Fig. 3.
Lethal mutagenesis. The lethal mutagenesis concept predicts that increasing the dose of a mutagenic agent will result in an increasing number of mutations per genome (m) in the virus population. When m crosses an error threshold (m > m c), the virus population will enter into error catastrophe that is associated with the melting of the genetic information and viral extinction. The lethal defection model considers that under a moderate mutagenic dose, compatible with maintenance of the biological information, defective-interfering genomes (DIG) are generated and they interfere with the multiplication of the virus population, which could result in virus extinction in the absence of the sequence signatures of error catastrophe