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Abstract

Cerebral edema, a common and often fatal companion to most forms of acute central nervous 

system disease, has been recognized since the time of ancient Egypt. Unfortunately, our 

therapeutic armamentarium remains limited, in part due to historic limitations in our 

understanding of cerebral edema pathophysiology. Recent advancements have led to a number of 

clinical trials for novel therapeutics that could fundamentally alter the treatment of cerebral edema. 

In this review, we discuss these agents, their targets, and the data supporting their use, with a focus 

on agents that have progressed to clinical trials.
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INTRODUCTION

Cerebral edema, defined as a net increase in brain water mass, is present in most types of 

acute central nervous system (CNS) injury or insult. In ischemic stroke, severe cerebral 

edema can increase mortality to nearly 80% (1) and is an independent risk factor for poor 

outcomes (2). In traumatic brain injury (TBI), brain swelling accounts for nearly 50% of all 

mortalities (3). In glioblastoma, peritumoral edema is a strong independent predictor for 
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reduced survival (4–6). And in intracerebral hemorrhage (ICH), perihematoma edema 

volume is associated with increased morbidity and mortality (7).

All current therapies for cerebral edema are nonspecific to the underlying pathophysiology. 

Instead, they primarily seek to minimize critical downstream consequences of edema: mass 

effect and increased intracranial pressure (ICP). For example, decompressive craniectomy 

does not inhibit the formation of edema fluid but rather enables the brain to expand further, 

thereby reducing pressure. While hyperosmotic therapies such as mannitol do reduce edema 

fluid volume, they simply compete with, rather than inhibit, the driving forces that promote 

edema formation. As a consequence, these therapies are typically given only after the ICP 

reaches a critical level and when brain perfusion is threatened. Ideally, antiedema therapy 

would be given prophylactically, thereby avoiding any risk to tissue perfusion. However, this 

paradigm requires new antiedema drugs that block edema formation itself.

Several pharmacological agents have shown promise in preclinical models and are currently 

being tested in clinical trials. In this review, we briefly present the pathophysiology of 

cerebral edema. We then discuss several potential antiedema drugs (Table 1), but only those 

that have progressed to clinical trials, focusing on their mechanisms of action and the data 

that support their efficacy.

CEREBRAL EDEMA PATHOPHYSIOLOGY

General Concepts: Ischemia and Trauma

For a detailed description of cerebral edema pathophysiology, please refer to Stokum et al. 

(8). Briefly, cerebral edema develops in several stages following CNS injury, although the 

precise details depend on the type and severity of the insult. Within minutes after injury, the 

neuroparenchyma exhibits cytotoxic edema (used here to refer only to cellular swelling), 

which consists mainly of astrocyte swelling (9, 10). Multiple ion transporters contribute to 

cytotoxic edema formation by mediating astrocyte osmolyte uptake, which in turn drives 

astrocyte water uptake. Examples of ion transporters include the sulfonylurea receptor 1–

transient receptor potential melastatin 4 (SUR1-TRPM4) channel (11, 12), the sodium-

potassium-chloride transporter subtype 1 transporter (13, 14), the sodium-hydrogen 

exchanger (15), and the excitatory amino acid transporters (16).

As an isolated rearrangement of parenchymal water, cytotoxic (cellular) edema by itself does 

not directly produce brain swelling. However, cytotoxic edema does generate the major 

driving force for downstream edema formation. By depleting extracellular sodium ions (Na
+), cytotoxic edema generates a new Na+ gradient across the blood–brain barrier (BBB) that 

favors the influx of vascular Na+ (17). Various Na+ transporters expressed by brain 

endothelial cells then enable Na+ osmolytes to follow this new electrochemical gradient 

inward across the BBB (18–20). Water follows, resulting in the formation of a subtype of 

cerebral edema called ionic edema, which does result in brain swelling. In reality, cytotoxic 

edema is not thought to occur in isolation from ionic edema, but conceptually separating the 

two processes aids in understanding the role of distinct molecular mechanisms that 

contribute separately to the two processes.
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During ionic edema formation, the BBB remains impermeable to circulating plasma proteins 

and erythrocytes. However, as the brain injury matures, plasma proteins appear in edema 

fluid due to the formation of permeability pores in the BBB. A variety of mechanisms, 

including vascular endothelial growth factor (VEGF) upregulation (21), matrix 

metalloproteinase activation (22), and changes in endothelial morphology, mediate the 

formation of permeability pores (23). Edema fluid that contains plasma proteins but still 

excludes erythrocytes is called vasogenic edema.

Peritumoral Edema

Peritumoral edema, which mostly consists of vasogenic edema, is formed by the disordered 

and proangiogenic tumor vasculature. The relatively unique mechanisms that underlie its 

formation are described below.

Relative to normal tissue, tumor vessels are serpiginous, irregular, and disorganized, 

resulting in large avascular areas and patchy necrosis (24). Up to 15% of tumor vessels may 

be mosaic, wherein the luminal wall comprises both endothelial and tumor cells (25). 

Strangely, some tumors contain isolated networks of vessel-like channels formed directly by 

tumor cells (26). The cells that form the tumor vasculature are also abnormal. Glioblastoma 

endothelial cells are proliferative and hypertrophic (27). Furthermore, many tumor 

endothelial cells and pericytes are derived from tumor stem cells rather than from stromal 

tissue (28–30).

Despite the increased vascularity present in many tumors, tumor perfusion is generally poor 

(31), in part because only 50–70% of newly formed vessels are capable of carrying 

erythrocytes (32). The poor perfusion provided by the abnormal tumor vasculature, 

combined with the heightened metabolic demand of the growing tumor, results in a hypoxic 

tumor microenvironment that promotes angiogenesis. In newly formed vessels, the BBB is 

not fully developed (33) and permits the passage of molecules up to ~550 nm (33, 34). In 

tumor vessels, interendothelial junctional proteins are often downregulated or undetectable 

(30). The increased permeability of tumor vessels encourages the extravasation of plasma, 

i.e., formation of vasogenic edema.

Peritumoral edema is an important barrier to tumor treatment (35). The combined mass 

effect of the tumor plus the peritumoral edema can drive local hydrostatic pressure in excess 

of 12 mm Hg (36). The increased tumor interstitial pressure reduces the hydrostatic pressure 

gradient between blood and tumor, inhibiting the delivery of chemotherapeutics. 

Furthermore, increased tumor interstitial pressure promotes bulk flow of fluid away from the 

tumor, which limits the efficacy of convection-enhanced delivery. Unsurprisingly, the 

magnitude of peritumoral edema is highly predictive of reduced patient survival (37).

CLINICAL TRIAL DESIGN

A number of antiedema agents have progressed to human clinical trial. However, the design 

of antiedema drug trials is still evolving as lessons are learned from the recent trials focused 

on this target. Here, we present several aspects of trial design that are salient to antiedema 

drugs.
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Adequate preclinical animal experiments are critical prior to any clinical trial. Experiments 

should be performed using multiple animal models and should be conducted in multiple 

laboratories to ascertain drug dosing, time window, efficacy, and drug accumulation in the 

target organ. Several previous trials have suffered from inadequate preclinical data. In the 

head injury trials (HITs), nimodipine, an L-type voltage-gated calcium channel blocker, was 

tested in TBI without any preclinical data (38). The HITs failed to show any therapeutic 

benefit, and in the case of HIT-2, nimodipine was associated with worsened outcome. In the 

Selfotel (CGS-19755) TBI trial where a glutamate N-methyl-d-aspartate receptor antagonist 

was tested, the primary outcome failed. However, since it was unknown whether peripherally 

administered Selfotel accumulated in the CNS, the negative result was difficult to interpret 

(38). Exploration of intermediate or pharmacodynamic end points that may be relevant to 

human translation is often helpful. For example, imaging markers of water content or plasma 

biomarkers may help identify potential candidate biomarkers in humans.

Well-designed inclusion and exclusion criteria can strongly influence the ability of a study to 

detect a therapeutic effect. It is important to identify patients that are likely to have the 

biological target of interest. Framing the study design so that the population is enriched with 

patients with a high likelihood of developing the problem of interest can maximize both the 

chance of drug effect and the magnitude of that effect, assuming the target problem has a 

causal relationship with clinical outcome. In addition, patients with relatively mild or 

relatively severe CNS insults are very likely to either improve or deteriorate, regardless of 

therapeutic intervention. Thus, if patient outcome is the desired end point, the ideal cohort 

may consist of patients that lie on an inflection point of disease severity (38). Even with 

stringent inclusion/exclusion criteria, patient matching may be difficult due to disease-

related heterogeneity. For example, the heterogeneity of TBI patients has complicated data 

interpretation in prior TBI clinical trials (39). To address this problem, some have suggested 

stratification by clinically important, disease-specific variables, such as hemorrhagic shock 

or the presence of intraventricular hemorrhage (39).

Appropriate end point selection is a major issue in antiedema drug trial design. A number of 

previous trials have utilized radiographic end points, such as the quantification of edema 

using computed tomography (NCT03000283) (40) or using edema-sensitive MRI sequences 

such as gradient echo and fluid-attenuated inversion recovery (FLAIR) (41). Although 

several radiographic measurements are broadly accepted for cerebral edema, few have been 

validated as a quantitative end point for clinical trials. Ipsilateral swelling, lesional swelling, 

and midline shift are valuable radiographic markers (42, 43), but the relationship between 

these parameters and the magnitude of edema has yet to be established. Conversely, a clear 

association between midline shift and patient survival was established in a clinical trial of 

intravenous (IV) glyburide in large hemispheric infarction (43, 44) (Figure 1).

Several antiedema drug trials have used patient outcome end points, such as in-hospital 

mortality (NCT03000283) and clinical improvement as measured by the modified Rankin 

Scale, Glasgow Coma Scale, or National Institutes of Health stroke scale (40, 43). While 

patient outcomes are essential in determining the ultimate efficacy of an intervention, these 

end points are vulnerable to confounding. For example, in the Glyburide Advantage in 

Malignant Edema and Stroke (GAMES-RP) trial, where patients with large hemispheric 
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infarction were treated with IV glyburide versus placebo to reduce edema, the primary end 

point was the proportion of patients with a modified Rankin Scale (mRS) score of ≤4 at 90 

days without decompressive craniectomy (43). The study was complicated by significant 

intercenter variability in the application of decompressive craniectomy, with over 90% of the 

surgeries performed by approximately 50% of the study sites. Intercenter variability has 

complicated other trials, such as the TBI tirilazad trial in which intercenter variability 

accounted for over 40% of the study variance (38). This is especially true for nonrandom 

variability that occurs postrandomization.

ARGININE VASOPRESSIN AND THE VAPTANS

Arginine Vasopressin Is a Central Mediator of Brain Edema

Arginine vasopressin (AVP), a nine–amino acid peptide primarily produced by the posterior 

pituitary, was detected in mammalian cerebrospinal fluid (CSF) in 1978 (45, 46). In early 

experiments, CSF AVP increased after CSF harvest, which indicated a possible role for AVP 

in the regulation of brain water content (45, 46).

In the mammalian CNS, vasopressin exerts its effects primarily via the V1 receptor (47, 48), 

which is widely expressed throughout the adult brain (49, 50). AVP reaches the 

neuroparenchyma through multiple routes: Circulating AVP can be transported across the 

BBB via a carrier-mediated system (51); AVP can be centrally secreted by neurons and the 

choroid plexus epithelium (52, 53); and hypothalmo-extrahypophyseal vasopressin pathways 

innervate the ventricular walls, which may release AVP into ventricular CSF (54).

In the healthy brain, exogenous AVP delivered into the ventricles modestly increases brain 

water content by ~1.3% (55). AVP mediates changes in brain water content by regulating 

capillary permeability (56), astrocyte volume (57, 58), CSF production and absorption (59, 

60), and cerebral blood flow (61). In contrast to its modest role in the healthy brain, central 

AVP signaling is a potent regulator of edema in the injured brain. In models of cerebral 

ischemia and TBI, AVP and its V1 receptor are upregulated (53, 62, 63). Experiments have 

consistently shown that AVP worsens cerebral edema in models of ischemic stroke (47, 48, 

62, 64), after brain cryoinjury (65), and in models of TBI (66).

Circulating AVP also worsens brain edema, albeit indirectly. Among all hospitalized 

patients, hyponatremia, even when asymptomatic, is associated with increased brain edema 

and worsened mortality (67, 68). Hyponatremia is present in ~10% of patients with TBI and 

in ~20% of patients with subarachnoid hemorrhage (69). The syndrome of inappropriate 

antidiuretic hormone secretion (SIADH) is the underlying etiology of hyponatremia in ~62% 

of neurosurgical patients (69). SIADH occurs mainly through AVP stimulation of renal V2 

receptors, resulting in antidiuresis and euvolemic hyponatremia (70).

Vaptans: Arginine Vasopressin Receptor Antagonists

Vaptans are nonpeptide small-molecule inhibitors of vasopressin receptors, with varying 

receptor subtype specificity. Two vaptans—conivaptan, a V1a and V2 receptor antagonist, 

and tolvaptan, a V2 specific antagonist—are currently approved to treat hyponatremia (71).
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Preclinical experiments have shown that vasopressin receptor inhibition effectively reduces 

cerebral edema formation after CNS injury. Vasopressin antagonism reduces brain edema 

formation after cardiac arrest (72) and in models of ischemic stroke (47), subarachnoid 

hemorrhage (73), and TBI (66, 74, 75). Additional studies have found that vaptans exert 

their antiedema effects mainly via the inhibition of V1 receptors (47, 48) and through the 

regulation of aquaporin-4 (48), an aquaporin expressed in the CNS that plays a major role in 

edema dynamics (8).

Currently, there are limited clinical data supporting the use of vaptans for the treatment of 

brain edema. One case report demonstrated reduced ICP in a patient with occlusive carotid 

dissection treated with a vaptan (76). Another case report showed reduced edema in a patient 

with a midbrain and thalamic hemorrhage who was treated with a vaptan (77). There is an 

ongoing clinical trial (NCT03000283) to test the efficacy of conivaptan in the treatment of 

cerebral edema in patients with nontraumatic ICH.

SPHINGOSINE-1-PHOSPHATE AND FINGOLIMOD

Sphingosine-1-Phosphate Signaling and Cerebral Edema

Sphingosine-1-phosphate (S1P) is a sphingolipid derivative that signals through S1P 

receptor subtypes 1–5 (S1P1–5) (78). Circulating S1P is derived from multiple sources, 

including platelets (79), erythrocytes (80), and endothelial cells (81). In the healthy CNS, 

S1P receptors are widely expressed by all cell types (82). Following CNS injury and during 

neuroinflammation, S1P and S1P receptors are upregulated in the CNS (83, 84).

S1P signaling is complex and has different roles in different cell types. Classically, S1P was 

considered critical in the regulation of lymphocyte trafficking. Via S1P1, S1P signaling is 

necessary for the egress of lymphocytes from peripheral lymphoid tissues (85). 

Consequently, S1P1 knockout lymphocytes become sequestered in lymphoid tissues (86).

There is growing recognition of the nonimmunological roles of S1P signaling. In endothelial 

cells, the major S1P receptor subtypes are S1P1, S1P2, and S1P3 (87), which regulate 

vascular and BBB permeability. S1P1 receptor signaling is particularly important in the 

development and maintenance of the vascular barrier via its effects upon the actin 

cytoskeleton and endothelial morphology (88). S1P1 knockout mice die around embryonic 

day 12–14 from hemorrhage due to inhibited vessel maturation (89). In conditions of 

anaphylaxis, histamine stimulation, or inflammation, erythrocyte-derived S1P stimulates 

endothelial S1P1 to help maintain vascular integrity (90).

Interestingly, in contrast to S1P1, endothelial S1P2 disrupts intercellular adherens junctions 

and promotes increased vascular permeability (91). During inflammation, S1P2 is 

upregulated, which could reflect a mechanism that enables context-specific tuning of 

endothelial permeability (87). Vascular S1P3 regulates vascular tone and perfusion by 

mediating cytoskeletal changes and activation of endothelial nitric oxide synthetase (92, 93).
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Fingolimod: S1P Receptor Modulator

Fingolimod (FTY720) is an S1P receptor modulator that was approved in 2010 to treat 

multiple sclerosis (94–98). In vivo, FTY720 is activated to fingolimod phosphate by 

sphingosine kinase 2. Upon ligation of S1P1 and S1P3–5 receptors, fingolimod briefly acts 

as an agonist (99). However, upon fingolimod stimulation, S1P receptors are internalized, 

thereby quenching their biological activity (86). Thus, fingolimod ultimately acts as a 

functional S1P receptor antagonist.

In preclinical experiments, fingolimod reduced cerebral edema in models of ICH (100, 101) 

and ischemic stroke (102). Unfortunately, due to the pleiotropic roles of S1P in the cerebral 

vasculature and circulating immune cells, the precise mechanism of its antiedema effects is 

unclear.

There is growing clinical evidence in support of fingolimod as an antiedema drug, 

particularly following ICH. In one study that included 23 patients with ICH, fingolimod was 

shown to improve neurological status, perihematomal edema, and three-month mRS scores 

(41, 103). In a second study that included 22 patients with acute ischemic stroke, fingolimod 

improved neurological status and reduced microvascular permeability (104). Fingolimod is 

relatively well tolerated in patients, although it is linked with some instances of minor 

infections, bradycardia, and decreased pulmonary function (99).

CYCLOOXYGENASE AND NONSTEROIDAL ANTI-INFLAMMATORY DRUGS

Cyclooxygenase (COX) enzymes process arachidonic acid to generate proinflammatory 

prostaglandins and thromboxanes and come in three isoforms: COX1–3. Inflammation plays 

a key role in the pathophysiology of many CNS injuries and is particularly important in ICH 

(105). After ICH, COX2 is upregulated in the endothelium and invading leukocytes (106). In 

animal models of ICH, COX2 worsens neuronal death, neurological outcome, infarct 

volume, and brain edema (107, 108).

Two studies have examined the efficacy of the COX2 inhibitor celecoxib in reducing 

hematoma volume and cerebral edema after ICH. In a retrospective study of patients with 

ICH given celecoxib versus no celecoxib, celecoxib was found to reduce edema volume and 

hematoma expansion (109). In a randomized prospective study where patients with ICH 

were treated with celecoxib (n = 20) versus standard therapy (n = 24), celecoxib reduced 

perihematomal edema and hematoma expansion (40).

SUR1-TRPM4 AND GLYBURIDE

SUR1-TRPM4 is a monovalent cation channel that is de novo upregulated after CNS injury. 

The pore-forming subunit of the SUR1-TRPM4 channel is composed of TRPM4, a 

constitutively expressed monovalent cation channel that opens in response to increased 

intracellular calcium (11, 110, 111). After injury, SUR1, an adenosine triphosphate (ATP)-

binding cassette, is de novo upregulated and coassociates with TRPM4, which doubles 

TRPM4 calcium sensitivity and sensitizes TRPM4 to intracellular ATP depletion (11, 110, 

112).
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In conditions of ATP depletion, such as acute CNS injury, SUR1-TRPM4 mediates the 

influx of Na+ osmolytes, resulting in oncotic cell swelling and cell death (11, 12, 113). This 

ionic redistribution promotes transcapillary ion and water influx, driving brain edema and 

brain swelling (8). Furthermore, SUR1-TRPM4 also mediates the oncotic cell death of the 

capillary endothelium, resulting in capillary fragmentation, secondary hemorrhage, and 

worsened edema (114).

Glyburide is a sulfonylurea drug that inhibits SUR1-containing channel complexes. When 

given after cerebral ischemia, glyburide inhibits newly expressed SUR1-TRPM4 channels in 

the BBB (20). Glyburide reduces brain edema in animal models of ischemic stroke (20, 

115), TBI (116), and subarachnoid hemorrhage (117). SUR1 inhibitors were also found to 

decrease peritumoral edema in animal models of cerebral metastases (118).

Several clinical trials have sought to assess the efficacy of glyburide for the treatment of 

malignant cerebral edema after large hemispheric infarction. In the first trial—the GAMES 

pilot—10 patients with large anterior circulation stroke were treated with IV glyburide, 

demonstrating treatment feasibility (119). A follow-up analysis of the GAMES pilot data 

showed reduced T2 FLAIR ratio and reduced water diffusivity in the ischemic tissue, 

indicating that glyburide reduced vasogenic edema (120). In the phase 2 GAMES-RP trial 

(43), patients 18–80 years old with large (80–300 cm3) anterior circulation infarctions were 

randomized to glyburide (n = 41) versus placebo (n = 36). The primary outcome was the 

proportion of patients with mRS scores of 0–4 at 90 days without decompressive 

craniectomy. Secondary outcomes included the proportion of patients that underwent 

decompressive craniectomy or were dead within 14 days and the change from baseline in 

ipsilateral hemispheric or lesional swelling within 72–96 h measured by MRI. The primary 

end point was not met, possibly due to high intercenter variability in the application of 

surgical decompression (90% of the surgeries in the trial occurred in half of the trial sites). 

However, glyburide was shown to improve mortality at 30 days, reduce median midline shift 

from 8.5 to 4.6 mm (Figure 1), and lower total plasma matrix metallopeptidase 9 levels. 

Furthermore, posthoc analyses showed significantly reduced adjudicated neurological and 

edema-related deaths as well as favorable long-term outcomes in patients <70 years old (44, 

121). The phase 3 Study to Evaluate the Efficacy and Safety of Intravenous BIIB093 (IV 

glyburide) for Severe Cerebral Edema Following Large Hemispheric Infarction (CHARM) is 

currently recruiting patients (NCT02864953). The prespecified outcome in the CHARM trial 

does not include surgical decompression and instead includes the mRS score at 90 days and 

the reduction of midline shift at 72 h.

CORTICOSTEROIDS AND XERECEPT FOR PERITUMORAL EDEMA

Dexamethasone

The first documented use of corticosteroids to treat edema was in 1957 when they were used 

in patients with cerebral breast cancer metastases (122). However, their use did not become 

widespread until the work of Joseph Galicich. In 1958, Dr. Galicich noted that BBB 

permeability varied diurnally with plasma cortisol levels, an observation that prompted him 

to treat peritumoral edema with corticosteroids (123). In 1961, his seminal work 

demonstrated the efficacy of dexamethasone for the treatment of peritumoral edema (124). 
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Importantly, dexamethasone was the first drug taken to US Food and Drug Administration 

(FDA) approval by a neurosurgeon. While all subsequent randomized trials have tested 

dexamethasone for the treatment of peritumoral edema surrounding brain metastases (125–

127), corticosteroids are now used in a variety of brain neoplasms.

Dexamethasone, which diffuses freely across the BBB (128), exerts pluripotent effects on 

the cerebral vasculature. Corticosteroids downregulate proinflammatory cytokines (129), 

reduce endothelial VEGF production (130), increase vascular differentiation (131), and 

induce expression of tight junction proteins (132). Together, these changes reduce the 

permeability of tumor microvessels (133).

Unfortunately, the side effect profile of corticosteroids is a major limiting factor to their use. 

Peripheral edema, hyperglycemia, and Cushing’s syndrome occur in up to 15%, 72.3%, and 

15% of patients, respectively (134). Thromboembolism, infections, delayed wound healing, 

gastrointestinal ulcers, and psychiatric issues are other common side effects (134).

Corticotrophin-Releasing Factor (Xerecept)

The side effect profile of corticosteroids prompted the development of the so-called steroid-

sparing therapies. Human corticotrophin-releasing factor (hCRF), alternatively called 

corticorelin acetate and Xerecept, is a synthesized form of the endogenous 41–amino acid 

hypothalamus-derived peptide. When given peripherally, hCRF stabilizes the brain 

endothelium and reduces vasogenic edema in cold injury (135), and it reduces vascular 

permeability in rat models of glioma (136).

hCRF has been tested in human patients with brain tumors. A phase 1 trial showed improved 

neurological examination in 10 out of 17 patients following hCRF treatment. Hypotension 

was reported as a side effect in 2 out of 4 patients treated with high-dose hCRF (137). In a 

second study of 200 patients given hCRF versus placebo, hCRF significantly reduced 

dexamethasone requirements, improved myopathy symptoms, and reduced the rate of 

Cushing’s syndrome (138). With further study, hCRF could help to control peritumoral 

edema in patients with severe steroid side effects.

VEGF, BEVACIZUMAB, AND RECEPTOR TYROSINE KINASE INHIBITORS

Antiangiogenic Therapies for Glioblastoma

Tumor angiogenesis and peritumoral edema formation is primarily driven by the 

overexpression of VEGFs (139), which include VEGF-A–D (140). VEGFs bind to the 

receptor tyrosine kinase VEGF receptor (VEGFR) 1–3 and can also activate a number of 

alternative coreceptors (140). VEGF is a potent mediator of angiogenesis. Only 30 min after 

the intraparenchymal infusion of VEGF, 90% of neighboring brain vessels develop 

interendothelial gaps, lose basement membrane integrity, and become permeable to albumin 

(141). VEGF is highly upregulated in brain tumors, and its expression is strongly correlated 

with tumor grade (142).
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Anti-VEGF Therapy Does Not Improve Survival

Various VEGF inhibitors have been developed due to its strong role in tumor angiogenesis. 

Bevacizumab is a monoclonal immunoglobulin G humanized antibody targeted against 

VEGF-A. Cediranib and enzastaurin are notable examples of small-molecule inhibitors of 

the tyrosine kinase VEGFR.

There have been several clinical trials assessing VEGF inhibitors for the treatment of 

glioblastoma. Initial findings were encouraging. In the BRAIN study, there was improved, 

progression-free survival (PFS) in patients with recurrent glioblastoma who were treated 

with bevacizumab plus irinotecan versus irinotecan alone at 6 months (42.6% versus 50.3%) 

(143). A follow-up trial showed 29% PFS at 6 months with bevacizumab plus irinotecan 

(144). These two trials led the FDA to approve bevacizumab for the treatment of recurrent 

glioblastoma in 2009.

Unfortunately, no follow-up study has shown any improvement in overall survival with anti-

VEGF therapy (145). Both the AVAglio and RTOG 0825 studies failed to show improved 

survival in patients with newly diagnosed glioblastoma who were treated with anti-VEGF 

therapy (146, 147). Studies of receptor tyrosine kinase inhibitors have been equally 

disappointing. In phase 3 trials, both cediranib and enzastaurin failed to improve overall 

survival in patients with recurrent glioblastoma (148, 149). A recent meta-analysis of 14 

clinical trials of VEGF inhibitors confirmed these disappointing findings (150).

Antiangiogenic Therapy Improves Peritumoral Edema

While anti-VEGF therapy does not improve overall survival, clinical trials have consistently 

shown that the inhibition of VEGF signaling reduces peritumoral edema. A number of 

studies reported that anti-VEGF therapy reduces corticosteroid requirements (146, 148, 151–

153). Radiographically, both bevacizumab and cediranib reduced peritumoral T2 and FLAIR 

signals (151, 153). Cediranib also reduced tumor mass effect (152). Interestingly, the 

antiedema effects of anti-VEGF therapy are reversible upon discontinuation of therapy, 

which can result in a significant rebound of edema (152).

VEGF inhibition is thought to reduce edema by inducing normalization of brain tumor 

vasculature. In tumor vessel normalization, the dysregulated balance between pro- versus 

antiangiogenesis is shifted towards antiangiogenesis (154). In support of this hypothesis, 

bevacizumab treatment reduced the expression of VEGF and reduced tumor vascularity 

(155).

There are several important caveats to the widespread use of anti-VEGF drugs as antiedema 

therapies. Firstly, their effects are reversible upon discontinuation and can cause rebound 

edema. Secondly, tumor progression inevitably occurs with anti-VEGF therapy, and overall 

survival is unchanged. Progression may be due to nonangiogenic mechanisms of 

neovascularization, compensatory increases in non-VEGF angiogenesis (156), or 

heterogeneity in tumor responsiveness (157). Lastly, and most disturbingly, VEGF inhibition 

has been associated with greatly increased satellite tumor formation, perhaps because VEGF 

inhibitors worsen hypoxia and thereby promote tumor cell migration (158, 159).
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VEGF inhibition has garnered great disappointment due to its poor performance in 

increasing patient survival. However, given the impressive effects of VEGF inhibition on 

peritumoral edema and the important role of peritumoral edema in patient morbidity and 

mortality, these drugs may deserve reconsideration. VEGF inhibitors may be useful as 

antiedema agents that might best be used in conjunction with other therapies.

CONCLUSION

Cerebral edema is a major cause of morbidity and mortality in patients with neurological 

and neurosurgical diseases. While our current therapeutic options are limited, we are 

presently in a period of great potential, with several new antiedema agents being tested in 

the clinic (Table 1). With these new agents, brain edema could be treated prophylactically to 

prevent the formation of edema, thereby making the terrible consequences of mass effect 

and increased ICP less common events.
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Glyburide:

a sulfonylurea drug that inhibits SUR1-containing channel complexes, including the 

SUR1-TRPM4 channel
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Vaptans:

a class of small-molecule vasopressin receptor inhibitors that include conivaptan and 

tolvaptan
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Fingolimod:

a sphingosine-1-phosphate (S1P) receptor modulator that acts as a functional S1P 

receptor antagonist
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Celecoxib:

a nonsteroidal anti-inflammatory drug inhibitor of cyclooxygenase-2
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Dexamethasone:

a corticosteroid commonly used to treat peritumoral edema
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Xerecept:

a synthesized form of the endogenous hypothalamic human corticotrophin-releasing 

factor developed to treat peritumoral edema in patients with severe steroid side effects
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Bevacizumab:

a monoclonal immunoglobulin G humanized antibody targeted against vascular 

endothelial growth factor A
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Cediranib and enzastaurin:

small-molecule inhibitors of the vascular endothelial growth factor receptor
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Figure 1. 
(a,b) Axial brain T2 fluid-attenuated inversion recovery MRI images from the Glyburide 

Advantage in Malignant Edema and Stroke study (NCT01794182) showing midline (red 
bar) shift in patients with large middle cerebral artery territory ischemic stroke who were 

given intravenous (IV) (a) glyburide or (b) placebo. (c) Graph showing the reduced median 

midline shift in patients given IV glyburide, with boxes depicting interquartile range, 

whiskers representing 10th to 90th percentiles, and bars showing 95% confidence intervals. 

Figure adapted with permission from Reference 43.
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Table 1

Prior and ongoing clinical trials of antiedema drugs

Trial Trial details Drug Studied population Salient results (references)

NCT03000283 Ongoing pilot, 
goal of 7 
participants

Conivaptan Patients with ICH greater than 20 cc not due 
to infection, thrombolysis, SAH, trauma or 
tumor who are expected to survive more than 
48 hours

Currently recruiting

NCT02002390 Phase 2 completed 
in 2014, 22 
participants

Fingolimod Patients with either supratentorial ICH of 5–
30 cc or ischemic stroke
Excluded if taken for surgical evacuation or if 
ICH due to coagulopathy, trauma, or 
thrombocytopenia

In ICH, fingolimod improved 
neurological function and 
reduced edema (41)
In stroke, fingolimod reduced 
lesion volume and lesion 
growth and improved 
neurological function at 90 
days (160)

NCT00526214 
(ACE-ICH)

Pilot completed in 
2009,44 
participants

Celecoxib Patients presenting with supratentorial ICH 
not due to trauma, aneurysm rupture, or 
anticoagulation
Excluded if planned surgical evacuation 
within 24 h

Celecoxib reduced hematoma 
expansion and perihematoma 
edema expansion (40)

NCT01268683 
(GAMES-PILOT)

Phase 2a 
completed in 
2013,10 
participants

Glyburide Patients with large (82–210 cc) acute MCA or 
MCA/ACA ischemic stroke
Excluded if patients had prior commitment to 
DC, treatment with IA rtPA or mechanical 
thrombectomy, herniation signs, or 
hemorrhage

Glyburide was feasible and 
well tolerated with no 
symptomatic hypoglycemia 
(119)
Glyburide reduced radiographic 
markers ofvasogenic edema 
(120) and improved clinical 
outcomes (161)

NCT01794182 
(GAMES-RP)

Phase 2 completed 
in 2016, 83 
participants

Patients with large (82–300 cc) acute MCA 
ischemic stroke
Excluded if patients had prior commitment to 
DC, treatment with IA rtPA or mechanical 
thrombectomy, contralateral infarction, signs 
of herniation, or hemorrhage

Primary and secondary 
outcomes not met
In adjudicated posthoc analysis, 
glyburide reduced midline 
shift, serum MMP9, NIHSS, 
edema-related deaths, and 30-
day all-cause mortality 
(43,44,121)

NCT02864953 
(CHARM)

Ongoing phase 3, 
goal of 680 
participants

Patients with large (80–300 cc) acute MCA 
ischemic stroke or large hemispheric 
infarction with NIHSS ≥10
Excluded if patients likely to have withdrawal 
of care on day 1, have prior commitment to 
DC, or have contralateral infarction

Currently recruiting

No identifier Phase 1 completed 
in 1998, 17 
participants

Xerecept Patients with primary or secondary brain 
tumor with evidence of edema on CT; 
included patients had stable steroid dose and 
were not submitted to concomitant 
chemotherapy or radiation

Xerecept was well tolerated 
and improved neurological 
symptoms (137)

NCT00088166 Phase 3 completed 
in 2008, 200 
participants

Patients with histologically malignant brain 
tumor and ≥1 steroid side effects; included 
patients had stable steroid use and were not 
treated with surgery, radiosurgery, or radiation 
within 5 weeks of enrollment

Primary outcome not met
Secondary outcomes met 
significance
Xerecept reduced 
dexamethasone requirements, 
improved myopathy, and 
reduced risk of Cushing 
syndrome (138)

No identifier Phase 2 completed 
in 2007, 32 
participants

Bevacizumab Patients with histologically confirmed 
progressive or recurrent grade III-IV glioma, 
post radiation therapy; patients not 
concomitantly treated with surgery, radiation, 
or chemotherapy

Bevacizumab reduced tumor 
cross-sectional area, 
radiographic markers of edema, 
and glucocorticoid 
requirements and resulted in 
neurological improvement 
(153)
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Trial Trial details Drug Studied population Salient results (references)

NCT00943826 
(AVAglio)

Phase 3 completed 
in 2015, 921 
participants

Patients with newly diagnosed, histologically 
confirmed glioblastoma, and stable or 
decreasing glucocorticoid use
Excluded if patients had hemorrhage or prior 
treatment for glioblastoma

Bevacizumab reduced 
glucocorticoid use and 
increased the time-to-initiation 
of glucocorticoid treatment 
(146)

NCT00305656 
(NCT00254943)

Phase 2 completed 
in 2012, 31 
participants

Cediranib Patients with histologically confirmed 
glioblastoma and stable dose of 
corticosteroids

Cediranib reduced 
glucocorticoid use (151)
Cediranib induced vessel 
normalization and reduced 
radiographic edema (152)

Abbreviations: ACA, anterior cerebral artery; CT, computed tomography; DC, decompressive craniectomy; IA, intra-arterial; ICH, intracerebral 
hemorrhage; MCA, middle cerebral artery; MMP9, matrix metallopeptidase 9; NIHSS, National Institutes of Health stroke scale; rtPA, recombinant 
tissue plasminogen activator; SAH, subarachnoid hemorrhage.
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