorothers P.D. Potential of polymeric lamellar substrate particles (PLSP) as adjuvants for vaccines. Vaccine. 1999;18(3–4):238–250. doi: 10.1016/S0264-410X(99)00195-4. [DOI] [PubMed] [Google Scholar]
- [77].Jain R.A., Rhodes C.T., Railkar A.M., Malick A.W., Shah N.H. Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Europ. J. Pharm. Biopharm. 2000;50(2):257–262. doi: 10.1016/S0939-6411(00)00062-X. [DOI] [PubMed] [Google Scholar]
- [78].Jang K.Y., Kim K., Upadhye R.S. Study of sol-gel processing for fabrication of hollow silica-aerogel spheres. J. Vac. Sci., Technol. A. 1990;8(3):1732–1735. doi: 10.1116/1.576839. [DOI] [Google Scholar]
- [79].Jiang W., Schwendeman S.P. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. Pharm. Res. 2001;18(6):878–885. doi: 10.1023/A:1011009117586. [DOI] [PubMed] [Google Scholar]
- [80].Jiang W., Schwendeman S.P. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D,L-lactide) and poly(ethylene glycol) microsphere blends. Pharm. Res. 2001;18:878–885. doi: 10.1023/A:1011009117586. [DOI] [PubMed] [Google Scholar]
- [81].Jiang W.S., Steven P. Stabilization of a model formalinized protein antigen encapsulated in poly(lactideco-glycolide)-based microspheres. J. Pharm. Sci. 2001;90(10):1558–1569. doi: 10.1002/jps.1106. [DOI] [PubMed] [Google Scholar]
- [82].Jones B.G., Dickinson P.A., Gumbleton M., Kellaway I.W. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Int. J. Pharm. 2002;236:65–79. doi: 10.1016/S0378-5173(02)00016-9. [DOI] [PubMed] [Google Scholar]
- [83].Kane K., Lloyd J., Zaffran M., Simonsen L., Kane M. Transmission of Hepatitis B, Hepatitis C and Human Immunodeficiency Viruses through unsafe Injections in the Developing World: Model-Based Regional Estimates. Bulletin of the World Health Organization. 1999;77:801–807. [PMC free article] [PubMed] [Google Scholar]
- [84].Kang J., Schwendeman S.P. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide) implants. Biomaterials. 2001;23(1):239–245. doi: 10.1016/S0142-9612(01)00101-6. [DOI] [PubMed] [Google Scholar]
- [85].Kim K., Jang K.Y., Upadhye R.S. Hollow silica spheres of controlled size and porosity by sol-gel processing. J. Am. Ceram. Soc. 1991;74(8):1987–1992. doi: 10.1111/j.1151-2916.1991.tb07819.x. [DOI] [Google Scholar]
- [86].Kim K., Turnbull R.J. Generation of charged drops of insulating liquids by electrostatic spraying. J. Appl. Phys. 1976;47(5):1964–1969. doi: 10.1063/1.322920. [DOI] [Google Scholar]
- [87].Kim N.K., Kim K., Payne D.A., Upadhye R.S. Fabrication of hollow silica aerogel spheres by a droplet generation method and sol-gel processing. J. Vac. Sci., Technol. A. 1989;7(3):1181–1184. doi: 10.1116/1.576250. [DOI] [Google Scholar]
- [88].King T.W., Patrick C.W., Jr. Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/polyethylene glycol microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J. Biomed. Materials Res. 2000;51(3):383–390. doi: 10.1002/1097-4636(20000905)51:3<383::AID-JBM12>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- [89].Kipper M.J., Shen E., Determan A., Narasimhan B. Design of an Injectable System Based on Bioerodible Polyanhydride Microspheres for Sustained Drug Delivery. Biomaterials. 2002;23:4405–4412. doi: 10.1016/S0142-9612(02)00181-3. [DOI] [PubMed] [Google Scholar]
- [90].Kirwan J.E., Lee T.A., Schroering G.N., Krier H., Peters J.E., Renie J.P., Kim K. An experimental and theoretical study of a monodisperse spray. AIAA J. Propulsion Power. 1988;4:299–307. [Google Scholar]
- [91].Kumar N.L., Robert S., Abraham J. D. Polyanhydrides: an overview. Adv. Drug Delivery Rev. 2002;54(7):889–910. doi: 10.1016/S0169-409X(02)00050-9. [DOI] [PubMed] [Google Scholar]
- [92].Lalla J.K., Sapna K. Biodegradable microspheres of poly(dl-lactic acid) containing piroxicam as a model drug for controlled release via the parenteral route. J. Microencapsul. 1993;10(4):449–460. doi: 10.3109/02652049309015322. [DOI] [PubMed] [Google Scholar]
- [93].Lam X.M.D., Eileen T., Cleland J. L. Encapsulation and stabilization of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J. Pharm. Sci. 2001;90(9):1356–1365. doi: 10.1002/jps.1088. [DOI] [PubMed] [Google Scholar]
- [94].Lambert G., Fattal E., Pinto-Alphandary A., Gulik A., Couvreur T. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for delivery of oligonucleotides. Pharm. Res. 2000;17(6):707–714. doi: 10.1023/A:1007582332491. [DOI] [PubMed] [Google Scholar]
- [95].Le Corre P., Le Guevello P., Gajan V., Chevanne F., Le Verge R. Preparation and characterization of bupivacaine-loaded polylactide and poly(lactide-glycolide) microspheres. Internat. J. Pharm. 1994;107(1):41–49. doi: 10.1016/0378-5173(94)90300-X. [DOI] [Google Scholar]
- [96].Leach K., Noh K., Mathiowitz E. Effect of manufacturing conditions on the formation of double-walled polymer microspheres. J. Microencapsul. 1999;16(2):153–167. doi: 10.1080/026520499289149. [DOI] [PubMed] [Google Scholar]
- [97].Leach K.J., Mathiowitz E. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation. Biomaterials. 1998;19(21):1973–1980. doi: 10.1016/S0142-9612(98)00108-2. [DOI] [PubMed] [Google Scholar]
- [98].Leach K.J., Mathiowitz E. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation. Biomaterials. 1998;19:1973–1980. doi: 10.1016/S0142-9612(98)00108-2. [DOI] [PubMed] [Google Scholar]
- [99].Leach K.J., Takahashi S., Mathiowitz E. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. II. In vivo degradation. Biomaterials. 1998;19(21):1981–1988. doi: 10.1016/S0142-9612(98)00109-4. [DOI] [PubMed] [Google Scholar]
- [100].Leach K.J., Takahashi S., Mathiowitz E. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. II. In vivo degradation. Biomaterials. 1998;19:1981–1988. doi: 10.1016/S0142-9612(98)00109-4. [DOI] [PubMed] [Google Scholar]
- [101].Lee H.K., Park J.H., Kwon K.C. Double-walled microparticles for single shot vaccine. J. Control. Rel. 1997;44(2–3):283–293. [Google Scholar]
- [102].Lee S.C., Oh J.T., Jang M.H., Chung S.I. Quantitative analysis of polyvinyl alcohol on the surface of poly(D,L-lactide-co-glycolide) microspheres prepared by solvent evaporation method: effect of particle size and PVA concentration. J. Control. Rel. 1999;59:123–132. doi: 10.1016/S0168-3659(98)00185-0. [DOI] [PubMed] [Google Scholar]
- [103].Lee T.H., Wang J., Wang C. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J. Control. Rel. 2002;83:437–52. doi: 10.1016/S0168-3659(02)00235-3. [DOI] [PubMed] [Google Scholar]
- [104].Lee T.H., Wang J., Wang C.-H. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J. Control. Rel. 2002;83:437–452. doi: 10.1016/S0168-3659(02)00235-3. [DOI] [PubMed] [Google Scholar]
- [105].Leelarasamee N., Howard S.A., Malanga C.J., Ma J.K.H. A method for the preparation of polylactic acid microcapsules of controlled particle size and drug loading. J. Microencapsul. 1988;5:147–157. doi: 10.3109/02652048809056478. [DOI] [PubMed] [Google Scholar]
- [106].Lengsfeld C.S., Anchordoquy T.J. Shear-induced degradation of plasmid DNA. J. Pharm. Sci. 2002;91:1581–1589. doi: 10.1002/jps.10140. [DOI] [PubMed] [Google Scholar]
- [107].Li X., Xianmo D., Minglong Y., Chengdong X., Zhitang H., Yanhua Z., Jia W. In vitro degradation and release profiles of poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped proteins. J. App. Poly. Sci. 2000;78(1):140–148. doi: 10.1002/1097-4628(20001003)78:1<140::AID-APP180>3.0.CO;2-P. [DOI] [Google Scholar]
- [108].Li X.Z., Yan Y.R., Jia W., Yuan M., Deng X., Huang Z. Influence of process parameters on the protein stability encapsulated in poly-DL-lactide-poly(ethylene glycol) microspheres. J. Control. Rel. 2000;68(1):41–52. doi: 10.1016/S0168-3659(00)00235-2. [DOI] [PubMed] [Google Scholar]
- [109].Liggins R.T., Burt H.M. Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Internat. J. Pharm. 2001;222(1):19–33. doi: 10.1016/S0378-5173(01)00690-1. [DOI] [PubMed] [Google Scholar]
- [110].Liggins R.T., D’Amours S., Demetrick J.S., Machan L.S., Burt H.M. Paclitaxel loaded poly(l-lactic acid) microspheres for the prevention of intraperitoneal carcinomatosis after a surgical repair and tumor cell spill. Biomaterials. 2000;21:1959–1969. doi: 10.1016/S0142-9612(00)00080-6. [DOI] [PubMed] [Google Scholar]
- [111].Lim D.W., Park T.W. Stereocomplex formation between enantiomeric PLA-PEG-PLA triblock copolymers: characterization and use as protein-delivery microparticulate carriers. J. App. Polymer Sci. 2000;75(13):1615–1623. doi: 10.1002/(SICI)1097-4628(20000328)75:13<1615::AID-APP7>3.0.CO;2-L. [DOI] [Google Scholar]
- [112].Lin S.Y., Chen K.S., Teng H.H., Li M.J. In vitro degradation and dissolution behaviours of microspheres prepared by three low molecular weight polyesters. J. Microencapsul. 2000;17(5):577–586. doi: 10.1080/026520400417630. [DOI] [PubMed] [Google Scholar]
- [113].Liu Y., Deng X. Influences of preparation conditions on particle size and DNA-loading efficiency for poly(-lactic acid-polyethylene glycol) microspheres entrapping free DNA. J. Control. Rel. 2002;83(1):147–155. doi: 10.1016/S0168-3659(02)00176-1. [DOI] [PubMed] [Google Scholar]
- [114].Lofthouse S. Immunological aspects of controlled antigen delivery. Ad. Drug Delivery Rev. 2002;54(6):863–870. doi: 10.1016/S0169-409X(02)00073-X. [DOI] [PubMed] [Google Scholar]
- [115].Lunsford L., McKeever U., Eckstein V., Hedley M.L. Tissue distribution and persistence in mice of plasmid DNA encapsulated in a PLGA-based microsphere delivery vehicle. J. Drug Targeting. 2000;8:39–50. doi: 10.3109/10611860009009208. [DOI] [PubMed] [Google Scholar]
- [116].Kim D.W.-M. L., Belcheva N., Saltzman W. M. Controlled DNA delivery systems. Pharm. Res. 1999;16(8):1300–1308. doi: 10.1023/A:1014870102295. [DOI] [PubMed] [Google Scholar]
- [117].Ma G.H., Su Z.G., Omi S., Sundberg D., Stubbs J. Microencapsulation of oil with poly(styrene-N, N-dimethylaminoethyl methacrylate) by SPG emulsification technique: Effect of conversion and composition of oil phase. J. Colloid Interface Sci. 2003;266:282–294. doi: 10.1016/S0021-9797(03)00692-1. [DOI] [PubMed] [Google Scholar]
- [118].Mabuchi K., Nakayama A., Iwamoto K. Preparation and in vitro evaluation of poly(lactic acid) microspheres containing carmofur. Yakuzaigaku. 1994;54(1):42–48. [Google Scholar]
- [119].Mao H.-Q., Roy K., Walsh S.M., August J.T., Leong K.W. DNA-Chitosan Nanospheres for Gene Delivery. Proceedeeings Intern. Symp. Control. Rel. Bioact. Mater. 1996;23:401–402. [Google Scholar]
- [120].Marinakos S.M., Novak J.P., Brousseau L.C., House A.B., Edeki E.M., Feldhaus J.C., Feldheim D.L. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc. 1999;121:8518–8522. doi: 10.1021/ja990945k. [DOI] [Google Scholar]
- [121].Mathiowitz E., Jacob J.S., Jong Y.S., Carino G.P., Chickering D.E., Chaturvedi P., Santos C.A., Vijayaraghavan K., Montgomery S., Bassettothers M. Biologically erodable microspheres as potential oral drug delivery systems. Nature. 1997;386:410–414. doi: 10.1038/386410a0. [DOI] [PubMed] [Google Scholar]
- [122].E. Mathiowitz and R. Langer. Massachusetts Institute of Technology, assignee. 1999. Multiwall polymeric microspheres. U.S.A. patent 5,912,017.
- [123].Mehta R.C., Thanoo B.C., DeLuca P.P. Peptide containing microspheres from low molecular weight and hydrophilic poly(D,L-lactide-co-glycolide) J. Control. Rel. 1996;41(3):249–257. doi: 10.1016/0168-3659(96)01332-6. [DOI] [Google Scholar]
- [124].Morlock M., Kissel T., Li Y.X., Koll H., Winter G. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties. J. Control. Rel. 1998;56(1–3):105–115. doi: 10.1016/S0168-3659(98)00070-4. [DOI] [PubMed] [Google Scholar]
- [125].Moynihan J.S., Blair J., Coombes A., D’Mello F., Howard C.R. Enhanced immunogenicity of a hepatitis B virus peptide vaccine using oligosaccharide ester derivative microparticles. Vaccine. 2002;20(13–14):1870–1876. doi: 10.1016/S0264-410X(01)00494-7. [DOI] [PubMed] [Google Scholar]
- [126].Mu L., Feng S.S. Fabrication, characterization and in vitro release of paclitaxel(Taxol r®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Rel. 2001;76:239–254. doi: 10.1016/S0168-3659(01)00440-0. [DOI] [PubMed] [Google Scholar]
- [127].Mumper R.J., Rolland A.P. Plasmid delivery to muscle: recent advances in polymer delivery systems. Adv. Drug Del. Rev. 1998;30:151–172. doi: 10.1016/S0169-409X(97)00113-0. [DOI] [PubMed] [Google Scholar]
- [128].Narayani R., Rao K. P. Gelatin microsphere cocktails of different sizes for the controlled release of anticancer drugs. Int. J. Pharm. 1996;143:255–258. doi: 10.1016/S0378-5173(96)04685-6. [DOI] [Google Scholar]
- [129].Nixon D.F., Hioe C., Chen P.-D. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine. 1996;14:1523–1530. doi: 10.1016/S0264-410X(96)00099-0. [DOI] [PubMed] [Google Scholar]
- [130].Nof M., Shea L.D. Drug-release scaffolds fabricated form drug-loaded microspheres. J. Biomed. Mat. Res. 2002;59:349–356. doi: 10.1002/jbm.1251. [DOI] [PubMed] [Google Scholar]
- [131].O’Donnell P.B., McGinity J.W. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Del. Rev. 1997;28:25–42. doi: 10.1016/S0169-409X(97)00049-5. [DOI] [PubMed] [Google Scholar]
- [132].Pekarek K.J., Jacob J.S., Mathiowitz E. Double-walled polymer microspheres for controlled drug release. Nature. 1994;367(6460):258–60. doi: 10.1038/367258a0. [DOI] [PubMed] [Google Scholar]
- [133].Pekarek K.J., Jacob J.S., Mathiowitz E. Double-walled polymer microspheres for controlled drug release. Nature. 1994;367:258–260. doi: 10.1038/367258a0. [DOI] [PubMed] [Google Scholar]
- [134].Pekarek K.J., Jacob J.S., Mathiowitz E. One-step preparation of double-walled microspheres. Adv. Mater. 1994;6:684–687. doi: 10.1002/adma.19940060916. [DOI] [Google Scholar]
- [135].Perez C., Griebenow K. Effect of salts on lysozyme stability at the water-oil interface and upon encapsulation in poly(lactic-co-glycolic) acid microspheres. Biotechnol. Bioeng. 2003;82(7):825–832. doi: 10.1002/bit.10632. [DOI] [PubMed] [Google Scholar]
- [136].Nashbly C.M., Perez-Rodriguez, Gonzalez K., Griebenow K. Stabilization of a-chymotrypsin at the CH2Cl2/water interface and upon water-in-oil-in-water encapsulation in PLGA microspheres. J. Control. Rel. 2003;89(1):71–85. doi: 10.1016/S0168-3659(03)00074-9. [DOI] [PubMed] [Google Scholar]
- [137].Perumal D., Dangor C.M., Alcock R.S., Hurbans N., Moopanar K.R. Effect of formulation variable on in vitro drug release and micromeritic properties of modified release ibuprofen microspheres. J. Microencapsul. 1999;16(4):475–487. doi: 10.1080/026520499288924. [DOI] [PubMed] [Google Scholar]
- [138].Puri N., Kou J.H., Sinko P.J. Adjuvancy enhancement of muramyl dipeptide by modulating its release from a physicochemically modified matrix of ovalbumin microspheres I. In vitro characterization. J. Control. Rel. 2000;69(1):53–67. doi: 10.1016/S0168-3659(00)00289-3. [DOI] [PubMed] [Google Scholar]
- [139].Puri N., Sinko P.J. Adjuvancy enhancement of muramyl dipeptide by modulating its release from a physicochemically modified matrix of ovalbumin microspheres II. In vivo investigation. J. Control. Rel. 2000;69(1):69–80. doi: 10.1016/S0168-3659(00)00290-X. [DOI] [PubMed] [Google Scholar]
- [140].Quaglia F., De Rosa G., Granata E., Ungaro F., Fattal E., La Rotonda M.I. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray-drying. J. Control. Rel. 2003;86:267–278. doi: 10.1016/S0168-3659(02)00414-5. [DOI] [PubMed] [Google Scholar]
- [141].Raghuvanshi R., Katare Y., Lalwani K., Ali M., Singh O., Panda A. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Internat. J. Pharm. 2002;245(1–2):109–121. doi: 10.1016/S0378-5173(02)00342-3. [DOI] [PubMed] [Google Scholar]
- [142].Ramachandra L., Song R., Harding C.V. Phagosomes are fully competent antigen-processing organelles that mediate the formation of peptide class II MHC complexes. J. Immunol. 1999;162:3263–3272. [PubMed] [Google Scholar]
- [143].C. Raman, C. Berkland, K.K. Kim, and D.W. Pack. Modeling small-molecule release from PLG microspheres: effects of polymer degradation and non-uniform drug distribution. 2004 (submitted). [DOI] [PubMed]
- [144].Ravivarapu H.B., Burton K., DeLuca P.P. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur. J. Pharm. 2000;50:263–270. doi: 10.1016/S0939-6411(00)00099-0. [DOI] [PubMed] [Google Scholar]
- [145].Rayleigh L. Proc. London Math. Soc. 1879;10:4. doi: 10.1112/plms/s1-10.1.4. [DOI] [Google Scholar]
- [146].Rayleigh L. Phil. Mag. S.G. 1882;14:184. [Google Scholar]
- [147].Sah H. Protein instability toward organic solvent/water emulsification: implications for protein microencapsulation into microspheres. J. Pharm. Sci. Tech. 1999;53(1):3–10. [PubMed] [Google Scholar]
- [148].Saltzman W.M. Drug Delivery: Engineering Principles for Drug Therapy. New York: Oxford University Press; 2001. [Google Scholar]
- [149].Sanchez A., Gupta R.K., Alonso M.J., Siber G.R., Langer R. Pulsed controlled-release system for potential use in vaccine delivery. J. Pharm. Sci. 1996;85(6):547–552. doi: 10.1021/js960069y. [DOI] [PubMed] [Google Scholar]
- [150].Sanchez A., Gupta R.K., Alonso M.J., Siber G.R., Langer R. Pulsed controlled-release system for potential use in vaccine delivery. J. Pharm. Sci. 1996;85:547–552. doi: 10.1021/js960069y. [DOI] [PubMed] [Google Scholar]
- [151].Sandor M., Enscore D., Weston P., Mathiowitz E. Effect of protein molecular weight on release from micron-sized PLGA microspheres. J. Control. Rel. 2001;76:297–311. doi: 10.1016/S0168-3659(01)00446-1. [DOI] [PubMed] [Google Scholar]
- [152].Sansdrap P., Moes A.J. Influence of manufacturing parameters on the size characteristics and the release profiles of nifedipine from poly(DL-lactide-co-glycolide) microspheres. Int. J. Pharm. 1993;98:157–164. doi: 10.1016/0378-5173(93)90052-H. [DOI] [Google Scholar]
- [153].Schwendeman S.P. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Therapeut. Drug Carrier Sys. 2002;19(1):73–98. doi: 10.1615/CritRevTherDrugCarrierSyst.v19.i1.20. [DOI] [PubMed] [Google Scholar]
- [154].Shao P.G., Bailey L.C. Stabilization of pH-induced degradation of porcine insulin in biodegradable polyester microspheres. Pharm. Devel. Tech. 1999;4(4):633–642. doi: 10.1081/PDT-100101402. [DOI] [PubMed] [Google Scholar]
- [155].Shea L.D., Smiley E., Bonadio J., Mooney D.J. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 1999;17:551–554. doi: 10.1038/9853. [DOI] [PubMed] [Google Scholar]
- [156].Shen E., Kipper M.J., Dziadul B., Lim M.-K., Narasimhan B. Mechanistic Relationships between Polymer Microstructure and Drug Release Kinetics in Bioerodible Polyanhydrides. J. Control. Rel. 2002;82:115–125. doi: 10.1016/S0168-3659(02)00125-6. [DOI] [PubMed] [Google Scholar]
- [157].Shenderova A., Burke T.G., Schwendeman S.P. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm. Res. 1999;16(2):241–248. doi: 10.1023/A:1018876308346. [DOI] [PubMed] [Google Scholar]
- [158].Shi L., Caulfield M.J., Chern R.T., Wilson R.A., Sanyal G., Volkin D.B. Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres. J. Pharm. Sci. 2002;91(4):1019–1035. doi: 10.1002/jps.10042. [DOI] [PubMed] [Google Scholar]
- [159].Shiga K., Muramatsu N., Kondo T. Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size. J. Pharm. Pharmacol. 1996;48:891–895. doi: 10.1111/j.2042-7158.1996.tb05995.x. [DOI] [PubMed] [Google Scholar]
- [160].Slobbe L., Medlicott N., Lockhart E., Davies N., Tucker I., Razzak M., Buchan G. A prolonged immune response to antigen delivered in poly (epsilon-caprolactone) microparticles. Immun. Cell Biol. 2003;81(3):185–191. doi: 10.1046/j.1440-1711.2003.01155.x. [DOI] [PubMed] [Google Scholar]
- [161].Spenlehauer G., Vert M., Benoit J.P., Boddaert A. In vitro and in vivo degradation of poly(DLlactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials. 1989;10(8):557–563. doi: 10.1016/0142-9612(89)90063-X. [DOI] [PubMed] [Google Scholar]
- [162].Sturesson C., Artursson P., Ghaderi R., Johansen K., Mirazimi A., Uhnoo I., Svensson L., Albertsson A.-C., Carlfors J. Encapsulation of rotavirus into poly(lactide-co-glycolide) microspheres. J. Control. Rel. 1999;59(3):377–389. doi: 10.1016/S0168-3659(99)00014-0. [DOI] [PubMed] [Google Scholar]
- [163].Sturesson C.C. J. Incorporation of protein in PLG microspheres with retention of bioactivity. J. Control. Rel. 2000;67(2–3):171–178. doi: 10.1016/S0168-3659(00)00205-4. [DOI] [PubMed] [Google Scholar]
- [164].Supsakulchai A., Ma G.H., Nagai M., Omi S. Preparation of uniform titanium dioxide (TiO2) polystyrene-based composite particles using the glass membrance emulsification process with a subsequent suspension polymerization. J. Microencapsul. 2003;20:1–18. doi: 10.1080/0265204021000022798. [DOI] [PubMed] [Google Scholar]
- [165].Suzuki K., Price J.C. Microencapsulation and dissolution properties of a neuroleptic in a biodegradable polymer poly(dl-lactide) J. Pharm. Sci. 1985;74:21–24. doi: 10.1002/jps.2600740106. [DOI] [PubMed] [Google Scholar]
- [166].Tabata Y., Gutta S., Langer R. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res. 1993;10:487–495. doi: 10.1023/A:1018929531410. [DOI] [PubMed] [Google Scholar]
- [167].Tabata Y., Langer R. Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds. Pharm. Res. 1993;10(3):391–399. doi: 10.1023/A:1018988222324. [DOI] [PubMed] [Google Scholar]
- [168].Tabata Y., Langer R. Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds. Pharm. Res. 1993;10:391–399. doi: 10.1023/A:1018988222324. [DOI] [PubMed] [Google Scholar]
- [169].Tamada J.A., Langer R. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. 1993;90(2):552–556. doi: 10.1073/pnas.90.2.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [170].Thermet A., Rollier C., Zoulim F., Trepo C., Cova L. Progress in DNA vaccine for prophylaxis and therapy of hepatitis B. Vaccine. 2003;21(7–8):659–662. doi: 10.1016/S0264-410X(02)00575-3. [DOI] [PubMed] [Google Scholar]
- [171].Tinsley-Brown A.M., Fretwell R., Dowsett A.B., Davis S.L., Farrar G.H. Formulation of Poly(D,LLactic-Co-Glycolic Acid) Microparticles for Rapid Plasmid Plasmid DNA Delivery. J. Control. Rel. 2000;66:229–241. doi: 10.1016/S0168-3659(99)00275-8. [DOI] [PubMed] [Google Scholar]
- [172].Tinsley-Brown A.M., Mobsby V.A., Outlaw M.C., Farrar G.H. DNA Release from PLGA Microparticles for Vaccine Applications. Proceed Int’l. Symp. Control. Rel. Bioact. Mater. 1999;26:344. [Google Scholar]
- [173].Torza S., Mason G. Three-phase interactions in shear and electrical fields. J. Colloid Int. Sci. 1970;33:67–83. doi: 10.1016/0021-9797(70)90073-1. [DOI] [Google Scholar]
- [174].Tracy M.A. Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog. 1998;14:108–115. doi: 10.1021/bp9701271. [DOI] [PubMed] [Google Scholar]
- [175].Tuncay M., Calis S., Kas H.S., Ercan M.T., Peksoy I., Hincal A.A. Diclofenac sodium incorporated PLGA (50:50) microspheres: formulation considerations and in vitro/in vivo evaluation. Int. J. Pharm. 2000;195:179–188. doi: 10.1016/S0378-5173(99)00394-4. [DOI] [PubMed] [Google Scholar]
- [176].Vile R.G., Russell S.J., Lemoine N.R. Cancer gene therapy: hard lessons and new courses. Gene Therapy. 2000;7:2–8. doi: 10.1038/sj.gt.3301084. [DOI] [PubMed] [Google Scholar]
- [177].Vile R.G., Tuszynski A., Castleden S. Retroviral vectors: from laboratory tools to molecular medicines. Molec. Biotechnol. 1996;5:139–158. doi: 10.1007/BF02789062. [DOI] [PubMed] [Google Scholar]
- [178].Wagenaar B.W., Muller B.W. Piroxicam release from spray-dried biodegradable microspheres. Biomaterials. 1994;15(1):49–54. doi: 10.1016/0142-9612(94)90196-1. [DOI] [PubMed] [Google Scholar]
- [179].Walsh M.C., Banas J.A., Mudzinski S.P. A two-component modular approach for enhancing T-cell activiation utilizing a unique anti-FcgRI-streptavidin construct and microspheres coated with biotinylatedantigen. Biomolec. Eng. 2003;20:21–33. doi: 10.1016/S1389-0344(02)00089-8. [DOI] [PubMed] [Google Scholar]
- [180].Walter E., Moelling K., Pavlovic J., Merkle H.P. Poly(D,L-lactide-co-glycolide)-Encapsulated DNA: Stability and Release Characteristics. Proceedings Int’l. Symp. Control. Rel. Bioact. Mater. 1999;26:6407. [Google Scholar]
- [181].Wan J.-P., Yang Y.-Y., Chung T.-S., Tan D., Ng S., Heller J. POE-PEG-POE triblock copolymeric microspheres containing protein. II. Polymer erosion and protein release mechanism. J. Control. Rel. 2001;75:115–128. doi: 10.1016/S0168-3659(01)00373-X. [DOI] [PubMed] [Google Scholar]
- [182].Wang D.R., Deborah R., Kwon G. S., Samuel J. Encapsulation of plasmid DNA in biodegradable poly(D,L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Control. Rel. 1999;57(1):9–18. doi: 10.1016/S0168-3659(98)00099-6. [DOI] [PubMed] [Google Scholar]
- [183].Wang F.J., Wang C.H. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J. Control. Rel. 2002;81:263–280. doi: 10.1016/s0168-3659(02)00066-4. [DOI] [PubMed] [Google Scholar]
- [184].Wang J., Wang B.M., Schwendeman S.P. Characterization of the initial burst release of a model peptide from poly(dl-lactide-co-glycolide) microspheres. J. Control. Rel. 2002;82(2–3):289–307. doi: 10.1016/S0168-3659(02)00137-2. [DOI] [PubMed] [Google Scholar]
- [185].Wang J., Wang B.W., Schwendeman S.P. Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(D,L-lactide-co-glycolide) microspheres. Biomaterials. 2004;25:1919–1927. doi: 10.1016/j.biomaterials.2003.08.019. [DOI] [PubMed] [Google Scholar]
- [186].Wei G., Pettway G.J., McCauley L.K., Ma P.X. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. Biomaterials. 2004;25:345–352. doi: 10.1016/S0142-9612(03)00528-3. [DOI] [PubMed] [Google Scholar]
- [187].Wolf M., Wirth M., Pittner F., Gabor F. Stabilisation and determination of the biological activity of-asparaginase in poly(,-lactide-co-glycolide) nanospheres. Internat. J. Pharm. 2003;256(1–2):141–152. doi: 10.1016/S0378-5173(03)00071-1. [DOI] [PubMed] [Google Scholar]
- [188].Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A., Felgner P.L. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–1468. doi: 10.1126/science.1690918. [DOI] [PubMed] [Google Scholar]
- [189].Woo B.H., Kostanski J.W., Gebrekidan S., Dani B.A., Tahanoo B.C., DeLuca P.P. Preparation, characterization and in vivo evaluation of 120-day poly(dl-lactide) leuprolide microspheres. J. Control. Rel. 2001;75:307–315. doi: 10.1016/S0168-3659(01)00403-5. [DOI] [PubMed] [Google Scholar]
- [190].Woosley J.P., Kim K., Turnbull R.J. Techniques for generating uniform charged particles of hydrogen isotopes. J. Electrostat. 1978;5:381–389. doi: 10.1016/0304-3886(78)90032-3. [DOI] [Google Scholar]
- [191].Yamakawa I., Tsushima Y., Machida R., Watanabe S. In vitro and in vivo release of poly(DL-lactic acid) microspheres containing neurotensin analogue prepared by novel oil-in-water solvent evaporation method. J. Pharm. Sci. 1992;81(8):808–811. doi: 10.1002/jps.2600810817. [DOI] [PubMed] [Google Scholar]
- [192].Yang Y.Y., Chung T.S., Ng N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–241. doi: 10.1016/S0142-9612(00)00178-2. [DOI] [PubMed] [Google Scholar]
- [193].Yang Y.-Y., Shi M., Goh S.-H., Moochhala S., Ng S., Heller J. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. J. Control. Rel. 2003;88(2):201–213. doi: 10.1016/S0168-3659(02)00491-1. [DOI] [PubMed] [Google Scholar]
- [194].Yang Y.-Y., Shi M., Goh S.-H., Moochhala S.M., Ng S., Heller J. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. J. Control. Rel. 2003;88:201–213. doi: 10.1016/S0168-3659(02)00491-1. [DOI] [PubMed] [Google Scholar]
- [195].Yang Y.-Y., Wan J.-P., Chung T.-S., Pallathadka P.K., Ng S., Heller J. POE-PEG-POE triblock copolymeric microspheres containing protein: I. preparation and characterization. J. Control. Rel. 2001;75:115–128. doi: 10.1016/S0168-3659(01)00373-X. [DOI] [PubMed] [Google Scholar]
- [196].Young K.R., Ross T.M. Particle-based vaccines for HIV-1 infection. Current Drug Targets: Infectious Disorders. 2003;3(2):151–169. doi: 10.2174/1568005033481213. [DOI] [PubMed] [Google Scholar]
- [197].Yu X.-J., Luo C., Lin J.-C., Hao P., He Y.-Y., Guo Z.-M., Qin L., Su J., Liu B.-S., Huang Y. Putative hAPN receptor binding sites in SARS CoV spike protein. Acta Pharmacolog. Sinica. 2003;24(6):481–488. [PubMed] [Google Scholar]
- [198].Zhou S., Deng X. In vitro degradation characteristics of poly-lactide-poly(ethylene glycol) microspheres containing human serum albumin. Reac. Funct. Poly. 2002;51(2–3):93–100. doi: 10.1016/S1381-5148(02)00029-9. [DOI] [Google Scholar]
- [199].Zhou S.D., Xianmo, Yuan M., Li X. Investigation on preparation and protein release of biodegradable polymer microspheres as drug-delivery system. J. App. Polymer Sci. 2002;84(4):778–784. doi: 10.1002/app.10327. [DOI] [Google Scholar]
- [200].Zhu G., Mallery S.R., Schwendeman S.P. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide) Nature Biotechnol. 2000;18(1):52–57. doi: 10.1038/71916. [DOI] [PubMed] [Google Scholar]
