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Abstract

Objective: To characterize the population pharmacokinetics (PK) of fentanyl and identify factors 

that contribute to exposure variability in critically ill pediatric patients.

Design: Single-center, retrospective cohort study using electronic record data and remnant blood 

samples.

Setting: Mixed medical/surgical intensive care unit at a quaternary children’s hospital.

Patients: Children with a predicted intensive care unit (ICU) length of stay of at least 3 days and 

presence of an indwelling central venous or arterial line.

Methods: Serum fentanyl measurements were performed for 278 unique remnant samples from 

66 patients. Both one and two-compartment models were evaluated to describe fentanyl 

disposition. Covariates were introduced into the model in a forward/backward, stepwise approach 

and included age, sex, race, weight, cytochrome P450 3A5 (CYP3A5) genotype, and the presence 

of CYP3A4 or CYP3A5 inducers or inhibitors. Simulations were performed using the successful 

model to depict the influence of inducers on fentanyl concentrations.
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Main Results: A two-compartment base model best described the data. There was good 

agreement between observed and predicted concentrations in the final model. The typical fentanyl 

clearance for 70kg (reference weight) and 20.1kg (median weight) patients were 34.6 L h−1 and 

13.6 L h−1 respectively. The magnitude of the unexplained random inter-individual variability was 

high for both clearance (60.7%) and V1(107.2%). Co-administration of the known CYP3A4/5 

inducers fosphenytoin and/or phenobarbital was associated with significantly increased fentanyl 

clearance. Simulations demonstrate the effect of inducer administration was most pronounced 

following discontinuation of a fentanyl infusion.

Conclusions: We demonstrate the feasibility and utility of using electronic record data and 

remnant blood samples to successfully construct population PK models for a heterogeneous cohort 

of critically-ill children. A clinically relevant effect of concomitant CYP3A4/5 inducers was 

identified. Scaling this population PK approach is necessary to craft precision approaches to 

fentanyl administration for critically-ill children.

Introduction

Strategies for selecting a specific sedative-analgesic drug and dose in the pediatric intensive 

care unit (PICU) are largely rooted in empiricism, guided by institutional standards, 

individual experience, and heuristic estimates of what a patient will require for adequate 

comfort and safety. A large study comparing a sedation protocol versus usual sedation in 

children with respiratory failure did not demonstrate any difference in the primary outcome, 

duration of mechanical ventilation.[1] The relationship between wakefulness, pain, agitation, 

iatrogenic drug dependence, and adequate sedation-analgesia in children is variable, 

influenced largely by pharmacokinetics (PK) and pharmacodynamics (PD). Unfortunately, 

these remain poorly characterized for most commonly used drugs in the PICU.

Fentanyl is a highly lipid-soluble opioid frequently favored in the PICU for continuous 

sedation-analgesia owing to its observed, relatively neutral hemodynamic effects.[2] 

Characterizing fentanyl PK and factors associated with variable dose requirements among 

critically-ill children is challenging due to the dense sampling strategy required by 

traditional PK studies being obviated by caregiver stress and concern for iatrogenic anemia 

in the setting of critical illness. Several small studies have reported a range of PK parameters 

in children admitted to the PICU, though the limited cohort sizes do not sufficiently account 

for the patient and clinical heterogeneity inherent in this population.[3] The largest fentanyl 

PK study in children used population-level modeling methods to characterize PK parameters 

from sparse samples; however, this study was restricted to a relatively homogenous cardiac 

intensive care unit population with a median age less than 1 year old.[4]

Conventionally, fentanyl is dosed in micrograms per kilogram (μg/kg) in pediatrics, with 

standard bolus doses ranging widely from approximately 1 μg/kg to 10 μg/kg and infusions 

commonly initiated at 0.5 to 2 μg/kg/hour. The therapeutic window of fentanyl has been 

reported to be relatively narrow, with serum concentrations associated with mild analgesia 

reported to be 0.6 ng/ml and substantial analgesia reported at concentrations ranging from 

1.2 to 3 ng/ml among adults.[5,6] Fentanyl dose response among critically-ill children is 

reported to be highly variable and standard approaches are to administer doses until a 
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desired clinical effect is achieved.[7,8] At least part of this variability in response is related 

to fentanyl being metabolized predominantly by the hepatic cytochrome P450 enzyme 

CYP3A4, the activity of which demonstrates high inter-individual variability and evolves 

with age.[3,9] The objective of this study was to construct a population PK model for 

fentanyl and to identify demographic and clinical covariates that affect the PK parameters of 

fentanyl in a clinically diverse cohort of critically-ill children. Modeling fentanyl PK among 

children in the PICU is a necessary step towards more individualized dosing strategies, with 

the ultimate goal of reducing episodes of inadequate sedation-analgesia and optimizing the 

safety of these patients.

Methods

Study Design and Population

A retrospective cohort study was undertaken involving patients admitted to the PICU at our 

quaternary children’s hospital. Approval was granted by the University of Pittsburgh 

Institutional Review Board. Fentanyl is administered intravenously as a continuous infusion 

and/or as an intermittent bolus. All aspects of the administration of fentanyl including doses 

of both the infusion and boluses were determined by the clinical staff. Serum samples and 

DNA were previously banked as part of a previous cohort study of randomly enrolled PICU 

patients with inclusion criteria that included predicted PICU length of stay (LOS) ≥ 3 days, 

presence of an indwelling central venous or arterial line for blood sampling, obtainment of 

informed consent from the parent or legal guardian and were otherwise unrestricted. Serum 

samples and blood pellets were stored at −80°C. Each serum sample used for analyses 

contained at least 100 μL. Samples were collected at unspecified times that were convenient 

for nurses responsible for collection, without an a priori plan to use the samples for PK 

analyses and independent of drug administration. DNA was extracted using the Qiamp DNA 

extraction kit (Qiagen Inc; Valencia, CA).

Demographics and clinical characteristics were extracted from an electronic health record 

(EHR) data warehouse using the business intelligence platform SAP BusinessObjects (SAP, 

Waldorf, Germany). The primary admission diagnosis for each patient was categorized as 

neurologic, respiratory, sepsis, gastrointestinal disease including hepatic and bowel 

transplant recipients, or other. Discrete fentanyl dose amount and administration timing were 

determined from the patient medication administration record. Biomarker levels of interest 

were extracted from the data warehouse and included alanine and aspartate 

aminotransferase, serum albumin, and creatinine. All administered medications were 

reviewed and, in addition to fentanyl, medications of interest selected for inclusion in the 

models were previously reported CYP450 enzyme inducers fosphenytoin, phenytoin, and 

phenobarbital and the inhibitor fluconazole, provided the inhibitor/inducer had been 

administered for at least 48 hours prior to administration of fentanyl.

Drug Concentration Assessment and Population Pharmacokinetic Analysis

Serum fentanyl concentrations were measured using a sensitive and specific validated LC-

MS/MS method that had been previously described.[10] Measured levels above the limit of 

quantification were excluded from the study. Levels within 15% of the lower limit of 
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quantification were included in the primary analysis. A separate sensitivity analysis was 

performed excluding levels below the lower limit of quantification. NONMEM 7.3 software 

(ICON, Ellicot City, MD) was used to perform the nonlinear mixed effects analysis. The 

software tools and packages Pirana, Perl-speaks-NONMEM (PsN), Xpose4, Xpose (Uppsala 

University, Pharmacometrics Research Group, Uppsala, Sweden), Excel (Microsoft Corp., 

Redding, WA), R version 3.3.3 (R foundation for Statistical Computing, Vienna, Austria) 

and OpenRefine (version 2.7) were used to facilitate data set preparation, analysis, bootstrap 

analysis, visual predictive check (VPC) analysis and preparation of graphical outputs.[3,11–

13] Parameters were estimated using the first-order conditional estimation with interaction 

(FOCE-I) method. An exponential model, Pij = TV(Pj)exp(ηij), was used to describe the 

variability between individual parameters where ηij is the random effect of the ith individual 

and the jth parameter which assumed to be normally distributed with a mean of 0 and 

variance of ω2.

The residual variability was modelled using the additive model after log-transformation of 

both sides. Although previous studies have reported that fentanyl follows two-compartment 

disposition model, a one-compartment model was also explored.[4,14] The effect of patient 

weight on clearance and volume of distribution terms were incorporated in the base model 

by allometric scaling using Pi = PSTD* (Wi/WSTD)PWR where Pi and Wi are the PK 

parameters and weight of the ith individual, respectively. WSTD is the reference weight, set to 

70 kg for these analyses, and PSTD is the PK parameter of the individual of the reference 

weight. The PWR exponent was fixed at 0.75 for clearance terms and 1 for volume terms.

Age, race, sex, CYP3A5 rs28365094 genotype, and concomitant administration of 

CYP3A4/5 inducers or inhibitors were investigated for their effect on clearance. On the basis 

of a previously reported association with a CYP3A5 single nucleotide polymorphism at 

rs28365094, covariate evaluation included attempting to model dichotomized genotype, TT 

versus CT+CC, at this locus.[15] Race was dichotomized into white and non-white and the 

use of a CYP3A4/5 inducer or inhibitor was dichotomized into present or absent. Power 

models were used to describe the relationship between covariates and the typical value of 

clearance. A sigmoidal maturation function (CL=(CLtypical-value*WT/70)0.75*(Ageh/Age50
h 

+ Ageh)) was also attempted to describe the effect of age using postnatal age since 

gestational age was not available. All continuous variables were normalized by the median 

value of the covariate in the cohort. Covariates were added to a model by multiplicative 

relationship.

Covariate selection was performed using a stepwise approach. The process began with 

forward addition, in which covariates are added one at a time and considered significant if 

the covariate contributes to greater than 3.841 reduction in the objective function (α=0.05, 1 

degree of freedom) when added to the previous model. The covariate that improved the 

model the most is added first and is kept in the model if it fulfills the significance test. The 

resulting model serves as the base mode for the addition of the next covariate step. step 

These steps were repeated until there were no significant remaining covariates. A backward 

elimination step was then performed, in which a covariate was considered significant if it 

contributed to greater than a 6.635 magnitude increase in objective function (α=0.01, 1 

degree of freedom) when removed from the previous model. These steps were repeated until 
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there were no non-significant covariates remaining. Assessments of the fit of the PK models 

were performed by visual inspection of diagnostic plots, successful minimization, visual 

predictive checks, and changes in objective function values. The stability of the final model 

and the precision of the parameter estimates were internally validated by bootstrapping in 

PsN. One thousand replicates were generated by random sampling with replacement from 

the original dataset. The nonparametric statistics (i.e., median and 95% CI) of the parameter 

estimates generated by bootstrap were compared to the point estimates obtained from the 

model.

To demonstrate the effect of concomitant administration of CYP3A4/5 inducers, 

concentration-time profiles of fentanyl were simulated for 200 patients with the median 

weight of 22kg in the presence and absence of preceding 48-hours of inducer administration. 

For this simulation, it was assumed that induction of fentanyl metabolism was in effect at the 

initiation of fentanyl administration (i.e., subjects who received a CYP3A4/5 inducer for at 

least 48 hours prior to the start of a fentanyl infusion). It was also assumed that 

administration of fentanyl began with a bolus dose (1 μg/kg), followed by initiation of an 

infusion (1 μg/kg/hr) 30 minutes afterwards. Two subsequent boluses (1 μg/kg) were also 

simulated, at 2 and 9 hours after initiation of the infusion, and the infusion rate (1 μg/kg/hr) 

remained constant and was continued for 48 hours after receipt of the second bolus, to 

simulate the steady state. Finally, the trajectories of fentanyl levels were examined for an 

additional 24 hours following cessation of the infusion to observe the distribution and 

elimination phases in the presence and absence of an inducer. Concentration-time plots of 

patients in presence or absence of CYP3A4/5 inducers were created for visual comparison of 

the effect of inducers.

Results

A total of 278 samples from 66 patients were used for PK analysis. Baseline demographic 

and clinical characteristics of the study participants are summarized in Table 1. In 60/66 of 

the subjects, samples were collected before, during and after continuous infusion. In 6 

subjects, all samples were collected when the subjects had received one or more boluses 

only and no infusion prior to sample collection. One sample with levels above the upper 

limit of quantification of the assay was excluded from the analysis. Fourteen of the 278 

samples were within 15% of the assay’s lower limit of quantification and were included in 

the analysis.

A two-compartment model with linear elimination, and allometrically-scaled weight effects 

on CL, Q, V1 and V2, was selected as the base model. The final parameter estimates of the 

model are in Table 2. A sensitivity analysis excluding samples below the lower limit of 

quantification did not result in substantially different estimated parameters (Supplemental 

Table 1). Retaining the samples resulted in improved model minimization and covariance 

completion. The typical population PK parameters (estimates [bootstrapped 95% confidence 

interval]) relative to the reference patient (70 kg and no concomitant administration of 

CYP3A4/5 inducer or inhibitor) are reported. The typical CL of fentanyl for a 70kg subject 

without the presence of a CYP3A4/5 inducer was 34.6 L h-1. For a subjecting weighing 

20.1kg, which is the median weigh of the study population, the typical CL was 13.6 L h-1. 
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No enrolled patient received concomitant CYP3A4/5 inhibitor and inducer medications. 

Among the covariates tested, only the presence or absence of a concomitantly administrated 

CYP3A4/5 inducer was found to have a significant effect on CL increasing CL value by 

mean factor of 1.54. The assessed genotype did not significantly affect CL. Age and weight 

were highly correlated (Supplemental Figure S1) and including age did not improve the 

model. Assessment of percentage of relative standard errors (RSE) indicated that clearance, 

volume of distribution of the central compartment, inter-compartmental clearance, volume of 

distribution of the peripheral compartment, effect of inducers and residual variability were 

estimated with good precision (RSE values of these parameters were less than 30%). 

Interindividual variability of both clearance and volume of distribution of the central 

compartments were estimated with moderate precision with RSE values of 38.2% and 

43.1%, respectively. The magnitude of the unexplained random interindividual variability (% 

CV) remained high for both CL and V1 at 60.7% and 107.2%, respectively. For all 

parameters, the median bootstrapped parameter estimates were comparable to the point 

estimates from the original datasets showing the model was robust and described the data 

well. ETA shrinkage, the shrinkage of inter-subject variability, was 10.3% for CL and 50% 

for V1. Epsilon shrinkage, the shrinkage of the proportional intra-subject variability, was 

10.8%.

The goodness-of-fit plots are presented in Figure 1. The population predicted versus 

observed concentration (Figure 1A) and the individual predicted versus observed 

concentration (Figure 1B) plots indicate a good agreement between observed and predicted 

concentration along with sufficiently symmetric distribution and random scatter of data 

points around the line of unity. Slight biases at the low end of the population plot and high 

end of the individual plot were observed. This was also observed in the individual weighted 

residual (IWRES) vs. individual predicted concentration plot (Supplemental Figure S2). The 

conditional weighted residuals plotted across population predicted concentration (Figure 1C) 

and over time (Figure 1D) similarly show symmetrical distribution around the line of zero 

and that the model described the data well. No trends were observed over time, and a slight 

bias was observed at the lower value of population predicted concentrations. The normal 

distribution assumption of ETA1 (inter-individual variability for CL) and ETA2 (inter-

individual variability for V1) were valid (Supplemental Figure S3). The VPCs also indicate 

that the model adequately describes both the data dynamics and dispersion (Figure 2). There 

was generally good agreement between observed and simulated serum concentrations across 

time with the observed fentanyl plasma concentrations contained within the simulated 95% 

confidence interval.

Figure 3 shows the simulated effect of concomitant administration of a CYP3A4/5 inducer 

on fentanyl concentration for 200 patients. As CL increased in the presence of a concomitant 

inducer, the plasma levels of fentanyl are generally lower as shown in the concentration-time 

plot (Figure 3A). The effect was most pronounced following discontinuation of the fentanyl 

infusion. Figure 3B shows that the Css was also significantly lower (P<0.0001) in patients 

receiving inducers although variability remains high.
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Discussion

The use of fentanyl is ubiquitous in pediatric critical care, yet factors associated with 

variable fentanyl dose requirements have not been well-characterized in this heterogeneous 

patient population, in part due to frequent but impractical sampling requirements for 

constructing traditional PK models. We leveraged EHR data, sparse remnant blood samples 

collected at random times, and population PK modeling to successfully describe fentanyl 

dose-concentration-time in critically ill children. To the best of our knowledge, this study 

includes the largest cohort of diagnostically diverse, critically-ill children enrolled for 

building a PK model of fentanyl. Clearance was 13.6 L h−1 for a 20.1kg – a median weight 

for the population in the current study – subject which is comparable with findings from 

other critically-ill pediatric populations.[3,4] Concomitant administration of CYP3A4/5 

inducers significantly affected clearance of fentanyl, though the relatively large magnitude 

of unexplained interindividual variability in both clearance and volume of distribution 

indicate that other, non-modeled factors were influencing dose-requirements in this 

heterogeneous population. The findings of this study demonstrate the feasibility of 

population PK modeling as a foundational element towards more precise prescribing of 

fentanyl in the PICU.

A recent systematic review of PK parameters for fentanyl and its derivatives in children 

identified 14 studies with published CL values ranging from 0.41 to 68.5 mL/min/kg and 

cohort sizes ranging from 1 to 130 included patients.[3] Our selection of a two-compartment 

model was compatible with other studies examining fentanyl PK in children. The largest 

study used a population PK approach to characterize PK parameters for children admitted to 

a cardiac ICU, had a median age of 5.9 months, and reported a CL of 39.6 L/hr, which is 

comparable with the findings of the present work (34.6 L/hr).[4] We opted for a two-

compartment model of fentanyl, in alignment with other fentanyl PK studies, though some 

studies have proposed a three-compartment model as more representative of fentanyl 

distribution.[4,14,16–19] A three-compartment model has been proposed to represent initial 

fentanyl exposure in well-perfused end-organs, with subsequent redistribution to skeletal 

muscle, followed by slower distribution to adipose tissue. Such a model is supported by 

preclinical data collected with dense sampling strategies and higher doses than 

conventionally used in clinical settings, facilitating detection of a third slope of elimination.

[20] The sparse sampling strategy of the population PK modeling approach may obscure 

detection of this third compartment, instead offering the advantage of pragmatic sample 

collection and larger cohort sizes while still yielding clinically relevant models.

We chose to include weight in the base model given the weight-normalized dosing common 

in pediatrics. Age and weight are highly correlated and much of the influence of age on 

fentanyl PK can be accounted for with weight; however, our model does not account for the 

influence of age exclusive of weight on the PK parameters. The previously observed 

relationship between fentanyl PK and age has been hypothesized to be related to differences 

in volume of distribution given the lower concentrations observed in infants vs. older 

patients soon after initiation of an infusion.[16] Mean body fat in a full term neonate is 12%, 

increases to approximately 30% by 1 year of age, and subsequently decreases, though the 

obesity epidemic in many developed nations has altered the historically observed decline of 
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body mass index (BMI) in older children and adolescents.[21–23] Fentanyl’s high lipid 

solubility is expected to interact significantly with body fat composition and total body water 

content. A population PK study of fentanyl among critically-ill adult patients identified liver 

disease, congestive heart failure and weight as factors strongly influencing 

pharmacokinetics.[14] The median and range of weight in our cohort was 20.1 kg (4.1 – 

117.4 kg), which is representative of patient heterogeneity that is commonplace in the PICU 

and relatively unique to this arena of medicine. A recent review noted only a weak 

association between weight and fentanyl clearance in preterm and term neonates and 

acknowledged a lack of data in older children.[3] A relationship between age, adiposity and 

fentanyl requirements has some supporting evidence and strong biologic plausibility, 

indicating the need for larger population PK cohorts with sufficient power to control for 

body fat, body water, and muscle mass.

Fentanyl is a high-extraction drug with clearance largely determined by hepatic blood flow.

[24] This property is thought to reduce the likelihood of drug-drug interactions given the 

expected marginal influence of the major hepatic drug metabolism enzymes, CYP3A4 and 5.

[25] However, fentanyl’s extraction ratio has only been studied in healthy volunteers, 

making drug clearance in the context of critical illness and with multiple co-administered 

medications uncertain.[26] Fosphenytoin, phenytoin and phenobarbital are commonly used 

antiepileptic medications in pediatric critical care. These drugs are also established inducers 

of hepatic cytochrome P450 enzymes. CYP3A4 is involved in the metabolism of 

approximately 50% of all marketed medications and CYP3A4/5 enzymes play the major 

role in fentanyl metabolism.[3,9,27–31] Xenobiotic response elements exist in regions of 

CYP genes and, when bound by a ligand, activate gene transcription.[31] Ligand-bound 

forms of pregnane X receptor and closely-related constitutive androstane receptor each form 

a heterodimer with retinoid X receptor, ultimately binding xenobiotic response elements in 

promoter regions and inducing transcription.[31–33] Both (fos)phenytoin and barbituates are 

combined pregnane X and constitutive androstane receptor activators, inducing CYP3A4/5.

[31,34–37]

Though this inducer effect has been mechanistically well-defined, the clinical impact among 

intensive care patients has not been studied and the time course of clinical drug-inducer 

effects is unknown. The effect of drug metabolism enzyme inducers on fentanyl clearance 

and the time course of these inducer effects has only been evaluated in adults under 

controlled conditions. [38] Among critically-ill children, the effects of patient factors and 

other co-administered medications are expected to influence the time course of enzyme 

induction response, though the relationship is not clear. Inducers were included in our model 

if they had been administered at least 48 hours prior to obtaining a fentanyl level, though our 

study was not designed to parse out the magnitude of effect related to preceding duration of 

inducer administration. Using simulation, we demonstrated that steady state levels of 

fentanyl are significantly lower in the presence of CYP3A4/5 inducers. Interestingly, the 

difference in median concentrations between patients with or without concomitant use of 

CYP3A4/5 inducers was more pronounced once the infusion was terminated as compared 

during steady state (Figure 3A). After the termination of the infusion, the distribution phase 

half-life (α half-life) and terminal phase half-life (β half-life) in the presence CYP3A4/5 

inducers decreased by 29% and 8%, respectively, as compared to when there were no 
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concomitantly administered CYP3A4/5 inducers. This suggests that the pronounced change 

in concentrations after termination of infusion was mainly driven by the fact that, in the 

presence of CYP3A4/5 inducers, fentanyl is being cleared from the central compartment 

more rapidly with less time to distribute to the peripheral compartment.

The clinical implication of these observations is that patients on CYP3A4/5 inducers may 

need higher doses and/or infusion rates of fentanyl to obtain desired drug effect. Also, 

clinicians interrupting fentanyl infusions during care should consider the faster rate at which 

fentanyl levels decrease in the presence of CYP3A4/5 inducers. Because of the high degree 

of interindividual variability, additional study with larger cohorts and more covariates is 

necessary to establish fentanyl PK models capable of providing pre-emptive guidance on 

dose adjustment in the setting of inducer initiation. That steady-state concentrations were 

observed to be lower in the presence of an inducer may be a clinically favorable effect in 

certain contexts. Reliably achieving a lower-steady state may be preferred in patients for 

whom the target is moderate analgesia with clear avoidance of respiratory depressant effects. 

Alternatively, a higher steady state may be preferred when using fentanyl to facilitate 

mechanical ventilation in a patient with severe lung disease and ventilator asynchrony, as the 

respiratory depressant effects may be desirable. More work is needed to clarify the 

magnitude of specific drug inducer effects in relation to fentanyl and to better understand the 

clinical implications of altered fentanyl hepatic metabolism as compared to hepatic 

extraction in the context of critical illness among children.

While greater knowledge of pharmacokinetics and pharmacodynamics of the myriad drugs 

in critically-ill children is needed, the dense sampling strategy required for traditional 

individual-level PK modeling is a significant barrier. Our approach to use population PK 

modeling aligns with the strategic initiative outlined in the National Academy of Medicine’s 

report on learning healthcare systems.[39] Pairing electronic data with remnant biologic 

samples provides an effective, minimally invasive and cost-efficient approach to driving 

pharmacologic insights that would otherwise require substantial financial resources and 

potentially painful phlebotomy in a vulnerable population. Additional strengths of the 

current study include the relatively large cohort of children studied, the population PK 

model performance, and the introduction of relevant hepatic enzyme inducers as covariates.

While our cohort size constitutes the largest PK study of fentanyl in PICU patients, a notable 

limitation is that the present study is underpowered to identify associations with less 

common covariates, such as infrequently administered antibiotics that may interact with 

fentanyl and rare genotypes. Rifampin, for example, is a potent inducer of CYP3A4 but it is 

rarely administered and its effects on the hepatic metabolism of midazolam have been 

observed 2-4 weeks beyond discontinuation.[40,41] Our model also did not account for de-

induction and this should be a focus of future studies. Other potentially influential covariates 

not included in the present model include age-dependent CYP enzyme maturation, protein-

binding, BMI, enzyme and transporter function and related genotypes, hepatic disease, 

intraabdominal pressure, and vasopressor use, to name a few. This is likely reflected by the 

high unaccounted inter-individual variability in PK parameters. The unsuccessful inclusion 

of CYP3A5 genotype in our model may be related to our relatively small cohort. In order to 

fully delineate the clinical significance of these covariates and better account for the 
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complex heterogeneity of critically-ill pediatric patients, additional PK studies of larger 

cohorts are necessary.

In conclusion, we successfully constructed a population PK model for fentanyl using sparse 

samples collected at random times, demonstrating both the feasibility and utility of this 

approach for better understanding drug properties among one of the most heterogeneous 

patient populations in modern medicine. This work, which made use of existing electronic 

data and remnant samples at our quaternary children’s hospital, demonstrates a feasible and 

effective learning health system approach to characterizing drug parameters among critically 

ill children. Larger population PK studies of fentanyl will be useful for honing our 

administration of this potent opioid, serving an eventual goal of developing a framework for 

precision administration of sedative and analgesic medications to critically-ill children.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Population (A) and Individual (B) predicted vs. observed concentration. Conditional 

weighted residual vs. (C) population predicted concentration and (D) time. CWRES, 

population conditional weighted residuals
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Figure 2. 
Standard visual predictive check for the final pharmacokinetic model. Black circles 

represent the observed data. The lines represent observed median, and upper (95th) and 

lower (5th) percentile concentrations. The shades regions represent the 95% CI for the 

simulated median, upper and lower concentrations.
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Figure 3. 
Simulated concentration-Time profile of fentanyl in the presence (dotted line) or absence 

(solid line) of CYP3A4/5 inducers (A). The lines indicate the mean values while the shaded 

areas indicate 95% confidence intervals. (B) Box-plot comparing the distribution of Css 

(steady state concentration) values with or without coadministration of CYP3A4/5 inducers. 

Patients on inducers at the same time as fentanyl have significantly lower Css as compared 

to those not on inducers. Each of the fentanyl bolus doses were 1 μg/kg while infusion was 

administered at 1 μg/kg/hr.
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Table 1.

Cohort characteristics

Demographics Cohort (N=66)

Weight (kg), Median (Range) 20.1 (4.1-117.4)

Age (months), Median (Range) 78 (1–204)

Female 34 (52%)

Race

  White 57 (86%)

  Black 7 (11%)

  Other/Unknown 2 (3%)

Primary Diagnosis Category

  Neurologic 19 (29%)

  Respiratory 16 (24%)

  Sepsis 6 (9%)

  Gastrointestinal/Transplant 6 (9%)

  Other 19 (29%)

Mechanical Ventilation 61 (92%)

Neuromuscular Blockade 28 (42%)

Vasoactive Medication Infusion 25 (38%)

PICU Length of Stay (days), Median (Range) 8.4 (1.1–129)

Hospital Length of Stay (days), Median (Range) 15.5 (2.4–129.4)

Number of Samples per Patient, Median (Range) 4 (1–7)

Duration of Fentanyl Infusion (hours), Median (Range) 90.7 (11–254)

Number of Fentanyl Boluses per Patient, Median (Range) 25 (4–77)

Fentanyl Plasma Concentration (ng/mL), Median (Range) 2.29 (0.11–84.32)

Concomitant CYP3A Inducer/Inhibitor

  Fosphenytoin 13 (20%)

  Fosphenytoin + Phenobarbital 2 (3%)

  Fosphenytoin + Phenobarbital 2 (3%)

  Phenobarbital 2 (3%)

  Fluconazole 5 (8%)

Genotype

  CYP3A5, rs28365094, CT+CC 14(21%)
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Table 2.

Population Pharmacokinetic Model Parameters

PK parameter Point Estimates %RSE Bootstrap Median [95% CI]

Fixed

  CL= θ1 × (WT/70)0.75 * θ9
INDU

  θ1 (L h−1) 34.6 9.2 34.7 [27.7, 40.9]

  θ9 1.54 10.1 1.54 [1.2, 1.89]

  V1= θ2 × (WT /70)1 θ2 (L) 222 18.6 9.24 [3.72, 13.32]

  Q= θ3 × (WT /70)0.75 θ3 (L h−1) 8.58 18.9 9.24 [3.72, 13.32]

  V2= θ4 × (WT /70)1 θ4 (L) 311 13.1 332 [150, 472]

Interindividual Variability

  ω2
CL (%CV) 0.37 (60.7%) 38.2 0.34 [0.07, 0.67]

  ω2
V1 (%CV) 1.15 (107.2%) 43.1 1.15 [0.1, 2.2]

COVCL-V1 0.63 (r=0.85) 41.3 0.55 [0.04, 1.22]

Residual Variability*

  Proportional (%CV) 52% 15.4 50.6% [43.3%, 59.7%]

*
Residual Variability was additive in log scale. %CV was calculated by square root of variance x 100. INDU: CYP3A4/5 Inducer.
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